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Abstract

In this paper we describe a method of learning hierar-
chical representations for describing and recognizing ges-
tures expressed as one and two arm movemenis using com-
petitive learning methods. Ar the low end of the hierarchy,
the atomic motions (“letters”) corresponding to flow fields
computed from successive color image frames are derived
using Learning Vector Quantization (LVQ). At the next in-
termediate level, the atomic motions are clustered into ac-
tions (“words”'} using homogeneity criteria. The highest
level combines actions into activities { “sentences”) using
proximity driven clustering. We demonstrate the feasibil-
ity and the robustness of our approach on real color-image
sequences, each consisting of several hundred frames cor-
responding to dynamic one and two arm movements.

1. Introduction

Humans are non-rigid, articulated objects with many de-
grees of freedom, We are interested in describing and rec-
ognizing gestures expressed using human motions over var-
ious periods of time [3]. Such motions can be understood
with the aid of a three-level descriptive hierarchy based on
concepts of atomic motions, actions, and activities [2]. At
the low end of the hierarchy, the atomic motions (“'letters™)
corresponding to flow fields computed from successive color
image frames are derived using Leaming Vector Quantiza-
tion {(LVQ). At the next intermediate level, the atomic mo-
tions are clustered into actions (“words”) using homogene-
ity criteria. The highest level combines actions into activ-
ities (“‘sentences”) using proximity driven clustering. We
refer to one arm activities as “simple” and to simultaneous
two arm activities as “compound”.

Learning has long been a central issue in the understand-
ing of intelligence as it plays a fundamenta! role in regu-

338

lating the balance between internal representations and ex-
ternal regularities. As “versatility, generalization, and scal-
ability are desirable attributes in most vision systems, the
only solution is to incorporate learning capabilities within
the vision system” [7]. Gesture interpretation involves both
motion analysis and pattern recognition, often referred to as
the where and what problems. The motion analysis com-
ponent, described in detail elsewhere, consists of moving
arm(s) detection, motion estimation, and tracking. Normal
flow is used to detect a moving arm automatically. Expec-
tation Maximization (EM), uniform sampling, and a short-
est path algorithm are used to estimate the boundary of the
arm. An affine motion model is fit to the arm region us-
ing residual analysis and outlier rejection for robust param-
eter estimation. The estimated parameters are used for both
predicting the location of the moving arm and encoding its
motion. The novelty of our approach resides in the recog-
nition component. It comes from learning gestural repre-
sentations at different abstraction levels using competitive
leamning methods; this leads to a linguistic approach based
upon signal to symbol mappings. In the remainder of this
paper we describe our method and present experimental re-
sults.

2. Competitive Learning

It is widely accepted that automatic detection of mov-
ing objects, their accurate tracking, and interpretation and
recognition of long image sequences remains very challeng-
ing. The challenge comes from the need to process raw
image streams and convert them to summative representa-
tions. Note that “Signal to symbol integration and trans-
formation is an old but difficuit problem. It comes about
hecause the world surrounding us is a mixture of continu-
ous space time functions with discontinuities. Symbols not
only provide nice abstractions for low-level strategies, but
also allow us to move one level up the modeling hierarchy



and observe the properties of the systems and their interac-
tions between each other and their environment at a more
macroscopic level. Symbolic representation mediates rea-
soning about the sequential and repetitive nature of various
tasks” [1]. Our approach to this problem is based on com-
petitive learning methods driven by clustering.

Learning Vector Quantization (LVQ) [4] first abstracts
the affine motion parameters of the flow fields correspond-
ing to atomic motions as morphological primitive units, i.e.,
letters. Clustering driven by homogeneity defines then the
dictionary word entries corresponding to actions. Sequences
of actions are recognized as sentences corresponding to ac-
tivities. One arm activities are recognized as simple activi-
ties; synchronized two arm activities are recognized as com-
pound activities. Similar to a phonotopic map [5), one can
then parse (“read”) and interpret (“recognize”) arm move-
ments along the “linguistic” trajectories they trace. The
leamning component implements a linguistic approach; it
provides for computational efficiency, conceptual abstrac-
tion and hierarchical modeling, and robustness. The first
few cycles of each moving arm color image sequence are
used for training, while the remaining cycles are used for
testing.

2.1. Parsing and Interpretation

Simple arm activities inciude striking, grind, swing, stir-
ring (augmented by tool using), (slow or fast) pounding
(see examples in Fig. 1); compound two arm activities in-
clude in-phase striking, and opposite phase striking (see
Fig. 2). Video color-image scquences are represented using
three hierarchical layers of abstraction in order to facilitate
parsing and interpretation of arm movements. LVQ self-
organizes and compresses the original input space spanned
by the affine parameters of the flow fields using 13 (thir-
teen) symbols, i.e., “letters”, each of them corresponding to
an'individual tile in the Voronoi tesselation. it can be shown
using the inner product of the prototype vectors that the let-
ters are guite dissimilar. Homogeneity driven clustering de-
rives the next layer, which consists of 13 (thirteen) “words”,
corresponding to specific actions; the transitions (“edges”)
as segmentation (“punctuation”) points between actions are
grouped into the fourteenth “word”. Examples of words in-

clude (“up”~ "AAAAAAAAAM), (“down” - "BBBBBBBBB"),

while examples of transitions include (BPO) and (FGL).
Please note that some actions can map to more than one
cluster. One can again show that the dictionary “word” en-
tries are quite dissimilar.

The last representational layer encodes simple arm ac-
tivities in terms of simple word sequences using proximity
driven clustering, €.g., pounding consists of repeating cy-
cles of up and down segments, swirling consists of repeating
circle segments, swing consists of repeating left and right
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segments and so on. Examples of compound activities, in-
phase striking and opposite phase striking, are encoded as
repeating cycles of pairs (up, up) and {down, down), and
(up, down) and (down, up), respectively.

Arm activities can now be recognized as follows : (a)
derive the letter sequence using the prototypes found us-
ing LVQ; (b) derive the word sequence via flexible and ro-
bust matching between the sequence of letters and the ac-
tion/transition clusters using as distance a properly weighted
largest common letter subsequence and the nearest neighbor
as the classification rule; (c) label the activity by matching
the sequence of words against sentence prototypes learned
carlier. We find that the sentences corresponding to differ-
ent arm activities are quite dissimilar.

3. Experimental Results

We show here the feasibility of our method using the
eight kinds of arm activities referred to in the previous sec-
tion. Each sequence consists of several hundred (100 - 500)
frames. These images were collected using a Sony DFW-
VLS00 progressive color scan camera; the frame rate was
thirty frames per second.and the resolution was 320 x 240
pixels per frame. The moving arm was detected and tracked
automatically as was briefly described in Sect.l: Fig. 1
and 2 show 4 frames, randomly chosen, and the correspond-
ing tracked contours for each kind of arm movement.

-0.00067 | -0.0014 | 0.28 | -0.0012 | 0.0026 ! -0.92 |A
0.00064 | 0.0013 -0.17 ; 0.006001 |-0.0033 | 0.95 |B
-0.016 ] -0.0052 |-1.20 ] -0.0031 |-0.0069 ]-0.070 |E
-0.00023 | -0.0023 [-0.99 | -0.0034 [-0.0061 | -0.25 |F
00071 | 0.0016{-1.09| -0.0018 | 0.0084 | 0.37{G
0.0020 [-0.00064 ]-0.97 | 0.0016] 0.0010] -0.24 |H |
0.0016 1-0.00082 |-0.82 | 0.0032/0.00074 | -0.58 |1
-0.0049 | -0.011|G.95 0.026 |-0.00121 -0.46 |K
-0.0081 | -0.0062 | 1.02| -0.017| -0.017]0.050 |L
-0.0016 | 0.00017 | 0.96 |-0.00010 |0.00007 | 0.25 M
0.0019 |:0.00009 | 0.52 | -0.0043 | 0.021| 0.89IN
0.0022 [ -0.0040 |-0.67 | 0.0013 0.00019 | -0.74 |O
0.00009 | 0.0070 | 0.54 | -0.0095 [0.00082 [ 086 [P |

Table 1. The numerical values of affine param-
eters corresponding to the derived letters.

The input to LVQ consists of the affine motion param-
eters derived for one cycle (approx. 60 frames) for each
of the eight kinds of arm movements. The output of LVQ
yields thirteen prototypes/letters; the corresponding affine
flows are shown in Fig. 3; the corresponding affine param-
eters are shown in Table |. After the letters are derived



Figure 1. Frames from the “striking”, “grind”,
“stirring”, and “swing” arm movement se-
quences. Odd rows: selected color frames.

Even rows: tracked contours.

by LVQ, each video frame is represented by a letter corre-
sponding to the nearest motion prototype. Clustering then
compresses the letter sequences into word sequences. The
thirteen words {marked by numbers 012} correspond to let-
ter sequences. These sequences can be of variable length.
The words are 0 : A*, 1 : N*,2: B*,3: K*, 4: L*,
5:E*6:G,7:H*,8: P*,9: F*10:1*,11: O*,and
12 : M*, where A* stands for a sequence of A’s possibly
interspersed with a (very) few other letters.

Using this code, each color video image sequence is com-
pressed by an order of magnitude. The results are shown in
Fig. 4. The feasibility and the robustness of the proposed
method is shown using long and inherently noisy image
sequences corresponding to different arm activities, some
of them possibly recorded at different speeds. Testing per-
formed on the activity cycles not used during training yields
perfect recognition accuracy - 100% — if one allows that
slow and fast pounding are recognized as one activity.
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Figure 2. Frames from the compound activi-
ties sequences. Top rows: in-phase striking.
Bottom rows: opposite phase striking. Odd
rows correspond to selected color frames.
Even rows correspond to tracked contours.

4. Conclusions

This paper describes a new method for the hierarchical
interpretation of lower arm and hand movements from color
video image sequences using a linguistic approach driven
by competitive learning. The feasibility and the robustness
of the proposed method has been shown using long and in-
herently noisy image sequences corresponding to different
one and two arm activities recorded at different speeds.

The linguistic approach described in this paper can be
easily expanded in terms of both alphabels and dictiopary
entries. A possible extension would include coupling arm
and wielded tools movements. The stirring activity consid-
ered earlier as a part of our experimental data involved the
use of one such tool. Qur preliminary experiments suggest
recognition of arm activities can be enhanced by coupling
the parsing and interpretation processes using the motions
traced by both the arm and the wielded tool.
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striking:
O[1413[212(91115)2[211([3]1017111[4}0[14]2[10]
1[11]0[8]1T[4]0[10]1{212[11]11[6]12[610113]11[2]
O[1111[3]2[20]11[4]0{2]11({2]0{6]11[4]0[13]112]
2[16]1[512[411[4]10{2]11[2)0[8]11[4]10[14]2[13]
1[218[312[710[29]1[412{11]1[2])2[4]1[2)0[ 121113}
O[17Y1[212[13]1[3]2[3]1[2]0[2]

grinding:
3[474[315[316011]7[213[15]11[3]3{514[216[9]7[6]
6[6]7[2]11[2]10{413(2]0[313[10]10[813[3]2[2]16[7]
5[316[12]7§2]15[2]

swing:
10[1110[2)1 1[15]1[318[3]1[3]8[4]11[2]11{16]10[2]
131891718211 {4]18[ 711 [2]11[15]0[4]1(2]8]7]
12]1[2]

stirring:
2[6}6[6]51317(317[4110[7]L1[13]0[ 1 E13[15]4[30]
8i211[712[1116[3]12[2}6[10]7[6]110[10]1 1[9]0[11]
3[14]1471814[ 151811311 [312[19]6[1 1]7[7110[8]11[10)
O[1313[714{1314[10]8[3]1(B12[8]6[12]5[2]7[5]7[3]
10[6]11[1 1J0[13}3(5]

slow pounding:
0[2812[41016]13[2]10[412[12]613]12[3016[6]2[3]
0[56]2[4]6[212[5816[3}0[42]13[2]0[48]2(57]

fast pounding:
0[42]12[2716[318[2]0[50]6[4]2[2916[310{21]3[6]
0[9)2[3810[3716[212[37]0[15]13[10]0[6]2[316[4]
2[24]0[18]13[4]

in-phase striking—left hand:
0[23]131412[2510{32]3([3]2[32]0[ 1 7111 [3]0[24]2[33]
11[510[11]

in-phase striking—right hand:
0[28]2[29]10[33]2129]1[310(3]11 1 [3]0141]2{30]1[2)
6{2]2[4]0(11]

opposite phase striking—left hand:
2[U171[3HL{610[3012[3511[2]1 {311 {[5]0[3] 1 1(5]
O[2212(39]111[13]10[27]2[28]1[3]12[5]1 18]

opposite phase striking—right hand:
0[16]2[35]1[3]10[36]3[2]2[30]1[4]1[2]0[36]3[2]
2[31]111910[3812[9]

Figure 4. Words sequences corresponding to
the arm activities. The numbers in square
brackets correspond to the word length.
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