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Abstract

This paper describes a novel application of Statistical
Learning Theory (SLT) for morion prediction. SLT pro-
vides analytical VC-generalization beunds for model selec-
tion; these bounds relate unknown prediction risk (gener-
alization performance) and known quantities such as the
number of training samples, empirical error, and a mea-
sure of model complexiry called the VC-dimension. We use
the VC-generalization bounds for the problem of choosing
optimal motion models from small sets of image measure-
ments (flow). We present results of experiments on image
sequences for motion interpolation and extrapolation; these
results demonstrate the strengths of our approach.

1. Introduction

Learning plays a fundamental role in facilitating “the
balance between internal representations and external reg-
ularities”. As "versatility < generalization>> and scalability
are desirable attributes in most vision systems”, the “only
solution is to incorporate learning capabilities within the vi-
sion system” (5]. Many challenging problems in computer
vision can be addressed using predictive learning, where the
goal is to come up with "good” models based on available
(training) data under fairly general {flexible) assumptions.

Towards that end, we present a novel application of Sta-
tistical Learning Theory (SLT) for optimal selection of mo-
tion models. SLT facilitates the development of robust learn-
ing algorithms for model selection from small data sets,
without using restrictive assumptions such as asymptotic
settings, i.i.d. data and/or Gaussian noise and it provides
analytical generalization bounds for model selection; these
bounds relate unknown prediction risk (generalization per-
formance) and known guantities such as the number of train-
ing samples, empirical error, and a measure of model com-
plexity called the VC-dimension.

The robust statistics framework plays an important role
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im computer vision [3, 71. The main goals of robust statis-
tics are te recover the structure that best fits the majority of
the data while identifying and rejecting “outliers” or “de-
viating substructures”. To be genuinely useful, however,
a fitting procedure should provide (i) parameters, (ii) error
estimates on the parameters, and (iii) a statistical measure
of goodness-of-fit. When the third item suggests that the
model is an unlikely match to the data, then items (i) and
(i1) are probably worthless” [6]. Robust statistics for com-
puter vision problems is about parameter estimation and it is
mostly concerned with residual analysis and scale determi-
nation [7]. Computer vision methods usually sacrifice gen-
erality to be able to handle the complexities of the data [3].

Robotic vision has iis basis in geometric modeling of the
world, and many vision algorithms attempt to estimate these
geometric models from perceived data. Usually only one
model is fitted to the data. But what if the data might have
arisen from one or several possible models? In this case the
fitting procedure needs te fit all the potential models and
select which of these fits the data best. This is the task of
robust model selection which, in spite of the many recent
developments in the application of robust fitting methods
within the field of computer vision, has been, by compari-
son, quite neglected [8)].

Even though robust statistical methods are often used in
CV, the main focus of our paper is to seek robust (predic-
tive) learning methods in terms of both accuracy and func-
tionality, which have been succinctly defined in the con-
text of computer vision as “"the fewer assumptions a sys-
tem imposes on its operaticnal conditions, the more robust
it is considered to be” [4]. What distinguishes robust learn-
ing from robust statistical estimation is its ability to iden-
tify, in an optimal fashion, multiple models without using
restrictive assumplions such as i.i.d. data and asymptotic
setting. SLT, discussed in next section, enables a better un-
derstanding of issues responsible for generalization and fa-
cilitates the development of better (less heuristic) learning
algorithms based on model selection.



2. Statistical Learning Theory

Analytical methods estimate the predictionrisk as a func-
tion of the empirical risk (training error) penalized (adjusted)
by some measure of model complexity. Once an accurate
estimate of the prediction risk is found, it can be used for
model selection by choosing the model complexity that min-
imizes the estimated prediction risk. Various analytic pre-
diction risk estimates have been proposed for model selec-
tion under standard regression formulation with squared er-
ror loss, Lz = (y, f{z,w)) = (y — §)? where § = f{x,w).
In general, these prediction risk estimates all take the form
of:

d. 1
estimated risk = T(E); Z(lﬁ -5 (1
1=1

where r is a monotonically increasing function of the ratio
of model complexity (degrees of freedom) and the training
sample size n. The function r is often called a penaliza-
tion factor because it inflates the average residual sum of
squares for increasingly complex models. Several penal-
ization factors have been proposed in the statistical litera-
ture, namely Akaike Final Prediction Error (fpe), Schwartz’
criterion (sc), Generalized Cross-Validation (gcv), and Shi-
bata’s Model Selector (sms) [2]. All these classical ap-
proaches are motivated by asymptotic arguments for linear
models and therefore apply well for large training sets. In
fact, for large n, prediction risk estimates provided by fpe,
gcv, and sms are asymptotically equivatent.

SLT, also known as {Vapnik-Chervonenkis) VC-theory,
provides a very general framework for complexity control
called Structural Risk Minimization (SRM) [9]. Under SRM,
a set of possible models {approximating functions) is or-
dered according to their complexity (or flexibility to fit the
data). According to SRM, solving a learning problem with
finite data requires a priori specification of a structure on a
set of approximating functions. Then for a given data set,
optimal model estimation involves two tasks: (1} Selecting
an element (subset) of a structure (having optimal complex-
ity), and (2} Estimating the model from this subset, where
the model parameters are found via minimization of the em-
pirical risk (i.e., training error). The SRM approach helps
to separate the choice of a structure, which is application
dependent and cannot be theoretically justified, from com-
plexity control, which can be theoretically justified. For re-
gression problems with squared loss, Cherkassky and Mulier
have proposed [2] the following instantiation of
VC-generalization bounds as penalization factor r(p, ),

~1
r(p,n)=(l—\,‘p—p1np+];—;) 2)
+

where p = h/n, h is the VC-dimension and n is the sample
size. For linear estimalors, i.e. algebraic polynomials of
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degree m, the VC-dimension h = m + 1. The common
constructive implementation of SRM can be described now
as follows: For a given training data, estimate the model
minimizing the empirical risk for the functions from each
structural element 5. Then for each element of a structure
Sy the prediction risk is found using the bound provided
by (2). Finally an optimal structure element S,pt providing
minimal prediction risk is chosen.

3. Motion Analysis

The estimation of motion from image sequences is "a
difficult problem that involves pooling noisy measurements
to make reliable estimates™; furthermore, motion estima-
tion "assumes some model of the image variation within
a region. Much of computer vision, including motion (and
sterec) and image registration (and segmentation), calls for
optimal estimation using linear and non-linear (penalized)
regression. The goal for regression, aka of supervised learn-
ing, is that of either interpolating or extrapolating, i.¢., ap-
proximating a multivariate function from sparse data. In
real-world data, the presence of noise (in regression) and
class overlap (in classification) implies that the principat
modeling challenges are to avoid both over-fir and under-
Jit and be able to cope with finite and usually small train-
ing data sets where asymptotically estimates are not avail-
able [9].

We approach motion estimation as a model selection prob-
lem using the Structural Risk Minimization (SRM) frame-
work. The regression problem invoived in motion estima-
tion has access to a "training” set of examples, i.e., input
veclors T, along with corresponding targets y,,, which put
in correspondence similar image locations, drawn from two
consecutive frames sampled at time ¢ and £+ 1, respectively,
or several consecutive frames from a video sequence. From
a finite and usually small training set, one seeks to learn how
to model the dependency of the targets ("dependent vari-
ables”) on the inputs (“independent variables™); the objec-
tive is to make accurate predictions for points not included
in the training set, i.e., interpolation; and for future frames
not yet available, i.e., extrapolation. To solve this problem,
we consider small ("'real image sequence”) and large image
displacements ("synthetic image sequence™), both approxi-
maiely constant. Ground truth is available only for synthetic
image sequences. Real image sequence is inherently noisy
and no ground truth is available. In the case of small dis-
placements, we generate data z,,, ¥, for regression using
normal flow computation; for large displacements, the im-
age correspondences are given. Model fitting for each of a
set of admissible models is done using LS estimation.

The parametric {image appearance) we consider for mo-
tion include 2D linear affine (six parameters) and planar /
2D homography | (simplified) quadratic flow [ (eight pa-



rameters) models. These parametric models are suitable
to describe scenes that are approximately planar, or have
small variations in depth, relative to the distance from the
camera. Given such models, one estimates for each model
w its parameters using least squares (LS). In addition, we
can now characterize each model in terms of its empirical
fit, i.e., residual error observed while model fitting, and its
complexity, i.e., VC-dimension. One can now proceed to
choose the optimal model, which best describes or explains
the observed motion.

Model selection is based on training data, i.e., normal
flow or image correspondences, and a number of possible
moticn models w that can be fit to the data. For complete-
ness reasons, we specity the three components of the leamn-
ing problem formulation, that is (1) assumed model for data
generation, usually § = f(¥) + noise where f(%) is some
unknown dependency, and ¥ and § are 2D image coord:-
nates; (ii} how the training and test (future) data 15 gen-
erated; and (iii) the cost ("loss”) function. The assumed

model for data generation involves (unknown) quadratic mod-

els:
Ft + 1) = T(t) + [ful. W), fo(L, ?ﬂ)] + noise
Juld, ) Zi w,-gi(:f), fv(-’fr uM”) = Zi w,gt(.%') (3}
ﬁn = [fu(f U!-,;): fv('f: '-6)]

T is a vector of coordinates (in 2D) and its new position
at time (¢ + 1} is derived from the old position at time (£)
plus some parameterized motion model ﬁn. The estima-
tion (learning problem) is to choose the best motion model
from a given number of possible motions (parametric mod-
els) using observed (training) data. Parameters of each mo-
tion model W are unknown but fixed (do not change with
time ). The methodological aspects for model! selection are
as follows. We consider two problems, interpolation and
extrapolation.

The task of model selection amounts to choosing the
best model (in the sense of prediction risk) from a few pre-
specified linear parametric models (types of motion}. on the
basis of finite (noisy) training data. This corresponds to
choosing a subset of nonzero coefficients (that determines
a given motion type), i.e. a sparse code, using the pre-
specified parametric models.

4. Experiments

We now present our results on motion estimation, using
both synthetic (possibly corrupted by Gaussian noise) and
real image sequences, for motion interpolation and extrapo-
lation; these results demonstrate the feasibility and strengths
of our proposed approach. The synthetic data is that of a
"square” image sequence of 11 frames, possibly corrupted
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aries consist of 128 pixels, subject to the general affine trans-
formation model M 4(h = 7) given by
) o
and the corresponding ground truth is
( x' ) ( 2.70 ) ( 0.99 0.13
I +
)
The other motion models available to choose from are : M1
("pure translation™, h = 3) (W2 = W3 = W5 = W6 =
(W3 = W5 = 0), M3 ("rotation, shear, and translation™,
h =5) (W2 = W4 = 0), and M5 ("simplified quadratic”,
.’I:’
(v )=
2
(5 1)(%)
Iy ¥

For interpolation purposes we uniformly and pairwise
of 128), estimated the parameters for each of the above
models using LS, and calculated the interpolating total er-
Eq. 2) for each model (of m parameters} is derived using
the LS error and the {linear) VC-dimensicen for each model.
are run 100 times. Ground truth was consistently found, for
both n 32 and n = 64, as the optimal motion model;
is a very close runner-up to the ground truth. Similar re-
sults were obtained for extrapolation purposes. We found
optimal model ("ground truth™) A{4 only for the first two
extrapolated frames.
real data consisting of frames drawn from a real image se-
quence of a moving hand (see upper row of Fig. 1); the cor-

The motion models used for the synthetic image sequences
are used here, too. There is no ground iruth and the image
uniformly and pairwise subsampled 25% of image flow cor-
respondences (out of approximately 400 points); the exper-
two pairs of successive frames: (£, 7+ 1) and {f +2, [ +3);
interpolation is performed between (f + 1,1 + 2). Fig. 2
the whole experiment. Motion model selection using SRM
agam was able to rank the models such that the optimal

by Gaussian noise (mean 0 and variance 0.5), whose bound-
2
()=
—2.47 -0.13 099 ) ( :EIJ: ) (%)
0), M2 ("divergence, stretching and translation”, h = 5)
h =9) given by
)< (%) ()
subsampled n = 32 or n = 64 pixel correspondences (out
ror pairwise for all the 128 points. The prediction risk (see
Both the non-noise and noisy versions of the experiment
its interpolated error is minimum. The quadratic model AJ5
that the second rank model, A{5, can keep track with the
In addition to synthetic data, we also experimented with
responding normal flow is shown in the lower row of Fig. 1.
frames are inherently noisy. For interpolation purposes we
iment is repeated 100 times. Training data was drawn from
summarizes the interpolation error and predictive risk for
choice, Af2, yields the minimum total interpolation error.
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Figure 1. Upper row: Frames 1,3,5,7,9, and
11 from a 13-frame image sequence. Lower

row: Normal flow computed for the lower arm
regions of the corresponding upper row im-

ages.
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Figure 2. Model selection results for
M1,M2,M3, M4 and A5, Left: boxplots of
risks. Right: boxplots of average square er-
rors.
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5. Conclusions

This paper describes a novel application of Statistical
Learning Theory (SLT) to motion estimation. SLT facili-
tates the development of robust learning algorithms through
model selection and complexity control, from small data
sets, and without using restrictive assumptions such as asymp-
totic settings, i.i.d. data and/or Gaussian noise. We pre-
sented results of experiments on both synthetic and real im-
age sequences for motion interpolation and extrapolation;,
these results demonstrate the feastbility and strengths of our
approach for motion mode! selection using SRM. As one
would expect, both the predictive risk and the interpolation
error, for synthetic image sequences, consistently decrease
as we increase the number of sampled points from 32 to
64. In addition, our results also show that SRM compares
favorably against alternative model selection methods, like
the Akaike’s "fpe”, regarding the confidence they offer on
model selection for motion estimation; for both non-neisy
and noisy synthetic image sequences the median risk dif-
ference between M4 (ground truth) and Af3 for synthetic
image sequences is consistently larger for SRM than for
Akaike's "fpe”; the optimal choice, that of ground truth,
M4, is made 99% of the time by SRM, and only 91% by
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Akaike’s "fpe”.

In practical computer vision applications, one is likely
to encounter two modifications of the basic formulation for
motion model selection used in this paper. Namely, the type
of motion can change {at some unknown time moments) -
this is known as temporal partitioning. Also, different por-
tions of an image may experience different type of motion -
known as spatial partitioning problem. We are preseatly
working to address those tasks using methodological as-
pects of SLT in general, and robust Support Vector Ma-
chines (SVM) regression, in particular.
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