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Abstract—In this paper we study the problem of acquiring multi-dimensional histograms [8], [9] computed over the entire
a topological model of indoors environment by means of visual jmage. In case of omni-directional views representations in
sensing and subsequent localization given the model. The re-iarmg of eigenviews obtained by principal component analysis

sulting model consists of a set of locations and neighborhood ; . -
relationships between them. Each location in the model is were applied successfully both for topological and metric

represented by a collection of representative views and their model acquisition, thanks to small variations of the image
associated descriptors selected from a temporally sub-sampledappearance within a location and rotationally invariant image
video stream captured by a mobile robot during exploration. representations [10], [11]. The use of local point features for
We compare the recognition performance using global image 1o metric and topological localization was proposed by [12],

histograms as well as local scale-invariant features as image 131, In both of th inst the od tri di
descriptors, demonstrate their strengths and weaknesses and[ ] In both of these instances the odometric readings were

show how to model the spatial relationships between individual Used in connection with the visual estimates.
locations by a Hidden Markov Model. The quality of the acquired

model is tested in the localization stage by means of location o . .
recognition: given a new view or a sequence of views, the most The problem of building a metric model and simultaneous

likely location where that view came from is determined. localization (SLAM) using solely visual sensing has been
Index Terms—Vision based navigation, localization, mobile d€monstrated successfully in case of smaller, single room
robots environments [14] or trinocular stereo [15]. The applicability

of these purely vision-based methods to the problems of the
scale comparable to those achieved by laser range sensors is
. INTRODUCTION AND RELATED WORK very difficult due to often ambiguous nature of visual measure-
The acquisition of unknown environment models, naviganents. In order to enable map building and localization solely
tion and pose maintenance belong to the essential capabilitigsmeans of visual sensing, suitable representations of the
of a mobile robots. The approaches for vision-based modgivironment at different spatial scales and associated means
acquisition and localization typically strived to obtain eitheof localization. The advantages of such representations have
metric or topological models. The topological models wergeen pointed out previously by [16] both from the perspective
commonly induced by visibility regions associated with thef model building, localization as well as navigation given
artificial landmarks. Artificial landmarks simplified the issuethe model. These types of hybrid models have been already
of landmark recognition and enabled reliable estimation ekplored previously using ultrasound sensing [17].
the robot’s pose with respect to a landmark [1], [2]. In other

instances the nodes of the topological model corresponded t?n our approach, the final model will be represented in terms

segments of trajectories where the set of interest points Cafnlndividual locations, each characterized by a set of represen-

be successfully tracked [3]. The techniques which tried gtive views. Within the location we will endow the model with

bypgss the choice of artificial landmarks have bee_n Ma local geometry relative to the set of representative views.

I} this paper we discuss a method for acquiring the coarse

of the main concerns of these methods is the choice oOf : : . .

. . . ructure of the environment in terms of its topology with the
image representation, which could guarantee some amounf or .=~ : . .

. . . o . : o calization being solved by means of location recognition. We
invariance with respect to variations in pose, illumination an

. . . —_compare two different representations of locations in terms of
scale and be robust to partial occlusion and clutter. The image . . . .

. . . . _Image orientation histograms we proposed previously [18] and

representations proposed in the past comprised of descriptors . : o

: : ocal scale invariant features. We report the recognition perfor-

computed locally at selected image locations or globally over ; ) : .

. . . mance using a single view at the time and demonstrate how to

the entire image. The image locations were selected usin . ) . . . :

. . . : : exploit the spatial relationships between locations to improve

various saliency measures and their associated rotationally;0

affine invariant feature descriptors [4], [5], [6] then enabled etfl_”ne classification results. The use of spatial relatlonshlps is
. : . ! . clpsely related to recently published work by [19] on using
fective matching of overlapping and possibly widely separate : . . . -
; ; : . ontextual information for place and object recognition. Their
views. Alternative global descriptors were derived from local

. . . . approach considered slightly different image representation
responses of filters at different orientations and scales [7] gﬁg used hand labelled ?:iatg set for Iearnir?g thepobservation

This work is supported by NSF grant 11S-0118732. likelihood of individual locations.



Il. APPROACH

We propose to represent the large scale structure of th
environment in terms of its topology captured byogation
graph The nodes of the graph corresponds to individual
locations and the transitions represent neighborhood relatiorgs
ships between them. In the presented work we focus off
the localization scheme enabled by recognition of locationsi
which loosely correspond to the regions in the robot’s work
space which are similar in their appearance. The neighborin
locations are typically separated by regions where significarg, .
robot navigation decision have to be made; such as hallwa|"
intersections, corners and doorways. Initially, the frames o] .
the temporally sub-sampled video sequence obtained in th
exploration stage are partitioned and labelled as belonging t
different locations. After obtaining a labelled set of views asso-
ciated with the individual locations, we represent each location
in terms of representative feature vectors. In the classificatig. 1. Locations (top) andi3 (bottom) of the4®" floor, detected scale
stage we determine given a previously unseen view, what is theriant features and global gradient orientation histograms (right). The circle
location it most Iiker comes from. Low location Iikelihoods,cemer represents the keypoint's location and the radius the keypoint's scale.
which in the presence of thresholds would yield classification
errors, are resolved in the second stage by exploiting tEe
temporal context and spatial relationships between neighborm'gl_ i ] ] .
locations modelled in terms of Hidden Markov Model (HMM). he second descriptor we consider are the scale-invariant
We demonstrate the performance of the proposed approacH 8l T) features proposed by D. Lowe [20]. The SIFT features

the model acquisition and localization experiment in indoof®rrespond to highly distinguishable image locations which
environment comprised of 18 locations. can be detected efficiently and have been shown to be stable

across wide variations of viewpoint and scale. Such image
locations are detected by searching for peaks in the image

Scale-Invariant Features

1. 1 MAGE FEATURES D(x,y,0) which is obtained by taking a difference of two
neighboring images in the scale space
In order to obtain image representation which captures the D(z,y,0) = (G(x,y,ko) — Gz, y,0)) * I(x,y)

essential appearance of the location and is robust to occlusions

and changes in image brightness we compare two different = L(z,y,ko) = L(z,y,0). @)

image descriptors and their associated distance measure. Inthe image scale spadg(z, y, o) is first build by convolving

first case we use image histograms integrated over large image image with Gaussian kernel with varying such that at

subregions and in the second case each image is represeggqgcmam' L(z,y,0) = G(x,y,0) * I(z,y). Candidate fea-

by a set of local scale-invariant features. ture locations are obtained by searching for local maxima and
minima of D(z,y, o). In the second stage the detected peaks
with low contrast or poor localization are discarded. More

A. Image Histograms detailed discussion about enforcing the separation between
the features, sampling of the scale space and improvement in

The gradient orientation histograms are obtained by ﬁrﬁgature localization can be found in [20], [21]. The keypoint

corr)pu.tmg th_e |m§ge denvatlve[:{x.,ly]T = [%’%]T and descriptor is then formed by computing local orientation
assigning orientation to each pixel as atah2l.). The histograms (with 8 bin resolution) for each element afa4
contribution of each pixel to the histogram is weighted béjrid overlayed oveil6 x 16 neighborhood of the point. This

its gradient magnituden(z,y) = /I3 + 17, which has yields 128 dimensional feature vector which is normalized to
been initially normalized td0, 1]. In order to obtain better unit length in order to reduce the sensitivity to image contrast
discrimination capability of this global representation, wand brightness changes in the matching stage. Figure 1 shows
retain some of the spatial information present in the image ltye keypoints found in the example images in our environment
computing the histogram for five sub-images (four quadrarasd their associated global orientation histograms. In our
and the central region) and stacking them together to form experiments the number of features detected in an image of
image descriptor. The most notable characteristic of orientatisize 480 x 640 varies between 10 to 1000. In many instances
histogram feature is that it properly reflects the changes tinis relatively low number of keypoints, is due to the fact
image appearance due to portions of the environment leavihgt in indoor environments many images have small number
the field of view and reflect presence of corners, doorsf textured regions. Note that the detected SIFT features
and bulletin boards; characteristics which intuitively represeabrrespond to distinguishable image regions and include both
different locations. point features as well as regions along line segments.



V. ENVIRONMENT MODEL they belong to different locations. This is not surprising

In the exploration stage the images were taken by a Sﬁlipce certain'locations' (e.g.' corr.idors) appear very similar if
digital camera about 2 meters apart, with the orientation fPMPared using the orientation histogram descriptor. The clear
the direction of mobile robot heading. The path along whicfiansitions between the locations are represented by peaks in
the training sequence was taken visited all locations (sometma temporal histogram comparison ?IOt' Tr_]ese were typically
them twice) and is depicted in Figure 2. In this data set tf@useéd by sudden change of robots’ heading or more gradual
heading direction was in most cases aligned with the princigg}2ng€ in the location appearance. N _
directions of the world coordinate frame or perpendicular to In the case of SIFT features the transitions between in-

it. Along the exploration route the consecutive orientation higividual locations are determined depending on the number
of features which can be successfully matched between the

successive frames. As long as 4% of features or at least
six feature points could be matched successfully between the
consecutive views they were assigned as belonging to the same
Y -I.lO il, ks Iocation._More detailed description of thg model acquisition
. ! | stage using SIFT features can be found in [22].
o } The assignment of individual views to clusters is in our
MiE L P e 113 case induced from the temporal relationships acquired during
= = o ' exploration. We have examined two different methods for
L . initial label assignment; automatic and by hand and obtained
gt | G st p e Tge comparable recognition results. The automatic location label
' assignment was obtained by searching for the peaks in the
temporal histogram distance profile. First coarse peaks were
detected and further refined using an adaptive threshold and
Fig. 2. Floor plan of thet*” floor; exploration route and labels associateothe mlnlmum separation dls.tanc_e criterion, yleldlng a set of
with individual locations labelled by hand. dominant peaks. Note that in Figures 3 the dominant peaks
are quite distinguishable, clearly separating images associated
tograms were compared using empirical distance measureWwith the individual locations. In the experiments reported in
between two distributions this paper the location labels are assigned by hand due to the
9 fact that the exploration path contains several cycles. These can
20 1y N (k) — hy(k)) : : " ot
X (hi, hj) = Z () ho(h (2) be resolved by incorporating odometric estimates as a part of
o hi(k) 4 Ry (k) the state estimation.

where k is the number of histogram bins. In our case an After temporal clustering of the image sequences obtained
image descriptor was obtained by stacking five magnitu&fé the exploration phase, the sequence was partitioned into
weighted sub-image orientation histograms. The discrimin?a@ locations. Due to the rectilinear structure of indpors en-

tion capability of the orientation histograms is depicted iMironments and presence of large number of corridors, the
Figure 3. The affinity matrices depict all pairwise Compalssemant_ics associated with indivi_dual locations _corres_pond_s to
isons between the views USinQ?(hi,hj) and the temporal places in the map approached_wnh some ca_nonlcal orientations
distance profile measure distances between two consecufigdrsely quantized into four different directions (N, W, S, E).

views of the sub-sampled image sequeréé;_1, h;). Note Hence being at the same (corridor) location with two opposite
orientations corresponds to being at two different locations

~~~~~~~~~~~~~~~~~~~~~~~ in our model. Although at this stage this coarse model is

sufficient, in order to enable complete metric localization (e.g.
within a room), finer quantization of the orientation space is
required.

A. Location Representation

Lo T T Once the initial sequence was partitioned into invidiual

_ . _ o locations, we next obtain representation for each location in
Fig. 3. The pairwise and temporal comparison of orientation histograms of

images taken by still digital camera: global histograms image representatﬁﬁ'{ms of a Sma"er _numb_er of prototype image descrlpto_rs.
(left) and sub-image histograms (right). In case of orientation histograms we have used Learning

Vector Quantization technique (LVQ). LVQ examines the data
that the affinity matrices have clear distinguishing clustersepresented as vectoss € R™ and in an iterative fashion
corresponding to the images collected along particular pdihilds a set of prototype vectors, call@ddebookvectors,
at locationsly, ls, .. .,Iln. The non-diagonal structure of thethat represent different regions in the n-dimensional feature
affinity matrix in Figure 3 also reveals that certain subspace. We used the existing implementation of L?AK
sequences are similar to each other in spite of the fact tipmickage [23] withy? statistics in place of the distance func-
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Fig. 4. Examples of representative views of 12 out of 18 locations.

Fig. 5. Recognition rates using nearest neighbor classifier given the represen-
tation learned using LVQ method (left) and nearest neighbor classifier given
the representation learned using k-means method described above (right).

tiont. In the second method we tested, all the views belongimpdel viewI?, {C(Q, I})}, is first computed. The correspon-

to a particular location were first sampled uniformly, followedence is determined by matching each keypoin{ (@)}

by K-means clustering stage. The number of samples varigglainst the database {JSk(I})} keypoints and choosing the

depending on the location and number of clusters per locatinearest neighbor based on the Euclidean distance between

varied between 1 to 5. two descriptors. We only consider point matches with high
In case of SIFT feature representation, each location waiscrimination capability, whose nearest neighbor is at least 0.6

represented by a number of representative views and thiines closer then the second nearest neighbor. More detailed

associated SIFT features. The sparsity of the model is diredigtification behind the choice of this threshold can be found

related to the capability of matching SIFT features in thi@ [20]. In the subsequent voting scheme we determine the

presence of larger variations in scale. The number of reptecation whose keypoints were most frequently classified as

sentative views varied between one to four per location angarest neighbors. The location where the query infagame

the views were obtained by regular sampling of sub-sequendisn is then determined based on the number of successfully

belonging to individual locations. Examples of representativeatched points among all model views

views associated with individual locations are depicted in ,

Figure 4 P C(0) = max [{C(@. 1))} and [1, num] = max (i)

wherel is the index of location with maximum numbeim

V. LOCATION RECOGNITION of matched keypoints. Table | shows the location recognition

In the first location recognition experiment we have ran-

domly chosen 70%, 80% or 90% of total frames as the|-3duence (# of views) NO.1(250) | NO.2 (134) | NO.3 (130)
.. ’ . ._| one view 84% 46% 44%
training data and' .the wholg sequence is treated as testingiwo views 97.6% 68% 56%
data. The recognition experiment was repeated 50 times fof four views 100% 82% 83%
K-means and 10 times for representation obtained using LVQ.
TABLE |

The recognition rate was recorded each time and averaged
over all trials. In both cases we have used nearest neighbor RECOGNITIONRATE IN% OF CORRECTLY CLASSIFIED VIEWS
classifier to determine the location which the view came from.

The recognition rates of this experiment are in Figures 5 are

recorded as a function of total number of prototypes for ar“asults for SIFT features as a function of number of represen-

locations. The number of prototypes per class depends t&tjve views per location on the training sequence of 250 views
differs between locations and two test sequences of 134 and 130 images each. The two
In the case of SIFT keypoints the environment model obtain& ditional te.st' sequences were t_aken at different days and times
in the previous section consists of a database of model ViewsS c_jay, exhib |.t|r'19 larger _dewatlons from the path traverse;d
Thei-th location in the model, with = 1, ... ' is represented during the training. Despite a large number of representative
by n. views I It with n’ € {1, é '4'} and each view views per location relatively poor performance on the second
1ryeoin 3 Sy 9y . K

. ; and third test sequence was due to several changes in the
s represented by a set of SIFT featur 1Y)}, where : - ;

: P y uresSy( J)} W environment between the training and testing stage. In 5 out

k is the number of features. In the initial stage we teste 18 locations several obiects were moved or misplaced
the location recognition by using a simple voting schem% ) P )

. : . : . me misclassification exampl re shown in Figure 6. N
Given a new query imageé) and its associated keypoints Ome misclass cation examples are s 0 -lgure 6 _ote
‘ . that in examples a) and b) are the misclassification which
{5;(Q)} a set of corresponding keypoints betweégand each . . . . .
occurred using orientation histogram representation. These
Lin spite of the fact thai? statistics is not a metric (triangle inequality location are quite similar in their appearance, but can be easily
does not hold), we chose to use it as our distance measure due to its gdisambiguated using more discriminative image representation

discrimination characteristics [24] _ o _such as SIFT features. On the other hand in Figure 6c
It is our intention to attain a representation of location in terms of view,

(as opposed to some abstract features) in order to facilitate relative positionﬁﬁf Iocatlo_n was misclassified due to the dypamlc change
tasks in the subsequent metric localization stage. of the environment between training and testing stage and
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Fig. 6. Examples of test images which were misclassified in the recognit # 1
stage: the first row are the test images and the second row are the images v {’ £
are closest to the nearest neighbor class center. Changes in the appea ’
of location L4 and Lg between the training and testing. In the left imag °
pair the bookshelve was replaced by a table and couch and in the right
recycling bins were removed.

2 ) 5
“ e numbs er 100 o T T fame number

ith f th . d full | Eﬂﬁ 7. Test sequence classification results for orientation histograms (left
neither ot the two representations could successiully class umn) and SIFT features (right column) representations. The top row shows

this instance. In the next section we demonstrate how cia location label assignments for each frame of the test sequence while taking
the use of spatial relationships between locations impro\?@ account the spatial relationships modelled by HMM. The bottom row

. " . . . show the same experiment with HMM turned off.
the location recognition accuracy, while still retaining these

relatively simple image representation.

individual locations in terms of Gaussian mixtures has been
proposed in [19]. We have found this soft assignment to be
The recognition rates reported in the previous section Wqess effective in our environment.

based solely on the single view and did not exploit the neigh- ) S|FT observation likelihood:In the case of SIFT
borhood relationships between the views. The spatial relatiq@atyres the conditional probability(o;|L; = I;) that a
ships between individual locations determined by temporgliery imageQ, at time ¢ characterized by an observation
context are modelled by a Hidden Markov Model (HMM). The, _ {5,(Q;)} came from certain location, is directly related
use of temporal context is motivated by the work of [19] whick, the cardinality of the correspondence 68t), normalized

addresses the place recognition problem in the context of wegy-the total number of matched points across all locations
able computing application. In our model the states correspond '

to individual locations and the transition function determines pos|Ly = 1;) = C(i) _

the probability of transition from one state to another. Since the Zj C(j)

states (locations) cannot be observed directly each Iocationr'hc,e second term of Equation (3) can be further decomposed
characterized by its associated observation likelih®¢d; =

l;lo1.+) denoting the conditional probability of being at time N

t and location/; given the available observations up to time P(L¢ = lifo1.t—1) = ZA(li7lj)P(Lt—1 =ljlo1:e—1) (4)

t. The problem of localization can then be formulated as a J

problem of estimating most likely location given all availablg hare A is the total number of locations and(l;,1;) =
measurements up to time The location likelihood can then P(L, = l;|L, = ;) is the probability of two locations being
be estimated recursively using the following formula !

VI. M ARKOV LOCALIZATION

adjacent. All the transition probabilities between individual
P(Ly = li|o1..)  plog|Ls = L,)P(Ly = Lilore—1)  (3) locations were assigned non-zeros val_ues de.spite the fact that
the transitions between certain locations did not exist. In
wherep(o:|L: = I;) is the observation likelihood, charactercase of orientation histograms, in the presence of a transition
izing how likely is the observation; at timet¢ to come from between two locations the corresponding entry was assigned
locationl; . valuep; and in the absence of the transition it was assigned
a) Histogram observation likelihoodln case of orien- value py. In the final stage all the rows of the matrix were
tation histograms, the probability that the observation comeermalized. The performance reported in the following exper-
from a particular locatiorp(o¢|L; = [;) is obtained by first iments used the ratio of;/p. = 1.5. The ratio of values
finding the closest cluster center among all classes basedpgrand py affected the final recognition rate. In case of SIFT
Bayes rule. The chosen nearest cluster is then approximateatures the presence of a transition between two locations the
with a spherical Gaussian distribution with the cluster centeorresponding entry ot was assigned a unit value and in the
as the mean. The probability of the test image belonging fimal stage all the rows of the matrix were normalized. We
this cluster center then becomes the probability of the tdsve tested the improvements in the recognition rate for both
image belonging to the location. Alternative representation whage descriptors on training data and new test sequences. Not



surprisingly in both cases the employment of HMM improveds]
the recognition rate compared to single view recognition.
Although the recognition rate for training data we on average
98%, we found the orientation histograms to be inferior tq7]
SIFT features on new test sequences. This was primarily due tQ
the larger deviations of the path from the original exploratior{B]
path and some dynamic changes in the environment. The
results of location recognition on new test sequence are Ifl
Figure 7. The recognition performance using HMM enabled
us to eliminate most of the previous classification errors aiumb]
achieve classification rate around 99%. Although some of the
individual views were misclassified, the order of locationg;
visited during the test sequence was determined correctly%
SIFT features Hidden Markov Model in Figure 7 upper right
plot. In the case of orientation histograms frames 38 to 55 wejg,
misclassified with the use of HMM, yielding 90% recognition
rate. Turning the HMM off by making all transitions equally
likely decreased the overall recognition rate for both imadg]
descriptors.

y

[14]
VIlI. CONCLUSIONS
We have demonstrated an approach for vision-based tojis}
logical localization by means of place recognition. While in
the single view recognition case we have observed seveg
classification errors, those were successfully eliminated using
the spatial relationships modelled by Hidden Markov Model.
We also compared two different image descriptors, and shongd
the SIFT features to be superior to orientation histograms due
to their higher discrimination capabilities and better invariandt8!
properties with respect to viewpoint changes. We are currently
in the process of carrying out more extensive experiments gmgl
fully automating the model acquisition stage. The presented
work only deals with capturing the coarse spatial structure &5]
the indoor environment. In parallel we are developing methods
to enabling precise relative positioning within individual local1]
tions, using geometric pose estimation techniques. This sien
is essential for enabling simultaneous model acquisition and
localization by means of purely visual sensing without relying3l
on the odometry.

[24]
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