CRHF from Dlog

Let G be a group generation algorithm that outputs a prime order group.
CRHF from Dlog

Let \mathcal{G} be a group generation algorithm that outputs a prime order group.

Fixed-Length CRHF

$$\text{Gen}(1^n): \text{Run } (G, q, g) \leftarrow \mathcal{G}(1^n). \text{ Select } h \leftarrow G.$$
$$\text{Output } s = (G, q, g, h).$$

$$H_s(x_1, x_2): \text{on input } (x_1, x_2) \in \mathbb{Z}_q \times \mathbb{Z}_q, \text{ output } g^{x_1} h^{x_2} \in \mathcal{G}$$
CRHF from Dlog

Let G be a group generation algorithm that outputs a prime order group.

Fixed-Length CRHF

Gen(1^n): Run $(G, q, g) \leftarrow G(1^n)$. Select $h \leftarrow G$.

Output $s = (G, q, g, h)$.

$H^s(x_1, x_2)$: on input $(x_1, x_2) \in \mathbb{Z}_q \times \mathbb{Z}_q$, output $g^{x_1} h^{x_2} \in G$

Theorem: If the discrete logarithm problem is hard relative to G, then the construction above is a fixed-length, collision resistant hash function.
Let \mathcal{G} be a group generation algorithm that outputs a prime order group.

Fixed-Length CRHF

$\text{Gen}(1^n)$: Run $(G, q, g) \leftarrow \mathcal{G}(1^n)$. Select $h \leftarrow G$.

Output $s = (G, q, g, h)$.

$H^s(x_1, x_2)$: on input $(x_1, x_2) \in \mathbb{Z}_q \times \mathbb{Z}_q$, output $g^{x_1} h^{x_2} \in \mathcal{G}$

Theorem: If the discrete logarithm problem is hard relative to \mathcal{G}, then the construction above is a fixed-length, collision resistant hash function.

Proof idea: Let $\Pi = (\text{Gen}, H)$ as described above. Suppose there exists a p.p.t. adversary \mathcal{A} such that $\text{Hash-Coll}_{\mathcal{A}, \Pi}(n) = \epsilon(n)$. We’ll show \mathcal{A}_r that solves the discrete logarithm problem with the same probability.
CRHF from Dlog

Let G be a group generation algorithm that outputs a prime order group.

Fixed-Length CRHF

\[\text{Gen}(1^n): \text{Run } (G, q, g) \leftarrow G(1^n). \text{ Select } h \leftarrow G. \]
\[\text{Output } s = (G, q, g, h). \]

\[H^s(x_1, x_2): \text{on input } (x_1, x_2) \in \mathbb{Z}_q \times \mathbb{Z}_q, \text{ output } g^{x_1} h^{x_2} \in G \]

Theorem: If the discrete logarithm problem is hard relative to G, then the construction above is a fixed-length, collision resistant hash function.

Proof idea: Let $\Pi = (\text{Gen}, H)$ as described above. Suppose there exists a p.p.t. adversary A such that $\text{Hash-Coll}_{A, \Pi}(n) = \epsilon(n)$. We’ll show A_r that solves the discrete logarithm problem with the same probability.

A_r receives challenge (G, q, g, h) and has to find x such that $g^x = h$.

CRHF from Dlog

Let G be a group generation algorithm that outputs a prime order group.

Fixed-Length CRHF

Gen(1^n): Run $(G, q, g) \leftarrow G(1^n)$. Select $h \leftarrow G$.
Output $s = (G, q, g, h)$.

$H^s(x_1, x_2)$: on input $(x_1, x_2) \in \mathbb{Z}_q \times \mathbb{Z}_q$, output $g^{x_1} h^{x_2} \in G$

Theorem: If the discrete logarithm problem is hard relative to G, then the construction above is a fixed-length, collision resistant hash function.

Proof idea: Let $\Pi = (Gen, H)$ as described above. Suppose there exists a p.p.t. adversary A such that Hash-Coll$_{A, \Pi}(n) = \epsilon(n)$. We'll show A_r that solves the discrete logarithm problem with the same probability.

A_r receives challenge (G, q, g, h) and has to find x such that $g^x = h$.
A_r sends $s = (G, q, g, h)$ to A, who returns $x = (x_1, x_2)$ and $\hat{x} = (\hat{x}_1, \hat{x}_2)$.
CRHF from Dlog

Let \(G \) be a group generation algorithm that outputs a prime order group.

Fixed-Length CRHF

\[
\text{Gen}(1^n): \text{Run } (G, q, g) \leftarrow G(1^n). \text{ Select } h \leftarrow G. \\
\text{Output } s = (G, q, g, h).
\]

\[
H^s(x_1, x_2): \text{on input } (x_1, x_2) \in \mathbb{Z}_q \times \mathbb{Z}_q, \text{ output } g^{x_1} h^{x_2} \in G
\]

Theorem: If the discrete logarithm problem is hard relative to \(G \), then the construction above is a fixed-length, collision resistant hash function.

Proof idea: Let \(\Pi = (\text{Gen}, H) \) as described above. Suppose there exists a p.p.t. adversary \(A \) such that Hash-Coll\(A, \Pi(n) = \epsilon(n) \). We’ll show \(A_r \) that solves the discrete logarithm problem with the same probability.

\(A_r \) receives challenge \((G, q, g, h)\) and has to find \(x \) such that \(g^x = h \).

\(A_r \) sends \(s = (G, q, g, h) \) to \(A \), who returns \(x = (x_1, x_2) \) and \(\hat{x} = (\hat{x}_1, \hat{x}_2) \).

If \(h = 1 \), return \(x = 0 \)

Otherwise, return \([(x_1 - \hat{x}_1)(\hat{x}_2 - x_2)^{-1} \mod q] \).
CRHF from Dlog

Let \mathcal{G} be a group generation algorithm that outputs a prime order group.

Fixed-Length CRHF

$\text{Gen}(1^n)$: Run $(G, q, g) \leftarrow \mathcal{G}(1^n)$. Select $h \leftarrow G$.

Output $s = (G, q, g, h)$.

$H^s(x_1, x_2)$: on input $(x_1, x_2) \in \mathbb{Z}_q \times \mathbb{Z}_q$, output $g^{x_1} h^{x_2} \in G$

Theorem: If the discrete logarithm problem is hard relative to \mathcal{G}, then the construction above is a fixed-length, collision resistant hash function.

Proof idea: Let $\Pi = (\text{Gen}, H)$ as described above. Suppose there exists a p.p.t. adversary \mathcal{A} such that Hash-Coll$_{\mathcal{A}, \Pi}(n) = \epsilon(n)$. We’ll show \mathcal{A}_r that solves the discrete logarithm problem with the same probability.

\mathcal{A}_r receives challenge (G, q, g, h) and has to find x such that $g^x = h$.

\mathcal{A}_r sends $s = (G, q, g, h)$ to \mathcal{A}, who returns $x = (x_1, x_2)$ and $\hat{x} = (\hat{x}_1, \hat{x}_2)$.

If $h = 1$, return $x = 0$

Otherwise, return $[(x_1 - \hat{x}_1)(\hat{x}_2 - x_2)^{-1} \mod q]$.

Analysis:

$$H^s(x_1, x_2) = H^s(\hat{x}_1, \hat{x}_2)$$

$$\Rightarrow g^{x_1} h^{x_2} = g^{\hat{x}_1} h^{\hat{x}_2}$$
CRHF from Dlog

Let G be a group generation algorithm that outputs a prime order group.

Fixed-Length CRHF

Gen(1^n): Run $(G, q, g) \leftarrow G(1^n)$. Select $h \leftarrow G$.

Output $s = (G, q, g, h)$.

$H^s(x_1, x_2)$: On input $(x_1, x_2) \in \mathbb{Z}_q \times \mathbb{Z}_q$, output $g^{x_1} h^{x_2} \in G$

Theorem: If the discrete logarithm problem is hard relative to G, then the construction above is a fixed-length, collision resistant hash function.

Proof idea: Let $\Pi = (Gen, H)$ as described above. Suppose there exists a p.p.t. adversary A such that Hash-Coll$_{A, \Pi}(n) = \epsilon(n)$. We'll show A_r that solves the discrete logarithm problem with the same probability.

A_r receives challenge (G, q, g, h) and has to find x such that $g^x = h$.

A_r sends $s = (G, q, g, h)$ to A, who returns $x = (x_1, x_2)$ and $\hat{x} = (\hat{x}_1, \hat{x}_2)$.

If $h = 1$, return $x = 0$.

Otherwise, return $[(x_1 - \hat{x}_1)(\hat{x}_2 - x_2)^{-1} \mod q]$.

Analysis:

\[
H^s(x_1, x_2) = H^s(\hat{x}_1, \hat{x}_2) \\
\Rightarrow g^{x_1} h^{x_2} = g^{\hat{x}_1} h^{\hat{x}_2} \\
\Rightarrow g^{(x_1 - \hat{x}_1)} = h^{(\hat{x}_2 - x_2)}
\]
CRHF from Dlog

Let \mathcal{G} be a group generation algorithm that outputs a prime order group.

Fixed-Length CRHF

$\text{Gen}(1^n)$: Run $(G, q, g) \leftarrow \mathcal{G}(1^n)$. Select $h \leftarrow G$.

Output $s = (G, q, g, h)$.

$H^s(x_1, x_2)$: on input $(x_1, x_2) \in \mathbb{Z}_q \times \mathbb{Z}_q$, output $g^{x_1} h^{x_2} \in \mathcal{G}$

Theorem: If the discrete logarithm problem is hard relative to \mathcal{G}, then the construction above is a fixed-length, collision resistant hash function.

Proof idea: Let $\Pi = (\text{Gen}, H)$ as described above. Suppose there exists a p.p.t. adversary \mathcal{A} such that $\text{Hash-Coll}_{\mathcal{A}, \Pi}(n) = \epsilon(n)$. We’ll show \mathcal{A}_r that solves the discrete logarithm problem with the same probability.

\mathcal{A}_r receives challenge (G, q, g, h) and has to find x such that $g^x = h$.

\mathcal{A}_r sends $s = (G, q, g, h)$ to \mathcal{A}, who returns $x = (x_1, x_2)$ and $\hat{x} = (\hat{x}_1, \hat{x}_2)$.

If $h = 1$, return $x = 0$

Otherwise, return $[(x_1 - \hat{x}_1)(\hat{x}_2 - x_2)^{-1} \mod q]$.

Analysis:

$$H^s(x_1, x_2) = H^s(\hat{x}_1, \hat{x}_2)$$

$$\Rightarrow g^{x_1} h^{x_2} = g^{\hat{x}_1} h^{\hat{x}_2}$$

$$\Rightarrow g^{(x_1 - \hat{x}_1)} = h^{(\hat{x}_2 - x_2)}$$

$$\Rightarrow g^{(x_1 - \hat{x}_1)(\hat{x}_2 - x_2)^{-1}} = h^{(\hat{x}_2 - x_2)(\hat{x}_2 - x_2)^{-1}} = h^1 = h$$