Reinforced random walk with F

A discrete time stochastic process $\left\{X_{k}: k=0,1, \ldots\right\}$ in \mathbb{R}^{d} that admits the following representation,

$$
X_{k+1}-X_{k}=\frac{1}{n}\left(F\left(X_{k}\right)+U_{k}\right)
$$

- Agent based models with n agents
- Evolutionary games
- Dynamics on social networks

- Heuristic local search algorithms with uniform step size $1 / n$

Gradient-like dynamics

Converges to an attracting fixed-point region in $\mathrm{O}(n \log n)$ steps.
If

- Noise, U_{k}
- Martingale difference
- bounded
- Noisy
- Expected difference, $F \in \mathcal{C}^{2}$
- Fixed points are hyperbolic
- Potential function

Node Dynamic ND $\left(G, f_{N D}, X_{0}\right)$ [SY18]

- Fixed a (weighted) graph $G=(V, E)$ opinion set $\{0,1\}$, an update function $\boldsymbol{f}_{\text {ND }}$
- Given an initial configuration $X_{0}: V \mapsto\{0,1\}$
- At roundt,
- A node v is picked uniformly at random
- $X_{t}(v)=1$ w.p. $f_{N D}\left(r_{X_{t-1}(v)}\right)$;

$$
=0 \text { otherwise }
$$

Our Dichotomy Theorem

- Given a smooth rich-get-richer function $f_{N D} \in \mathcal{C}^{2}$, and a planted community graph $G=K(n, p)$. The maximum expected consensus time of $\operatorname{ND}\left(G, f_{N D}, X_{\mathbf{0}}\right)$ has two cases:

Attracting point
$\delta=2 p-1$
Complete graph 0
$\delta^{*} \quad \exp (\Omega(n))$
Two isolated complete graphs

