Reinforced random walk with *F*

A discrete time stochastic process $\{X_k: k = 0, 1, ...\}$ in \mathbb{R}^d that admits the following representation,

$$X_{k+1} - X_k = \frac{1}{n} (F(X_k) + U_k)$$

 $F(X_k)$

 X_{k+1}

- Agent based models with *n* agents
 - Evolutionary games
 - Dynamics on social networks
- Heuristic local search algorithms with uniform step size 1/n

Gradient-like dynamics

Converges to an attracting fixed-point region in $O(n \log n)$ steps.

lf

- Noise, U_k
 - Martingale difference
 - bounded
 - Noisy
- Expected difference, $F \in C^2$
 - Fixed points are hyperbolic
 - Potential function

Node Dynamic ND(G, f_{ND}, X_0)[SY18]

- Fixed a (weighted) graph G = (V, E) opinion set {0,1}, an update function f_{ND}
- Given an initial configuration $X_0: V \mapsto \{0,1\}$
- At round t,
 - A node v is picked uniformly at random
 - $X_t(v) = 1 \text{ w.p. } f_{ND}(r_{X_{t-1}(v)});$ = 0 otherwise

Our Dichotomy Theorem

• Given a smooth rich-get-richer function $f_{ND} \in C^2$, and a planted community graph G = K(n, p). The maximum expected consensus time of ND(G, f_{ND}, X_0) has two cases:

