Escaping Saddle Points in Constant Dimensional Spaces: an Agent-based Modeling Perspective

Grant Schoenebeck, University of Michigan
Fang-Yi Yu, Harvard University

Results

- Analyze the convergence rate of a family of stochastic processes
- Three related applications
- Evolutionary game theory
- Dynamics on social networks
- Stochastic Gradient Descent

Target Audience

Target Audience

Target Audience (still not-to-scale)

Outline

- Escaping saddle point

Evolutionary game theory

Dynamics
on social
networks

Stochastic Gradient Descent

Outline

- Escaping saddle point
- Case study: dynamics on social networks

Upper bounds and lower bounds

ESCAPING SADDLE POINTS

Reinforced random walk with F

A discrete time stochastic process $\left\{X_{k}: k=0,1, \ldots\right\}$ in \mathbb{R}^{d} that admits the following representation,

$$
X_{k+1}-X_{k}=\frac{1}{n}\left(F\left(X_{k}\right)+U_{k}\right)
$$

X_{k}

Reinforced random walk with F

A discrete time stochastic process $\left\{X_{k}: k=0,1, \ldots\right\}$ in \mathbb{R}^{d} that admits the following representation,

$$
X_{k+1}-X_{k}=\frac{1}{n}\left(F\left(X_{k}\right)+U_{k}\right)
$$

- Expected difference (drift), $F(X)$

Reinforced random walk with F

A discrete time stochastic process $\left\{X_{k}: k=0,1, \ldots\right\}$ in \mathbb{R}^{d} that admits the following representation,

$$
X_{k+1}-X_{k}=\frac{1}{n}\left(F\left(X_{k}\right)+U_{k}\right)
$$

- Expected difference (drift), $F(X)$
- Unbiased noise (noise), U_{k}

Reinforced random walk with F

A discrete time stochastic process $\left\{X_{k}: k=0,1, \ldots\right\}$ in \mathbb{R}^{d} that admits the following representation,

$$
X_{k+1}-X_{k}=\frac{1}{n}\left(F\left(X_{k}\right)+U_{k}\right)
$$

- Expected difference (drift), $F(X)$
- Unbiased noise (noise), U_{k}
- Step size, $1 / n$

Examples

A discrete time Markov process $\left\{X_{k}: k=0,1, \ldots\right\}$ in \mathbb{R}^{d} that admits the following representation,

$$
X_{k+1}-X_{k}=\frac{1}{n}\left(F\left(X_{k}\right)+U_{k}\right)
$$

- Agent based models with n agents
- Evolutionary games
- Dynamics on social networks
- Heuristic local search algorithms with uniform step size $1 / n$

Node Dynamic on complete graphs [SY18]

- Let $f_{N D}:[0,1] \rightarrow[0,1]$. n agents interact on a complete graph
- Each agent v has an initial binary state $C_{0}(v) \in\{0,1\}$
- At round k,
- Pick a node v uniformly at random
- Compute the fraction of opinion $1, X_{k}=\frac{\left|C_{k}^{-1}(1)\right|}{n}<$ Complete graph
- Update $C_{k+1}(v)$ to 1 w.p. $f_{N D}\left(X_{k}\right) ; 0$ o.w.

Node Dynamic

Includes several existing dynamics

- Voter model
- Iterative majority [Mossel et al 14]
- Iterative 3-majority [Doerr et al 11]

Node Dynamic

Node dynamic on complete graphs

- Let $f_{N D}:[0,1] \rightarrow[0,1]$. There are n agents on a complete graph
- Each agent v has an initial binary state $C_{0}(V) \in\{0,1\}$
- At round k,
- Pick a node v uniformly at random
- Compute the fraction of opinion $1, X_{k}=$ $\frac{\left|C_{k}^{-1}(1)\right|}{n}$
- Update $C_{k+1}(v)$ to 1 w.p. $f_{N D}\left(X_{k}\right) ; 0$ o.w.

Reinforced random walk on \mathbb{R}

- X_{k} be the fraction of nodes in state 1 at k.

Node Dynamic

Node dynamic on complete graphs

- Let $f_{N D}:[0,1] \rightarrow[0,1]$. There are n agents on a complete graph
- Each agent v has an initial binary state $C_{0}(V) \in\{0,1\}$
- At round k,
- Pick a node v uniformly at random
- Compute the fraction of opinion $1, X_{k}=$ $\frac{\left|C_{k}^{-1}(1)\right|}{n}$
- Update $C_{k+1}(v)$ to 1 w.p. $f_{N D}\left(X_{k}\right) ; 0$ o.w.

Reinforced random walk on \mathbb{R}

- X_{k} be the fraction of nodes in state 1 at k.
- Given X_{k}, the expected number of nodes in state 1 after round k, is $\mathrm{E}\left[n X_{k+1} \mid X_{k}\right]=n X_{k}+\left(f_{N D}\left(X_{k}\right)-X_{k}\right)$.

Node Dynamic

Node dynamic on complete graphs

- Let $f_{N D}:[0,1] \rightarrow[0,1]$. There are n agents on a complete graph
- Each agent v has an initial binary state $C_{0}(V) \in\{0,1\}$
- At round k,
- Pick a node v uniformly at random
- Compute the fraction of opinion $1, X_{k}=$ $\frac{\left|C_{k}^{-1}(1)\right|}{n}$
- Update $C_{k+1}(v)$ to 1 w.p. $f_{N D}\left(X_{k}\right) ; 0$ o.w.

Reinforced random walk on \mathbb{R}

- $\quad X_{k}$ be the fraction of nodes in state 1 at k.
- Given X_{k}, the expected number of nodes in state 1 after round k, is $\mathrm{E}\left[n X_{k+1} \mid X_{k}\right]=n X_{k}+\left(f_{N D}\left(X_{k}\right)-X_{k}\right)$.

Updated to 1 from 1

Node Dynamic

Node dynamic on complete graphs

- Let $f_{N D}:[0,1] \rightarrow[0,1]$. There are n agents on a complete graph
- Each agent v has an initial binary state $C_{0}(V) \in\{0,1\}$
- At round k,
- Pick a node v uniformly at random
- Compute the fraction of opinion $1, X_{k}=$ $\frac{\left|C_{k}^{-1}(1)\right|}{n}$
- Update $C_{k+1}(v)$ to 1 w.p. $f_{N D}\left(X_{k}\right) ; 0$ o.w.

Reinforced random walk on \mathbb{R}

- $\quad X_{k}$ be the fraction of nodes in state 1 at k.
- $\mathrm{E}\left[X_{k+1} \mid X_{k}\right]-X_{k}=\frac{1}{n}\left(f_{N D}\left(X_{k}\right)-X_{k}\right)$.

Drift $F\left(X_{k}\right)$

Node Dynamic

Node dynamic on complete graphs

- Let $f_{N D}:[0,1] \rightarrow[0,1]$. There are n agents on a complete graph
- Each agent v has an initial binary state $C_{0}(V) \in\{0,1\}$
- At round k,
- Pick a node v uniformly at random
- Compute the fraction of opinion $1, X_{k}=$ $\frac{\left|C_{k}^{-1}(1)\right|}{n}$
- Update $C_{k+1}(v)$ to 1 w.p. $f_{N D}\left(X_{k}\right) ; 0$ o.w.

Reinforced random walk on \mathbb{R}

- X_{k} be the fraction of nodes in state 1 at k.
- $X_{k+1}-X_{k}=\frac{1}{n}\left(\left(f_{N D}\left(X_{k}\right)-X_{k}\right)+U_{k}\right)$.

Drift Noise

Question

Given F and U, what is the limit of X_{k} for sufficiently large n ?

$$
X_{k+1}-X_{k}=\frac{1}{n}\left(F\left(X_{k}\right)+U_{k}\right)
$$

Mean field approximation

$$
X_{k+1}-X_{k}=\frac{1}{n}\left(F\left(X_{k}\right)+U\left(X_{k}\right)\right)
$$

$$
x^{\prime}=F(x)
$$

(

Mean field approximation

If n is large enough, for $k=O(n), X_{k} \approx x\left(\frac{k}{n}\right)$ by Wormald et al 95 .

Regular point

If n is large enough, for $k=O(n), X_{k} \approx x\left(\frac{k}{n}\right)$.

Fixed point, $\boldsymbol{F}\left(\boldsymbol{x}^{*}\right)=\mathbf{0}$

If n is large enough, for $k=O(n), X_{k} \approx x\left(\frac{k}{n}\right)$.

Escaping non-attracting fixed point

When can the process escape a non-attracting fixed point?

Escaping non-attracting fixed point

When can the process escape a non-attracting fixed point?

1. $\Theta(n)$
2. $\Theta(n \log n)$
3. $\Theta\left(n(\log n)^{4}\right)$
4. $\Theta\left(n^{2}\right)$

Escaping non-attracting fixed point

When can the process escape a non-attracting fixed point?

1. $\Theta(n)$
2. $\Theta(\boldsymbol{n} \log \boldsymbol{n})$
3. $\Theta\left(n(\log n)^{4}\right)$
4. $\Theta\left(n^{2}\right)$

Lower bound

Escaping saddle point region takes at least $\Omega(n \log n)$ steps.

Upper bound

Escaping saddle point region takes at most $\mathrm{O}(n \log n)$ steps. If

Upper bound

Escaping saddle point region takes at most $\mathrm{O}(n \log n)$ steps.
If

- Noise, U_{k}
- Martingale difference
- bounded
- Noisy (covariance matrix is large)
- Expected difference, $F \in \mathcal{C}^{2}$
$-x^{*}$ is hyperbolic

Gradient-like dynamics

Converges to an attracting fixed-point region in $\mathrm{O}(n \log n)$ steps.
If

- Noise, U_{k}
- Martingale difference
- bounded
- Noisy
- Expected difference, $F \in \mathcal{C}^{2}$
- Fixed points are hyperbolic
- Potential function

Outline

- Escaping saddle point

Evolutionary game theory

Dynamics
on social
networks

Stochastic Gradient Descent

Outline

- Escaping saddle point
- Case study: dynamics on social networks

Dynamics on social networks

(DIS)AGREEMENT IN PLANTED COMMUNITY NETWORKS

Echo chamber

Beliefs are amplified through interactions in segregated systems

Echo chamber

Beliefs are amplified through interactions in segregated systems

Echo chamber

Beliefs are amplified through interactions in segregated systems

Question

What is the consensus time given a rich-get-richer opinion formation and the level of intercommunity connectivity?

Node Dynamic [Schoenebeck, Yu 18]

- Fixed a graph $G=(V, E)$ opinion set \{0,1\}
- Given an initial configuration

$$
X_{0}: V \mapsto\{0,1\}
$$

- At round t,
- A node v is picked uniformly at random

The update of opinion only depends on the fraction of opinions amongst its neighbors

Node Dynamic ND $\left(G, f_{N D}, X_{0}\right)$

- Fixed a (weighted) graph $G=(V, E)$ opinion set $\{0,1\}$, an update function $\boldsymbol{f}_{\boldsymbol{N D}}$
- Given an initial configuration $X_{0}: V \mapsto\{0,1\}$
- At roundt,
- A node v is picked uniformly at random
- $X_{t}(v)=1$ w.p. $\boldsymbol{f}_{N D}\left(r_{X_{t-1}(v)}\right)$;

$$
=0 \text { otherwise }
$$

Planted Community

- A weighted complete graph with n nodes, $K(n, p)$
- Two communities with equal size
- An edge has weight p if in the same community and $1-p$ o.w.

Planted Community

- A weighted complete graph with n nodes, $K(n, p)$
- Two communities with equal size
- An edge has weight p if in the same community and $1-p$ o.w.

Complete graph

Question

- What is the interaction between rich-get-richer opinion formation and the level of intercommunity connectivity?

Question

- What is the interaction between rich-get-richer opinion formation and the level of intercommunity connectivity?

Strong Community Structure

- There exists an initial state such that the process cannot reach consensus fast.

-3-Majority

Weak Community Structure

- For all initial states, the process reaches consensus fast.

Our Dichotomy Theorem

- Given a smooth rich-get-richer function $f_{N D} \in \mathcal{C}^{2}$, and a planted community graph $G=K(n, p)$. The maximum expected consensus time of $\operatorname{ND}\left(G, f_{N D}, X_{\mathbf{0}}\right)$ has two cases:

Complete graph
Two isolated complete graphs

Node dynamic

- A Markov chain on 2-d grid
- $(0,0)$ and (1,1) are consensus states

Our Dichotomy Theorem

Our Dichotomy Theorem

Our Dichotomy Theorem

Our Dichotomy Theorem

Attracting point

Fast consensus

$\vec{X}_{k+1}-\vec{X}_{k}=\frac{1}{n}\left(F_{N D}\left(\vec{X}_{k}\right)+U\left(\vec{X}_{k}\right)\right)$ reach an attracting fixed point in $O(n \log n)$

Question?

