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Abstract

The localization capability of a mobile robot is central to basic navigation and map building
tasks. We describe a probabilistic environment model which facilitates global localization
scheme by means of location recognition. In the exploration stage the environment is parti-
tioned into locations, each characterized by a set of scale-invariant keypoints. The descrip-
tors associated with these keypoints can be robustly matched despite changes in contrast,
scale and viewpoint. We demonstrate the efficacy of these features for location recognition,
where given a new view the most likely location from which this view came from is de-
termined. The misclassifications due to dynamic changes in the environment or inherent
appearance ambiguities are overcome by exploiting location neighborhood relationships
captured by a Hidden Markov Model. We report the recognition performance of this ap-
proach in an indoor environment consisting of eighteen locations and discuss the suitability
of this approach for a more general class of recognition problems. Once the most likely
location has been determined we demonstrate how to robustly compute the relative pose
between the representative view and the current view.

1 Introduction and Related Work

The acquisition of unknown environment models, navigation and pose maintenance
belong to the essential capabilities of a mobile robots. The approaches for vision-
based model acquisition and localization typically strived to obtain either metric or
topological models. The topological models were commonly induced by visibility
regions associated with the artificial landmarks. Artificial landmarks simplified the
issues of landmark recognition and enabled reliable estimation of the robot’s pose
with respect to a landmark (1; 2). The techniques which tried to bypass the choice
of artificial landmarks have been mainly motivated by approaches used for object
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recognition. One of the main concerns of these methods is the choice of image
representation, which could guarantee some amount of invariance with respect to
variations in pose, illumination and scale and be robust to partial occlusion. The im-
age representations proposed in the past comprised of descriptors computed locally
at selected image locations or globally over the entire image.

The image locations were selected using various saliency measures and were char-
acterized by rotationally or affine invariant feature descriptors (3; 4; 5), which en-
abled effective matching of overlapping and possibly widely separated views. Al-
ternative global descriptors were derived from local responses of filters at differ-
ent orientations and scales (6), multi-dimensional histograms (7; 8) or orientation
histograms (9). These types of global image descriptors integrated the spatial im-
age information and enabled classification of views into coarser classes (e.g. corri-
dors, open areas), yielding only qualitative localization. In case of omni-directional
views representations in terms of eigenviews obtained by principal component anal-
ysis were applied successfully both for topological and metric model acquisition,
thanks to small variations of the image appearance within a location and rotation-
ally invariant image representations (10; 11). The problem of building a metric
model and simultaneous localization (SLAM) using solely visual sensing has been
demonstrated successfully in case of smaller, single room environments using sin-
gle video stream (12) or trinocular stereo (13). The use of local point features for
both metric and topological localization was proposed by (14). In both of these
instances the odometry readings were used in connection with the visual measure-
ments.

In order to enable the map building and localization in large scale environments
solely by means of visual sensing, suitable representations of the environment at
different spatial scales and associated means of localization need to be sought. The
advantages of such representations have been pointed out previously by (15) both
from the perspective of model building, localization as well as navigation given
the model. These types of hybrid models have been already explored previously
using ultrasound sensing (16). In the presented work, we tackle the problem of
both global localization and relative positioning in large scale environments using
only visual sensing.

1.1 Approach

In our approach, the final environment model is represented in terms of individual
locations, each characterized by a set of representative views. Within the location
we will endow the model with a local geometry relative to a set of representative
views. The global localization stage is motivated by the recent advances in object
recognition using local scale invariant features and adopts the strategy for local-
ization by means of location recognition. The image sequence acquired by a robot



during the exploration is first partitioned to individual locations. The locations cor-
respond to the regions in the space across which the features can be matched suc-
cessfully. Each location is represented by a set of model views and their associated
scale-invariant features. In the first localization stage, the current view is classi-
fied as belonging to one of the locations using the standard voting approach. In the
second stage we exploit the knowledge about neighborhood relationships between
individual locations captured by a Hidden Markov Model (HMM). The main contri-
bution of this stage is the instantiation of the Hidden Markov Model in the context
of this problem and demonstration of an improvement in the overall recognition
rate. This topological structure is essential particularly in the case of large scale en-
vironments which often contain uninformative regions, violating the continuity of
the mapping between the environment appearance and camera pose. In such case
imposing a discrete structure on the space of continuous observations enables us
to overcome these difficulties while maintaining a high recognition rate. Once the
most likely view has been determined we will demonstrate how to compute the rel-
ative pose of the robot with respect to the model view in the absence of the focal
length of the camera. This second stage will then enable local metric localization
given the model.

2 Image Representation

In order to obtain image representation which captures the essential appearance
of the location and is robust to occlusions and changes in image brightness we
adopt the representation in terms of local scale-invariant features. The use of local
features and their associated descriptors in the context of object recognition has
been demonstrated successfully by several researchers in the past (? 4). In particular
we examine the effectiveness of scale-invariant (SIFT) features proposed by D.
Lowe (17).

2.1 Scale-Invariant Features

The SIFT features correspond to highly distinguishable image locations which can
be detected efficiently and have been shown to be stable across wide variations of
viewpoint and scale. Such image locations are detected by searching for peaks in
the imageD(x, y, σ) obtained by taking a difference of two neighboring images in
the scale space

D(x, y, σ) = (G(x, y, kσ)−G(x, y, σ)) ∗ I(x, y) = L(x, y, kσ)− L(x, y, σ).

The image scale spaceL(x, y, σ) is first build by convolving the image with the
Gaussian kernel with varyingσ, such that at particularσ, L(x, y, σ) = G(x, y, σ) ∗



Fig. 1. The circle represents the keypoint’s location, with the radius proportional to the
keypoint’s scale.

I(x, y). Candidate feature locations are obtained by searching for local maxima
and minima ofD(x, y, σ). In the second stage the detected peaks with low contrast
or poor localization are discarded. A more detailed discussion about enforcing the
separation between the features, the sampling of the scale space and improvements
in the feature localization can be found in (17; 18). Once the location and scale have
been assigned to candidate keypoints, the dominant orientation is computed by de-
termining the peaks in the orientation histogram of its local neighborhood weighted
by the gradient magnitude. The keypoint descriptor is then formed by computing
local orientation histograms (with 8 bin resolution) for each element of a4× 4 grid
overlayed over16 × 16 neighborhood of the point. This yields a 128 dimensional
feature vector which is normalized to unit length in order to reduce the sensitivity
to image contrast and brightness changes in the matching stage. Figure 1 shows the
keypoints found in the example images in our environment. In the reported experi-
ments the number of features detected in an image of size480×640 varies between
10 to 1000. In many instances this relatively low number of keypoints is due to the
fact that in indoor environments many images have a small number of textured re-
gions. Note that the detected SIFT features correspond to distinguishable image
regions and include both point features as well as regions along line segments.

3 Environment Model

The initial environment model is obtained in the exploration stage. Given a tem-
porally sub-sampled sequence acquired during the exploration (images were taken
approximately every 2-3 meters), The path along which the training sequence was
taken visited all locations (some of them twice) and is outlined in Figure 2. In this
data set the heading direction was in most cases aligned with the principal direc-
tions of the world coordinate frame. The transitions between individual locations
are determined depending on the number of features which can be successfully
matched between the successive frames. These are depicted in Figure 3 for a se-
quence captured by a still digital camera along the path which visited all eighteen



Fig. 2. The map on the fourth floor of our building. The arrows correspond to the heading
of the robot and the labels represent individual locations.

Fig. 3. The number of keypoints matched between consecutive views for the sequence
comprised of 18 locations (snapshot was taken every 2-3 meters) captured by a digital
camera (left); the number of keypoints detected in each frame (right).

locations. The transitions between individual locations are marked by the peaks in
the graph, which are automatically detected. The training sequence is partitioned
into 18 different locations, each represented by an image sub-sequence separated
by two peaks. Different locations in our model correspond to hallways, sections of
corridors and meeting rooms approached at different headings. The transitions be-
tween the locations typically occur either at places where navigation decisions have
to be made or when the appearance of the location changes suddenly. In the cur-
rent experiment, the environment is mostly comprised of a network of rectangular
corridors and hallways which are typically traversed with four possible headings
(N, S, W, E). The deviations from these headings can be handled as long as there is
a sufficient overlap between the model views acquired during the exploration and
current views. The number of views per location vary between 8 to 20 depending
on the appearance variation within the location. In order to obtain a more com-
pact representation of each location a number of representative views is chosen per
location, each characterized by a set of SIFT features. The sparsity of the model
is directly related to the capability of matching SIFT features in the presence of



Fig. 4. Examples of representative views of 14 out of 18 locations.

larger variations in scale. The number of representative views varied between one
to four per location and was obtained by regular sampling of the views belonging to
individual locations. Examples of representative views associated with individual
locations are depicted in Figure 4. The number of features in the model can be fur-
ther reduced by keeping only the features, which discriminate each location well.
This issue is addressed in more detail in (19).

4 Location recognition

The environment model obtained in the previous section consists of a database of
model views1 . Thei-th location in the model, withi = 1, . . . N is represented by
n views I i

1, . . . , I
i
n with n ∈ {1, 2, 3, 4} and each view is represented by a set of

SIFT features{Sk(I
i
j)}, wherek is the number of features. In the initial stage we

tested the location recognition by using a simple voting scheme.

4.1 Voting Approach

Given a new query imageQ and its associated keypoints{Sl(Q)} a set of corre-
sponding keypoints betweenQ and each model viewI i

j, {C(Q, I i
j)}, is first com-

puted. The correspondence is determined by matching each keypoint in{Sl(Q)}
against the database of{Sk(I

i
j)} keypoints and choosing the nearest neighbor based

on the Euclidean distance between two descriptors. We only consider point matches
with high discrimination capability, whose nearest neighbor is at least 0.6 times
closer then the second nearest neighbor. More detailed justification behind the

1 It is our intention to attain a representation of location in terms of views (as opposed
to some abstract features) in order to facilitate relative positioning tasks in the later metric
localization stage.



representative train test test

# of views #1 (250) #2 (134) #3 (130)

one 84% 46% 44%

two 97.6% 68% 66%

four 100% 82% 83%
Table 1
Recognition performance for one training and two test sequences in terms of % of correctly
classified views as a function of number of representative views.

choice of this threshold can be found in (17). In the subsequent voting scheme we
determine the location whose keypoints were most frequently classified as nearest
neighbors. The location where the query imageQ came from is then determined
based on the number of successfully matched points among all model views

C(i) = max
j

|{C(Q, I i
j)}| and [l, num] = max

i
C(i)

wherel is the index of location with maximum numbernum of matched keypoints.
Table 1 shows the location recognition results as a function of number of repre-
sentative views per location on the training sequence of 250 views and two test
sequences of 134 and 130 images each. All three sequences were sparse, with im-
ages taken 2-3 meters apart. The two test sequences were taken at different days and
times of day, exhibiting larger deviations from the path traversed during the train-
ing. Despite a large number of representative views per location relatively poor
performance on the second and third test sequence was due to several changes in
the environment between the training and testing stage. In 5 out of 18 locations sev-
eral objects were moved or misplaced. Examples of dynamic changes can be seen
in Figure 5. The poorer performance due to dynamic changes is not surprising,
since the most discriminative SIFT features often belong to objects some of which
are not inherent to particular locations. In the next section we describe how to re-
solve these issues by modelling the neighborhood relationships between individual
locations.

5 Modelling spatial relationships between locations

We propose to resolve these difficulties by incorporating additional knowledge
about neighborhood relationships between individual locations. The rationale be-
hind this choice is that despite the presence of ambiguities in recognition of indi-
vidual views the temporal context should be instrumental in resolving them. The
use of temporal context is motivated by the work of (6) which addresses the place
recognition problem in the context of wearable computing application. The tempo-
ral context is determined by spatial relationships between individual locations and



L4 train L4 test

L6 train L6 test

Fig. 5. Changes in the appearance of locationL4 andL6 between the training and testing.
In the top image pair the bookshelve was replaced by a table and couch and in the bottom
pair recycling bins were removed.

is modelled by a Hidden Markov Model (HMM). In this model the states corre-
spond to individual locations and the transition function determines the probabil-
ity of transition from one state to another. Since the locations cannot be observed
directly each location is characterized by an observationot and its associated like-
lihood p(ot|Lt = li). The most likely location is at each instance of time obtained
by maximizing the conditional probabilityP (Lt = li|o1:t) of being at timet and
locationli given the available observations up to timet. The location likelihood can
then be estimated recursively using the following formula

P (Lt = li|o1:t) ∝ p(ot|Lt = li)P (Lt = li|o1:t−1) (1)

where the observation likelihoodp(ot|Lt = li) characterizes how likely is the ob-
servationot at timet to come from locationli. The choice of observation likelihood
depends on the available image representation and the matching criterion. When
local descriptors are used as observations, several such choices have been proposed
in the context of probabilistic approaches to object recognition (20; 21). The pro-
posed likelihood functions account for the feature density and spatial relationships
between features and have been shown to improve overall recognition rate. In the
context of global image descriptors the locations were modelled in terms of Gaus-
sian mixture models proposed in (6). Since the location recognition problem is



notably simpler then the object recognition problem due to the background clut-
ter not being so prominent2 , we use slightly different form of the probabilistic
model. The essential features of this probabilistic model, which we describe next,
is the selection of discriminative features in the matching stage and integration of
the evidence they provide for individual locations. Given a set of features in the
query image{Sk(Q)} = {gQ

k }, we first define the so called strangeness parameter
αi

k, which characterizes the discrimination capability ofk-th feature, with respect
to i-th location

αi
k =

mingj∈Si
(‖gQ

k − gj‖)
mingj /∈Si

(‖gQ
k − gj‖)

. (2)

αi
k is the ratio of minimal intra-distance within the class and minimal inter-distance

to features from other classes. Ifαi
k is greater than 1, the featuregQ

k is not contribut-
ing to classification ofQ as labelli. The smaller theαi

k is the more discriminative is
the feature for the purpose of classifyingQ asi-th location. For the computation of
the likelihood we select only topr features from the query image, ranked by their
strangeness. The likelihood of featuregQ

k belonging to locationL = l (denoted here
asLl) is defined as

P (gQ
k |Ll) = P (αl

k|Ll) ∝ exp(−(αl
k)

2

2σ2
). (3)

Since we do not know how many features among{gQ
k } belong to locationl, we

need to integrate the evidence over all possible hypotheses and all measurements.
A hypothesis in our case indicates that a subsethj 6= ∅ of selected features{gQ

k }
is classified as locationl. Assuming the selected features are independent, we can
now compute the probability of a single hypothesishj conditioned on locationl

P (hj|Ll) =
∏
m

P (αl
m|Ll)

∏
n

(1− P (αl
n|Ll)), (4)

where indexm ranges over features which belong to locationl with certain prob-
ability, n ranges over features which do not belong to locationl andm + n = r is
the number is selected features, i.e. the length of a hypothesis. Then the probability
a selected feature set{gQ

k } belonging to locationl (assuming that the features are
independent) can be computed as

P ({gQ
k }|Ll) =

∑
hj

∏
m

P (αl
m|Ll)

∏
n

(1− P (αl
n|Ll)). (5)

Using this probability to model the likelihoodP ({gQ(l)
k }|Ll), it can be shown that

P ({gQ
k }|Ll) can be simplified to

P ({gQ
k }|Ll) ∝ (1−

Ml∏
k=1

(1− exp(−αl
k
2

2σ2
))). (6)

2 The probabilistic models used in the object recognition, must also account for the fact
that large number of detected features comes from background and not the object.



Seq. 2 with and without HMM

Seq. 3 with and without HMM

Fig. 6. Classification results for Sequence 2 and Sequence 3 with and without considering
the spatial relationships. The black circles correspond to the labels of most likely locations.

More detail justification for this likelihood model as well as the comparison with
previously used approaches can be found in (19).

In order to explicitly incorporate the location neighborhood relationships, the sec-
ond term of equation (1) can be further decomposed

P (Lt = li|o1:t−1) =
N∑
j

A(i, j)P (Lt−1 = lj|o1:t−1) (7)

whereN is the total number of locations andA(i, j) = P (Lt = li|Lt = lj) is the
probability of two locations being adjacent. In the presence of a transition between
two locations the corresponding entry ofA was assigned a unit value and in the final
stage all the rows of the matrix were normalized. The results of location recogni-
tion employing this model are in Figure 6. The recognition rate for Sequence 2 was
96.3% and for Sequence 3 it was95.4%. The location label assigned to each image
is the one with the highest probability. While in both cases some images were mis-
classified the overall recognition rates are an improvement compared to the rates



reported in Table 1. Despite the classification errors in Sequence 2, the order of vis-
ited locations was correctly determined. For Sequence 3, where we exhibited some
intentional deviations between the path taken during training and testing, the classi-
fication of location 14 was incorrect. The effect of HMM model can be examined by
making all the probabilities in the transition matrixA uniform essentially neglect-
ing the knowledge of location neighborhood relationships. The assigned location
labels for this case are in the right column of Figure 6, with noticeably degraded
recognition performance.

6 Pose Estimation

Once the most likely location and best matched view has been found we can com-
pute the relative displacement between the current view and model view.

The current view and the matched model view are related by a rigid body dis-
placementg = (R, T ) represented by a rotationR ∈ SO(3) and translation
T = [tx, ty, tz]

T ∈ R3. Provided that the camera is calibrated,g can be estimated
from the epipolar geometry between the two views. This recovery problem can
be further simplified taking into account the fact that the motion of the robot is
restricted to a plane. Here we outline an algorithm for this special case and demon-
strate how to recover the displacement in case of unknown focal length. The case
of general motion and unknown focal length was studied by (22) and the solution
for the case of planar motion case has been proposed by (? ) in the context of uncal-
ibrated stereo. Here we demonstrate a slightly different, more concise solution to
the problem. Consider the perspective camera projection model, where 3D coordi-
nates of pointX = [X, Y, Z]T are related to their image projectionsx = [x, y, 1]T

by an unknown scaleλ; λx = X. In case the camera is calibrated the two views of
the scene are related byλ2x2 = Rλ1x1 +T , where(R, T ) ∈ SE(3) is a rigid body
transformation andλ1 andλ2 are the unknown depths with respect to individual
camera frames. After elimination of the unknown scales from the above equation,
the relationship between the two views is captured by the so called epipolar con-
straint

xT
2 T̂Rx1 = xT

2 Ex1 = 0, (8)

whereE = T̂R is the essential matrix3 . In case of planar motion, assuming trans-
lation inx− z plane and rotation aroundy−axis by an angleθ, the essential matrix

3 T̂ denotes a3× 3 skew symmetric matrix associated with vectorT .



has the following sparse form

E =


0 −tz 0

tzcθ + t1sθ 0 tzsθ − t1cθ

0 tx 0

 =


0 e1 0

e2 0 e3

0 e4 0

 (9)

wheresθ(cθ) denotesin θ(cos θ) respectively. Given at least four point correspon-
dences, the elements of the essential matrix[e1, e2, e3, e4]

T can be obtained as
a least squares solution of a system of homogeneous equations of the form (8).
Once the essential matrixE has been recovered, the four different solutions forθ
andT = ±[tx, 0, tz] can be obtained (using basic trigonometry) directly from the
parametrization of the essential matrix (9). The physically correct solution is then
obtained using the positive depth constraint.

In the context of robotic applications, it is often of interest to be able to estimate the
relative camera pose in the absence of intrinsic camera parameters. Even in the case
when the camera is calibrated ahead of time, the focal length parameter is the one
most likely to be changed, especially in the context of active vision systems. This
is the case we examine next. In the case of unknown focal length the two views are
related by so called fundamental matrixF

x̃T
2 F x̃1 = 0 with x = K−1x̃. (10)

The fundamental matrixF is in this special planar, partially calibrated case related
to the essential matrixE as follows

F = K−T EK−1 with K =


f 0 0

0 f 0

0 0 1

 (11)

wheref is the unknown focal length. The remaining intrinsic parameters are as-
sumed to be known. In the planar motion case the matrixF = [0, f1, 0; f2, 0, f3; 0, f4, 0]
can be recovered from the homogeneous constraints of the form (10) given a min-
imum of four matched points. The extraction of the unknown motion parameters
and the focal lengthf however is not straightforward, since the translation and the
focal length appear in the parametrization of the matrixF in a multiplicative way.
We propose to use additional constraints provided by the so called Kruppa’s equa-
tions (23). It can be easily verified that a fundamental matrixF between the two
views and the unknown intrinsic parameter matrixK satisfy the following con-
straint

FKKT F T = λ2êKKT êT (12)

wheree = KT
‖KT‖ is the epipole andλ is the unknown scale of the fundamen-

tal matrix. In our previous work (23) we have shown that for the special case of



planar motion the above equation is satisfied if and only ifλ = 1. SinceF and
e = [−f1, 0, f4]

T can be estimated, the renormalized equation (12) yields follow-
ing useful constraint on intrinsic parametersK

FKKT F T = êKKT êT . (13)

Given the planar motion case, the middle entries of matrices on the left and right
side of equation (13) yield a constraint on the focal length and the entries of the
fundamental matrix

f 2
2 f 2 + f 2

3 = f 2
4 f 2 + f 2

1 .

The solution for the focal length can then be directly obtained from the above equa-
tion as

f =

√√√√f 2
1 − f 2

3

f 2
2 − f 2

4

. (14)

Oncef is computed, the relative displacement between the views can be obtained
by the method outlined for the calibrated case. Additional care has to be taken in
assuring that the detected matches do not come from a degenerate configuration.
We have used RANSAC algorithm for the robust estimation of the pose between
two views, with slightly modified sampling strategy. Figure 7 shows two examples
of relative positioning with respect to two different representative views. The initial
estimate of the motion and focal length is further refined by nonlinear minimization,
where the total reprojection error of all the matched points in minimized

E(R, T, f) = min
n∑

i=1

‖xi − π([KR, KT ]Xi)‖2 + ‖xi
r − π(Xi)‖2, (15)

whereK is partially known matrix of intrinsic parameters,xi andxi
r are the matched

SIFT features between the current view and the most likely reference view andXi

are 3D coordinates of points expressed with respect to the reference view. Note that
3D structure of the scene is estimated as well. The focal length estimates obtained
for these examples aref = 624.33 andf = 545.30. The relative camera pose for
individual views is represented in the figure by a coordinate frame.

7 Conclusions and Future Work

We have demonstrated the suitability and the discrimination capability of the scale-
invariant SIFT features in the context of location recognition and global localization
task. Although the matching and location recognition methods can be accomplished
using an efficient and simple voting scheme, the recognition rate is affected by
dynamic changes in the environment and inherent ambiguities in the appearance of
individual locations. We have shown that these difficulties can be partially resolved
by exploiting the neighborhood relationships between the locations captured by
Hidden Markov Models.



Relative positioning in Location 1 Relative positioning in Location 2

Location 1

Location 2

Fig. 7. Relative positioning experiments with respect to the representative views. Bottom:
Query views along the path between the first view and the representative view for two
different locations. Top: Recovered motions for two locations.

Since the notion of location is not defined precisely and is merely inferred in the
learning stage the presented method enables only qualitative global localization in
terms of individual locations. Following the global localization we compute the
relative pose of the robot with respect to the closest reference view (24) found
in the matching stage. This enables us to achieve metric localization with respect
to the reference view, which can be followed by relative positioning tasks. More
extensive experiments as well as integration with the exploration and navigation
strategies on-board of mobile robot platform are currently underway.
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[23] Ma, Y., Vidal, R., Kǒsecḱa, J., Sastry, S.: Kruppa’s equation revisted: Degen-
eracy and renormalization. In: ECCV. (2000) 561–577
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