Using Normal Flow for Detection and Tracking of Limbs in Color Images

Zoran Duric, Fayin Li, Yan Sun, Harry Wechsler
' Department of Computer Science
George Mason University
Fairfax, VA 22030
{zduric,ﬂi,ysun,wechsler} @cs.gmu.edu

Abstract

Humans are articulated objects composed of non-rigid
parts. We are interested in detecting and tracking human
motions over various periods of time. In this paper we de-
scribe a method of detecting and tracking human body parts
in color video sequences. The dominant motion region is de-
tected using normal flow; Expectation Maximization, uni-
form sampling, and a shortest path algorithm are used to
find the bounding contour for the moving arm. An affine
motion model is fit to the arm region, residual analysis and
outlier rejection are used for robust parameter estimation.
The estimated parameters are used for the prediction of the
location of the moving limb in the next frame. Detection and
tracking results are combined to account for the deviations
from the affine flow model and increase the robustness of the
method. We demonstrate our method on several long image
sequences corresponding to different limb movements.

1. Introduction

Humans are articulated objects composed of non-rigid
parts. We are interested in describing and recognizing their
motions over various periods of time. Recent reviews on
machine analysis of human motions by Gavrila [3], Aggar-
wal and Cai [1], and Moeslund and Granum {5] provide ex-
cellent coverage of research on detection and tracking of
human motions. It is widely accepted that automatic detec-
tion of nonrigid moving objects and their accurate tracking
in long image sequences still remain very challenging.

In this paper we address the problem of detecting and
tracking single moving limb in a color image sequences.
In our method the normal flow is computed directly from
color images and used for both limb detection and tracking.
A shortest path algorithm is used to link detected edges and
delineate the contour of the moving limb. Affine flow model
is fit to the computed flow to predict the position of the limb
in the next frame. The estimated affine flow is compared to

1051-4651/02 $17.00 © 2002 IEEE

268

the computed normal flow to obtain the residuals. A resid-
ual analysis is performed and outliers are rejected; affine
motion parameters are reestimated for the remaining flow
vectors. The computed affine parameters are used to predict
the position of the arm in the next frame. The predicted po-
sition is combined with the results of detection to account
for model inaccuracies and nonrigidity of the moving limb.

In the remainder of the paper we describe our method
and present the results of limb detection and tracking on
color image sequences. In Section 2 we address the motion
estimation issues. In Section 3 we present some experimen-
tal results and in Section 4 we present the conclusions and
discuss future work. '

2. Limb Detection and Tracking

In Section 2.1 we describe how we estimate normal flow
in color images. In Section 2.2 we describe how we detect
and outline moving limbs. In Section 2.3 we describe how
we estimate affine flow model from normal flow. In Sec-
tion 2.4 we describe our method of tracking moving limbs.

2.1. Normal Flow Estimation

In this section we briefly describe our method of comput-
ing normal flow in color images; the details of the method
will be reported elsewhere. We first describe our algo-
rithm for computing normal flow in gray level images. Let
7 and 7 be the unit vectors in the x and y directions, re-
spectively; 67 = 10z + 70y is the projected displacement
field at the point ¥ = z'+ yJ7. If we choose a unit direc-
tion vector 7, = ngi + n,7 at the image point 7 and call
it the normal direction, then the normal displacement field
at 7 is 07y, (07 - i)y = (ngdz + nydy)it,. 7, can
be chosen in various ways; the usual choice (and the one
that we use) is the direction of the image intensity gradient
i, = VI/|VI].

Note that the normal displacement field along an edge
is orthogonal to the edge direction. Thus, if at time ¢ we

observe an edge element at position 7, the apparent position
of that edge element at time ¢t + At will be 7+ Atdr,.
This is a consequence of the well-known aperture problem.
We base our method of estimating the normal displacement
field on this observation.

For an image frame (say collected at time ¢) we find
edges using an implementation of the Canny edge detec-
tor. For each edge element, say at 7, we resample the image
locally to obtain a small window with its rows parallel to
the image gradient direction 7, = VI/||VI||. For the next
image frame (collected at time ¢t + At) we create a larger
window, typically twice as large as the maximum expected
value of the magnitude of the normal displacement field.
We then slide the first (smaller) window along the second
(larger) window and compute the difference between the
image intensities. The zero of the resulting function is at
distance u,, from the origin of the second window; note that
the image gradient in the second window at the positions
close to u, must be positive. Our estimate of the normal
displacement field is then —u,, and we call it the normal
Sflow.

In color images (RGB) we apply an edge detector to each
color band to obtain partial derivatives ., 7y, gz, gy, bz,
b, for the (r)ed, (g)reen, and (b)lue bands. Edges in color
images can be computed using a standard technique used
for processing multi-channel imagery [4]. We first form a
matrix S,

2+ g5 + 03
TzTy + 929y + bzby

S— (rzry2+ 9=9y + byby

Tyt gy + b
The trace of S corresponds to the edge strength. If there is
an edge at point (z, y), the larger eigenvalue of S, A1, corre-
sponds to the edge strength. The corresponding eigenvector
(ngz,ny) represents the edge direction. Therefore we can
treat color edges in the same manner as we have treated gray
level edges. The only difference is that the edge strength
and the edge direction correspond to the larger eigenvalue
of S and its corresponding eigenvector.

For each edge element, say at 7, we resample the three
image color bands locally to obtain three small windows
with their rows parallel to the image gradient direction
fir = (ng, ny). For the next image frame (collected at time
to + At) we create a larger window, typically twice as large
as the maximum expected value of the magnitude of the
normal displacement field. We then slide the first (smaller)
window along the second (larger) window and compute the
difference between the image intensities in all three color
bands. The result is a vector function (4, d,, 8,) of the color
differences. The magnitude of this vector has a zero cross-
ing at distance u,, from the origin of the second window; the
difference vector changes sign around the zero crossing. We
estimate the zero crossing by comparing the magnitudes of
the two difference vectors pointing in opposite directions.

269

Figure 1. The first frame from a color image

" sequence-of 400 frames and its correspond-

“ing normal flow. These images were collected

using a Sony DFW-VL500 progressive color

scan camera; the frame rate was thirty frames

per second and the resolution was 320 x 240
pixels per frame.

Our estimate of the normal displacement field is then —u,,,
and we call it the normal flow. Figure 1 show an example
of normal flow computed for the first frame of an image se-
quence. The arm motion is nonrigid because of the loose
clothing.

2.2. Moving Limb Detection and Delineation

In a typical image the background is larger than the fore-
ground and most background edges do not move; note that
the shadows move. However, due to various factors in-
cluding camera noise, shadows, and lightning variations
between frames ! the normal flow in the background is
nonzero. In addition, the foreground edges usually have
larger motion than the background edges, but due to interac-
tion of the background and the foreground (“T-junctions”)
we cannot compute flow everywhere and at some points
computed values are not reliable. To separate the fore-
ground and the background edges, we assume that the the
normal flow values (projections on the image gradients) in
the background have a Gaussian distribution. We use the
Expectation Maximization (EM) {6] to fit a Gaussian to the
histogram of normal flow values. We assume that the nor-
mal flow values < 40 belong to the background and that the
normal flow values > 40 belong to the foreground; we use
4¢ threshold to reduce noise in the foreground detection.

We compute a bounding box for the parts of the image
that have normal flow values higher than the 4¢ threshold.
We scan the inside of the box to find the outside layer of the
points within the box. We select points which have large
values of the gradient as well as large normal flow values.
We choose sample points from the selected points based on
similarity of their gradient and flow values with their neigh-
bors. The sample points are linked to their neighbors using

!'We rely on normal ambient lights that correspond to a mixture of neon
light panels and outdoor lights.

Figure 2. Delineating the foreground objects
for images in Figure 1. Upper row: points
with high normal flow values and high gradi-
ent magnitudes. Lower row: foreground ob-
ject outlines.

a variation of the Dijkstra’s shortest path algorithm [2] to
create a connected contour. The cost of the path is obtained
by subtracting the gradient magnitude value from the maxi-
mum gradient magnitude computed for the image. Figure 2
shows the selected points and the computed contours for
images in Figure 1.

2.3. Estimating Affine Motion Parameters

Let (z, y) be the image coordinates of a pixel in an image
I(z,y) and let the image be centered at (0, 0). We have the
following expression for the affine displacement (dx, éy) of
the point (z, y) due

ox a b\ /[«x e
(5)-(ca)(3)(5) o
Using Equation (1) we obtain the normal displacement
field at (x,y) as

0Tn - Tip = Ng0T + 1y dy

i

ang T + bngy + eng + enyx + dnzy + fny
a-u 2)

IH

where 7, = ng? + n,7 is the gradient direction at
(z,y), a = (Nax Ngy Nz NyT NyyY ny)T, and u =
(abecd f)T is the vector of affine parameters.

We use the method described in Section 2.1 to compute
normal flow. For each edge point 7; we have one normal
flow value u,, ; which we use as the estimate of the normal
displacement at the point. This gives us one approximate

270

equation a; - u = un ;. Let the number of edge points be
N > 6. We then have a system

Au—-b=F

where u is an N-element array with elements u, ;, A is
an NV x 6 matrix with rows a;, and E is an N-element error
vector. We seek u that minimizes || E|| = ||b— Aul|; the so-
lution satisfies the system AT Au = ATb and corresponds
to the linear least squares solution.

2.4. Limb Tracking

We delineate a moving arm for a given frame using the
method described in Section 2.2. We use all image points
with high gradient values within or on the detected con-
tour to estimate the affine flow parameters for that frame.
We subtract the normal flow from the normal motion field
given by the affine parameters to compute the residual nor-
mal flow field. We observe that the residual normal flow
values should be small and that their distribution should be
similar to the distribution of the background normal flow
values. However, due to various factors including noise,
shadows, lightning variations, and interactions of the back-
ground with the foreground, we expect to have residual val-
ues corresponding to outliers. We use the same EM method
as in Section 2.2 to estimate the Gaussian distribution and
detect the outliers. After the outlier detection and rejection
we reestimate the affine motion parameters by using the re-
maining normal flow vectors; the second estimate is usually
much better than the first one. Figure 3 shows examples of
the residual flow fields and the reestimated affine flows for
the detected arms in 2.

After outlier rejection and affine parameter reestimation,
we use the computed affine motion parameters to predict the
position of the arm in the next frame. The position of the
point in the current frame plus its estimated affine flow are
used to predict its position in the next frame. Note that we
only use those points in the current frame that have small
residuals; we assume that points with large flow residuals
are erroneous. We vary the affine parameters in a small
range to obtain multiple candidate points in the next frame;
this is used to help account for errors in the model (e.g.,
the shirt moves nonrigidly) and in the parameter estimation.
From the candidate points in the next frame, we select those
points that have the largest motion and/or gradient magni-
tude values in their neighborhoods. At the same time, we
perform moving object detection in the manner described
in Section 2.2 to detect all points that have large motiors.
These points are added to the tracked points from the pre-
vious frame. From these points we sample uniformly and
link the neighbors by. a shortest path algorithm; the neigh-
bors are determined with respect to the points correspond-
ing to them in the previous frame. Using this method we

3

|
i
!

| S—

|
i
!
{
|
§
R < : e

Figure 3. Residual and reestimated flows for
the detected arms in Figure 2. Upper row:
residual flow computed as the difference be-
tween the computed normal flow and the esti-
mated affine normal motion field. Lower row:
reestimated affine flow after outiier rejection.

have been able to fully automate detection and tracking of
moving limbs in long image sequences.

3. Experimental Results

In this section we demonstrate our method on two long
color image sequences. The first sequence of 400 frames
corresponds to pounding (up, down) motion. The second
sequence of 100 frames corresponds to swirling (circle) mo-
tion. These images were collected at our laboratory us-
ing a Sony DFW-VL500 progressive color scan camera;
the frame rate was thirty frames per second and the reso-
lution was 320 x 240 pixels per frame. The moving arm
was detected and tracked automatically using the methods
described in Section 2. Figure 4 shows 4 frames and the cor-
responding tracked contours for the “pounding” sequence.
Figure 5 shows 4 frames and their corresponding tracked
contours from the “swirling” sequence.

4. Conclusions

We have described a normal flow based method of de-
tection and tracking of limbs in color video sequences. The
moving limb is detected automatically, without manual ini-
tialization, foreground or background modeling. An affine
motion model is fit to the arm region and the estimated pa-
rameters are used for the prediction of the location of the
moving limb in the next frame. The predicted location is

271

-

Figure 4. Frames 50, 101, 155, and 198 from
the “pounding” sequence. Top row: color
frames. Lower row: tracked contours.

Figure 5. Frames 3, 22, 32, and 53 from the
“swirling” sequence. First row: color frames.
Second row: tracked contours.

combined with the detection results to fit the “best” con-
tour to the moving limb. We have demonstrated our results
on color sequences of moving hands. Future work includes
automatic detection and tracking of articulated motions.

References

{11 J. Aggarwal Q. Cai. Human motion analysis: A review. Com-
puter Vision and Image Understanding, 73:428-440, 1999.

[2] T.H. Cormen, C.E. Leiserson, and R.L. Rivest. Introduction
to Algorithms. The MIT Press, Cambridge, Massachusetts,
1990.

[3] D.M. Gavrila. The visual analysis of human movement: A
survey. Computer Vision and Image Understanding, 73:82—
98, 1999.

[4] B.Jéhne. Digital Image Processing. Springer-Verlag, Berlin,
Germany, 1997.

[5] T.B. Moeslund and E. Granum. A survey of cdmputer vision-
based human motion capture. Computer Vision and Image
Understanding, 81:231-268, 2001.

[6] W. Oh and W.B. Lindquist. Image thresholding by indicator
kriging. IEEE Trans. on Pattern Analysis and Machine Intel-
ligence, 21:590-602, 1999.

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

