Reinforced random walk with F

A discrete time stochastic process {X,:k = 0,1, ...} in R% that
admits the following representation, X,

1
Xp+1 — X = E(F(Xk) + Uy)

1
— F(Xk)

* Agent based models with n agents 1U
' — Uk
— Evolutionary games 0
. _ 7
— Dynamics on social networks k+1

* Heuristic local search algorithms with uniform step size 1/n




Gradient-like dynamics

Converges to an attracting fixed-point region in O(nlogn)

steps.
If
* Noise, Uy,
— Martingale difference
— bounded
— Noisy
e Expected difference, F € C*

— Fixed points are hyperbolic
— Potential function
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Node Dynamic ND(G, fyp, Xo)[SY18]

* Fixed a (weighted) graph G = (V, E)

r ») ==
opinion set {0,1}, an update function X1 0) ~ 7
fap
* Given aninitial configuration
Xy Ve {0,1}
* Atroundt,
*

* Anodevis picked uniformly at random

* X:w)=1w.p. fap (Txt_l(v)) I
= (0 otherwise




Our Dichotomy Theorem

* Given a smooth rich-get-richer function fyp € C#, and a
planted community graph ¢ = K(n,p). The
of ND(G, fyp,Xp) has two cases:
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