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Abstract. Over the past couple of decades, virtual humans have been
attracting more and more attention. Many applications including, video
games, movies, and various training and tutoring systems have benefited
from work in this area. While the visual quality of virtual agents has
improved dramatically, their intelligence and socialization still needs im-
provement. In this paper, we present work towards endowing agents with
social roles and exploiting Explanation-Based Learning (EBL) to en-
able them to acquire additional, contextual behaviors from other agents.
These virtual humans are capable of learning and applying role related
actions from multiple agents and only adopt behaviors that have been
explained to them, meaning that their definition of a role may be a
subset from one or more agents. This results in emergent behaviors in
heterogeneous populations.
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1 Introduction

Virtual humans have increasingly attracted attention over the last decade. Many
applications including games, movies, urban and transportation planning sys-
tems, and training and tutoring simulators are prospering due in part to this
burgeoning technology. Observing the potential, researchers from various disci-
plines have invested tremendous effort to improve these artificial lives’ visual
quality and life-like behaviors. While many impressive strides have been made,
we believe virtual humans can be further elevated in two respects: incorporation
of social roles and inclusion of learning and evolving abilities.

We argue that it’s important to include social roles into virtual humans for
several reasons. First, roles can better organize agent behaviors and demonstrate
agent internal attributes such as goals and duties. In the real world, we usually
have multiple roles, and our behaviors, goals and obligations are heavily asso-
ciated with each of them. Thus, for virtual agents, roles are an ideal tool for
governing various behaviors and their incentives. Secondly, for longer duration
simulations in which agents are continuously learning and evolving in order to
perform long-term tasks, roles are needed to improve consistency, believability,
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and reasonableness. Third, certain domain-specific simulations, for example mil-
itary and medical scenarios, can be only realized with the presence of social
roles such as commanders, soldiers, civilians, doctors and patients. In the vir-
tual human and animation research community, though roles have been assigned
to characters in many applications and various planning algorithms have been
developed to control agent behaviors, more studies are needed to show how roles
could be adopted and the interrelationship between roles and behaviors.

The ability to learn has been successfully applied to software agents, robots
and virtual characters, particularly in applications for communicating with real
humans. However, learning between virtual characters still needs further explo-
ration. For example, we can imagine Non-Player Characters (NPCs) in a game
learning strategies for combating player actions from each other, creating a rea-
sonable and increasingly challenging evolution of game play. Furthermore, the
behavior selection mechanisms for virtual characters are often hand crafted and
static. The knowledge base of the agents is assumed to be complete, resulting in
agents that lack the ability to demonstrate emergent behaviors. This limits their
use in the current and future applications. Virtual humans capable of develop-
ing contextual behaviors will facilitate longer, more compelling simulations and
games.

The purpose of this work is trying to partially fill the gap and advance be-
havioral animation by endowing virtual humans with social roles and the ability
to learn. Specifically, we address role adopting phenomenon via learning by ob-
servation and explanation. We exploit an Explanation-Based Learning (EBL)
mechanism, allowing the agent, through their observation and other agents’ ex-
planations, to acquire new knowledge and concepts based on prior knowledge,
and eventually be capable of adopting new roles. In order to better actualize our
idea, we also introduce semantics to our virtual world by organizing all objects
and their features into an ontology. Additionally, for illustrating the effectiveness
of our approach, we describe an example in which the resulting agents demon-
strate more reasonable interactions and behaviors more consistent with their
environment and roles.

2 Related Work

In order to create believable agent behaviors, numerous efforts have invested
in developing sophisticated behavior selection mechanisms and simulating an
agent’s decision-making process. Some researchers have explored computational
models such as decision-networks [33] and fuzzy logic [15]. Others have demon-
strated the use of various social-psychology factors such as in [24, 19] or the BDI
architecture [26]. In addition, a great deal of work has addressed this problem
using cognitive approaches, for example [12, 23, 13]. Similar to ours, there exist
several works that exploit semantics to facilitate agent behaviors. For example,
[11] annotates the virtual environment with information to support navigation
of the agents and their interactions with the objects. Chang et al [5] and Kao
et al [17] integrate semantics into the agent planning and reasoning processes.
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Though generating significant results, for the most part, these research efforts
assume the agent knowledge base is complete. In other words, the number of
agent behaviors is fixed. Thus agents are not only prohibited from learning and
evolving, but also cannot demonstrate emergent behaviors.

While few above mentioned works incorporate social roles, a virtual train
station with pedestrian performing different roles is described in [28]. Grimaldo
et al [14] simulate a virtual university bar with agents acting in two roles: waiter
and customer. Pelechano et al. include roles among other factors to simulate an
evacuation scenario [24]. In our previous work [18], we have also simulated social
roles and explored the idea of role switching. However, we did not include an
ability to learn and evolve individual definitions of roles. Another group of work
includes using social roles to communicate with real humans (e.g. [16, 32]) in
serving training and tutoring scenarios [29]. Although these works have assigned
agents social roles, the agents are still lacking an ability to learn and few utilize
roles as a tool to organize agent internal attributes and behaviors.

In contrast, there are several works that have endowed their virtual charac-
ters with a learning ability. For example, Blumberg et al [3] integrated learning
activity to a synthetic character. Orkin et al designed a restaurant game [22] in
which they collect behavior and dialog from real human players and later apply
them to virtual characters to enhance a gaming experience. The idea of learning
from observation in [8] is similar to ours, but their approach addresses interac-
tions between software agents and real world experts. Still other work addresses
learning activity entirely within a virtual or simulated environment. Cohen et
al [6] built a learning baby with sensorimotor interactions in a simulated envi-
ronment and Conde et al [7] use reinforcement learning to allow characters to
find their path to goal locations. However, the learning activities in these works
are not among virtual characters but between characters and the environment.
To summarize, having virtual humans learn from real humans often requires a
lot of effort from the human participants. Also, enabling virtual characters to
learn from each other in addition to the environment will further enhance their
behaviors. A virtual human population that evolves more autonomously is both
more natural and less demanding of simulation authors.

3 Semantic Virtual World

Semantics can be very helpful when constructing operable virtual worlds. They
can be used to better organize knowledge of the environment such as objects
and their features. They can also facilitate agent-object and agent-agent inter-
actions by endowing agents with the ability to retrieve corresponding features
and information efficiently. In addition, by separating environment characteris-
tics from agent stories, object entities become scenario-independent and can be
easily applied to other environments without massive modifications.

We have adopted an ontology to hold virtual world semantics. The ontology
consists of hierarchical classes, properties, and relations between instances of
the classes. An instance is the child of at least one class and is described by
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properties which link it to various values, including numbers, strings, and other
instances and classes. All objects and their features are stored and updated in
the ontology. The object features include geometry, color, status, and spatial
information. A small part of our ontology is shown in Fig. 1. Later in the paper
we will show how the ontology greatly assists agents in reasoning about the
virtual world and learning new knowledge and concepts.

Fig. 1. Partial ontology of object entities

4 Intelligent Social Agents

In this section, we will first provide a definition of social roles extracted from
socio-psychology literature and then explain in more detail our learning strategy.

4.1 Social Roles

According to [1], a role is the rights, obligations, and expected behavior patterns
associated with a particular social status. In Stark’s textbook, Sociology, he indi-
cates that roles can be achieved or assigned by someone else [30]. Furthermore,
they can be semi-permanent, such as having an occupation, or they can be tran-
sitory, such as being a patient. Ellenson’s work [10] points out that each person
could play a number of roles, or in other terms, engage in a role set. With these
definitions and descriptions, and also by taking into account discussions from
other social-psychology work [2, 20], we conclude that roles are patterns of be-
haviors for given situations or circumstances. They can be achieved, assigned
and abandoned, having various durations and are often associated with social
relationships. Furthermore, multiple roles can be possessed by an individual at
the same time. Given this summation, agent will switch from one role to another
by performing characteristic behaviors of the latter role. For example, a Trainee
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could switch to Administrator by performing its feature behaviors such as Post
flyers and Organize professor mail which could be freely defined by users. For
more extensive discussion about role switching phenomenon, we refer readers to
our previous paper [18].

What’s more, people can have their own definition and expectations of a
single role. For example, being a professor to some may include both research
and teaching, while for others conducting either research or teaching solely is
considered enough to have that role. Because each role consists of several char-
acteristic behaviors, obligations, and duties and each individual can have their
own definition and expectations for a certain role, our society is colorful and
diverse. To create more virtual human heterogeneity, we also allow our agents
to have different definitions of various roles.

Lastly, roles can be influenced and constrained by many factors, such as
biology or genetics. For instance, a female is unlikely to take on the role of
father, and some athletes and musicians seem genetically predisposed to excel at
those roles. This implies that certain roles, or more specifically, certain behaviors
have physical and intellectual prerequisites. In this work, we assume that agents
attain a set of prerequisites for performing elementary actions such as talking,
nodding, carrying, picking up, and also possess the ability to learn.

4.2 Learning Strategy

Nearly since the birth of the computer, various learning methods have been devel-
oped and used to solve real world problems effectively and efficiently. While this
powerful tool, learning, has been successfully utilized in building software agents,
robots and more, its usage in simulating interactions between autonomous vir-
tual agents residing in virtual worlds has not been fully explored. Currently many
applications using virtual humans, such as video games and training simulators,
adopt scripted behaviors and lots of ”if - then” rules. This not only inhibits the
virtual characters ability to learn and evolve, it also makes the configuration of
simulations laborious, since for each different scenario, a mound of extra rules
need to be designed and included. In this work, we are trying to partially resolve
this problem by equipping our virtual agents with an ability to learn and allow-
ing them to learn from each other. To proceed, we would like to point out that
our goal of incorporating a learning mechanism differs from more conventional
applications. Traditionally, as we have mentioned, learning methods are used to
solve certain tasks more efficiently and accurately. Here, since we are simulat-
ing virtual humans and they are expected to behave, reason and learn like real
humans, our goal in including a learning method is to generate more reasonable
simulations and enhance behavioral animation. This distinction also explains
why we adopt a specific learning method rather than just copying knowledge
from one agent to another.

The learning phenomenon of real humans is very complex and still under dis-
cussion in terms of its exact form and process. Nevertheless, it is widely believed
that it involves certain approaches such as explanation-based learning, analogical
learning, instance-based learning and reinforcement learning. Also we know that
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under certain conditions a particular learning method is favored over the others.
Given this problem is extremely sophisticated, we are not trying to simulate all
aspects of real human learning activity but concentrate on learning by obser-
vation and explanation. To achieve this, we have adopted Explanation-Based
Learning (EBL). EBL is an analytical learning method. Based on prior knowl-
edge, observation, explanation, and expanded information provided by training
examples, new knowledge and concepts can be learned [9, 21, 31, 27]. While we
acknowledge not all skills and concepts can be acquired through observation and
explanation, in many cases we do obtain knowledge in this fashion. For example,
imagine you are a trainee who is going to work in an office environment. At the
beginning, you probably need to learn various duties from observation and your
supervisor’s explanation. In other social settings, for instance, traveling to a dif-
ferent country, when you are learning the local culture and manners, most likely
the learning method is also observation and explanation. For acquiring this kind
of knowledge and concepts, other learning methods seem less plausible. To be
specific, we do not have abundant examples needed for inductive learning meth-
ods such as decision tree learning and neural networks or possess many similar
examples we can compare with in order to carry out instance-based learning or
face situations fulfilled with probabilities that Bayesian networks could manage
or attain direct and/or indirect feedback as a training source for reinforcement
learning. With these considerations and after taking several other learning meth-
ods into account, we find EBL is the most plausible and effective approach.

In general, EBL includes the following components (for a more thorough
discussion, we refer readers to [9, 21]): Goal concept, a target concept with a set
of relevant features; Training example, a typical positive example of a concept
to be learned; Domain theory, prior knowledge which can be used to analyze
or explain why the training example could satisfy the goal concept; And finally
a Learned Rule. As one may notice, one of the keys to this approach is prior
knowledge assignment. We need to determine what kind of knowledge should
be given to our agents in order to achieve generality and scenario-independence.
To address this, we have found some psychology studies showing that babies
are born with physical and spatial reasoning [4] and language acquiring abilities
[25]. Even though there are no conclusions about which abilities are innate, given
that we are simulating normal intellectual and physical level adult-like agents,
we believe it is reasonable to give them at least following three categories of base
knowledge while still preserving the generality:

– Color: Red,Green,Blue, Y ellow,Cyan . . .
– Spatial Relationship: Inside,Outside,Above,Below, . . .
– Common Object Type (lowest level of our ontology class): Mail, Container,

Computer, . . .

Finally, we need to mention that one premise that needs to be met in order
to successfully perform EBL is that all prior knowledge has to be correct. This
premise is to ensure that all further inferences drawn would also be correct.
However, we believe in virtual humans simulation this criteria can be loosen
since it is reasonable and natural for one to have false knowledge and later draw
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Fig. 2. A school environment

false inferences. Actually this might accentuate the imperfect nature of human
behaviors in our virtual humans.

5 Implementation and Example

In this section, we will detail our implementation of the learning and role adopt-
ing process through an extended example. Most commonly when using EBL,
agent learning is through observation and explanation of a series of actions per-
formed by real world experts. Since we are aiming to create a purely autonomous
world, we adapt the term observation and explanation to indicate such behav-
iors occurring between virtual humans. One trainee can observe other agents’
actions and these agents can explain their current action series. In this fashion,
the trainee learn new knowledge and concepts.

As an example scenario, we have created the school environment shown in
Fig. 2. This example includes three agents. One takes the role of Trainee, while
other two become an Administrator and a Housekeeper. The goal of this simula-
tion is to teach the trainee several duties associated with being an administrator
and a housekeeper such that he will eventually be capable of adopting these two
roles.

In this particular example, we form the duties of an Administrator as Or-
ganize professor mail, Post flyers and Fill paper for office equipments while a
Housekeeper’s duties include Check classroom and Water plant. In order to suc-
cessfully carry out these duties, the trainee must first learn several new concepts.
For example, the place for storing a professor’s mail needs to be known when
performing Organize professor mail. The condition of a plant needs to be con-
sidered before performing Water plant. Here we use the former case to illustrate
the learning process. Assume in this scenario we have two professors, namely
ProfA and ProfB, and the trainee is learning from his trainer, the current ad-
ministrator, where ProfA’s mail is. In this context, we put the learning task in
EBL form as following:
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– Goal Concept: MailToProfA(x)
– Training Example: A positive example, MailToProfA(Obj1)

Inside(Obj1, Office 1)
Inside(Obj1, Obj2)
Type(Obj1,Mail)
Type(Obj2, Container)
Color(Obj1,White)
Color(Obj2, Red)
. . .

– Domain Theory:
MailToProfA(x)← Location(x,Office 1)∧Inside(x, y)∧Type(x,Mail)∧
Type(y, Container) ∧ Color(y,Red)
Location(x,Office 1)← Inside(x,Office 1)
. . .

– Learned Rule:
MailToProfA(x) ← Inside(x,Office 1) ∧ Inside(x, y) ∧ Type(x,Mail) ∧
Type(y, Container) ∧ Color(y,Red)

The final learned rule states “Mail x is for ProfA if x is inside Office 1 and
also inside y which is a Container and has the color Red”. With this newly
learned knowledge, the trainee can perform behaviors such as “Transfer ProfA’s
mail to his container” and ”Retrieve ProfA’s mail from his container”.

The detailed implementation of this learning task is as following. First of
all, we have two actions Observe and Explain associated with the trainee and
administrator, respectively. Then, we put the positive example and the do-
main theory into a database and assign the positive example with a boolean
value initially set to 0 indicating the current training status. Once the ad-
ministrator starts to Explain and the trainee starts to Observe, an underlying
recursive algorithm will begin. In each iteration, the algorithm will attempt
to match and prove each concept in the domain theory by using facts in the
positive example. The whole procedure will continue until the goal concept is
proved. To be specific, for above example, when the procedure begins, the al-
gorithm will first try to prove the concept MailToProfA(Obj1). However, this
will fail since the concept Location(x,Office 1) is not in prior knowledge (i.e.
Color, Spatial Relationship and Common Object Type). Then the algorithm
will continue to try to prove next concept Location(x,Office 1) and this time
it will succeed because the fact Inside(x,Office 1) of the positive example
is in the prior knowledge. After Location(x,Office 1) has been proved, the
goal concept MailToProfA(Obj1) will also be proved and the whole proce-
dure will complete. At this point, the training status of the positive example
switches from 0 to 1 indicating the Explain process and also the Observe pro-
cess of the positive example are over. When these two processes are finished,
the last step, “generalization” will begin. This step essentially replaces instances
in proved positive example with variables. In general, since all the instances
are organized in an ontology as we mentioned in Section 3, this replacement
is simply climbing the object hierarchy. However, this procedure is subject to
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one piece of prior knowledge which is the Common Object Type. In the be-
ginning of “generalization”, the proved positive example would have following
form: MailToProfA(Obj1)← Inside(Obj1, Office 1) ∧ Inside(Obj1, Obj2) ∧
Type(Obj1, F ile) ∧ Type(Obj2, Container) ∧ Color(Obj2, Red), here since the
Obj1 and Obj2 both have a type specified, Mail and Container, these two in-
stances can climb object hierarchy only to their types. In contrast, if an instance
in some rules does not have a type specified then it can climb the object hier-
archy all the way to “PhysicalDevice” according to Fig. 1. With this, the whole
learning process is considered complete and the knowledge has been added to
the knowledge base of the trainee. From this example, we can also see an ad-
vantage of EBL, which is it filters non-relevant object features when forming
the final learned rule, such as Color(Obj1,White). This is similar to real world
cases, where an object can have multiple features, but we only need to know
some features for some tasks. Other concepts can be learned in a similar vein,
for simplicity we only list the final learned rules:

– MailToProfB(x)← Inside(x,Office 1) ∧ Inside(x, y) ∧ Type(x,Mail) ∧
Type(y, Container) ∧ Color(y,Green)

– ReadyForTransfer(x)← Inside(x,Hallway 1)∧Above(x, y)∧Type(y, Table)∧
Color(y, Cyan)

– ReadyForPost(x)← Inside(x,Hallway 1)∧Above(x, y)∧Type(y, Table)∧
Color(y, Y ellow)

– ItemLeftInClassroom(x)← Inside(x,Classroom)∧¬Type(x,WhiteBoard)∧
¬Type(x, LectureDesk) ∧ ¬Type(x, StudentChair)

– NeedWatering(x)← Type(x, P lant) ∧ Color(x, Y ellow)

Our approach is convenient and efficient. While this example had only a few
rules, more can be added to the system just by providing positive examples and
the corresponding domain theories in the database. Although the underlying
algorithm is recursive, processing only applies to single examples and their do-
main theory which is succinct and independent. Given this, including more rules,
tasks, objects, and roles does not dramatically increase the computational cost.

In addition, as we discussed in Section 4.1, every individual can have their
own definition of a specific role, which contributes variety and diversity to our
society. Here, we apply this feature for the purpose of generating heterogeneous
virtual humans. To provide an illustration, in our example, Trainee will learn all
duties of being an Administrator except Fill paper for office equipment. Alterna-
tively, the trainee can learn partial duties from multiple administrators, but not
an entire set from either. This will result in the trainee having a definition of
Administrator that is consistent with, but different from others in the world. An
agent’s definition of a role can evolve over time as more tasks are observed and
explained. The actions of the agent while in that role will then also evolve to
correspond with the changing role definition. Both the learning and performing
procedures are demonstrating in Fig. 3 and Fig. 4, respectively.
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Fig. 3. Trainee learned concepts: MailToProfB, ReadyForPost, ItemLeftInClassroom
and NeedWatering.

6 Conclusion and Future Work

Our ultimate goal is to be able to simulate populations of virtual humans over
extended periods of time with reasonable behaviors that are appropriate to the
context and evolve as the agents gain knowledge and experience just as they do
in the real world. In this paper we have presented a method that uses roles and
Explanation-Based Learning (EBL) to organize the agent behaviors and enable
emergent behaviors. Furthermore, our approach is designed such that the learn-
ing is general and scenario independent. Agents could learn definitions of roles
in one scenario and apply them in completely different scenarios. While the be-
haviors would be contextually reasonable and fitting in the new scenarios, they
may not be exactly what the author has in mind for them. Often methods that
increase the autonomy of the agents also decrease control over them. With our
method, the learned rules for a role are stored in a database and could simply be
deleted if they are not desired for new scenarios. One could also imagine simple
interactive supervised learning techniques to eliminate undesired behaviors. Al-
ternative learning techniques might also be used to enhance agent behaviors in
other situations. For example, could an established learning technique be used
to create emerging interpersonal relationships?

Because agents can learn partial definitions of roles and from multiple agents,
heterogeneous populations evolve. Unfortunately, this means that conflicts can
also arise. What if an agent is being taught conflicting behaviors for a role?
One housekeeper explains that items left in classrooms should be put in lost
and found, while another housekeeper explains that that can be kept and taken
home. Which explanation should be used? Certainly a person’s own individual
differences including morals would have an impact, but another consideration is
the status level of those involved. One agent might out rank the other. The status
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Fig. 4. Trainee adopts the role Administrator and Housekeeper and is performing the
corresponding duties.

relationships between agents can be stored in a hierarchy and referenced to decide
such conflicts. Such a hierarchy might also be used to distribute tasks when
there are multiple agents with the same role. In addition, there exists certain
complex task which consists of several sub-tasks. For learning and performing
this kind of task, another database field could be added to indicate the learning
and performing order of sub-tasks. Also, since the knowledge base of each agent
is separated from other’s, agents can even have different orders to learn and
perform a complex task.
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