RSA Encryption
Recall...

• Let p, q be random, equal-length primes
• Compute modulus $N = pq$
• Choose e, d such that $e \cdot d = 1 \mod \phi(N)$

• The e^{th} root of x modulo N is $[x^d \mod N]$
 – I.e., easy to compute given p, q (or d)
• RSA assumption: given N, e only, it is hard to compute the e^{th} root of a uniform $c \in \mathbb{Z}_N^*$
• This suggests a public-key encryption scheme!
“Plain” RSA encryption

\[(N, e, d) \leftarrow \text{RSAGen}(1^n)\]
\[pk = (N, e)\]
\[sk = d\]
\[m = [c^d \mod N]\]
\[c = [m^e \mod N]\]
Is this scheme secure?

• This scheme is *deterministic*
 – Cannot be CPA-secure!

• RSA assumption only refers to hardness of computing the \(e^{th} \) root of a *uniform* \(c \)
 – \(c \) is not uniform unless \(m \) is
 – Why
 – Easy to compute \(e^{th} \) root of \(c \) = \([m^e \mod N] \) when \(m \) is small

• RSA assumption only refers to hardness of computing the \(e^{th} \) root of \(c \) *in its entirety*
 – *Partial* information about the \(e^{th} \) root may be leaked
 – (In fact, this is the case)

Plain RSA should never be used!
Chosen-ciphertext attacks

• Of course, plain RSA cannot be CCA-secure since it is not even CPA-secure
 – ... but these ciphertexts are completely malleable.
• Given ciphertext c for unknown message m, can compute $c' = [\alpha^e \cdot c \mod N]$
 – What does this decrypt to?
How to fix plain RSA?

• One approach: use a *randomized* encoding

• I.e., to encrypt m
 – First compute some reversible, randomized mapping
 \[M = E(m) \]
 – Then set \[c := [M^e \mod N] \]

• To decrypt c
 – Compute \[M := [c^d \mod N] \]
 – Recover m from M
PKCS #1 v1.5

• Standard issued by RSA labs in 1993
• Idea: introduce *random padding*
 – $E(m) = r|m$

• I.e., to encrypt m
 – Choose random r
 – Compute the ciphertext $c := [(r|m)^e \mod N]$

• Issues:
 – No proof of CPA-security (unless m is very short)
 – Chosen-plaintext attacks are known if r is too short
 – Chosen-ciphertext attacks possible
PKCS #1 v2.0

• *Optimal asymmetric encryption padding* (OAEP) applied to message first

• This padding introduces *redundancy*, so that not every $c \in \mathbb{Z}_N^*$ is a valid ciphertext
 – Need to check for proper format upon decryption
 – Return error if not properly formatted
OAEP

\[c = \left\{ \begin{array}{c} s \\text{mod } N \\ t \end{array} \right\}^e \]

\[H(s) \oplus t = r \]

\[G(r) \oplus s = m | 0 \ldots 0 \]
Security?

• RSA-OAEP can be proven CCA-secure under the RSA assumption, if G and H are modeled as random oracles

• Widely used in practice...