Encrypting Variable Length Messages

Suppose we have a fixed-length PRF:

\[F : \{0, 1\}^n \times \{0, 1\}^n \rightarrow \{0, 1\}^n \]
Encrypting Variable Length Messages

Suppose we have a fixed-length PRF:

\[F : \{0,1\}^n \times \{0,1\}^n \rightarrow \{0,1\}^n \]

We construct an encryption scheme for arbitrary-length messages as follows.

\[\text{Gen}(1^n) : k \leftarrow \{0,1\}^n \]

\[\text{Enc}(k,m) : \]

- Let \(\ell = |m|/n \). (*)
- Break \(m \) into \(\ell \) blocks, each of length \(n \): \(m = m_1 || \ldots || m_\ell \)
- Sample \(r_1, \ldots, r_\ell \leftarrow \{0,1\}^n \).
- Output \((r_1, F_k(r_1) \oplus m_1) \ldots, (r_\ell, F_k(r_\ell) \oplus m_\ell)) \).

(*) For the moment, assume \(|m| \) is a multiple of \(n \). If not, we can use an appropriate padding scheme to pad the last block.
Enciphering Variable Length Messages

Suppose we have a fixed-length PRF:

\[F : \{0,1\}^n \times \{0,1\}^n \rightarrow \{0,1\}^n \]

We construct an encryption scheme for arbitrary-length messages as follows.

Gen\((1^n) : k \leftarrow \{0,1\}^n\)

Enc\((k, m) : \)

\begin{itemize}
 \item Let \(\ell = |m|/n \). (*)
 \item Break \(m \) into \(\ell \) blocks, each of length \(n \): \(m = m_1 || \ldots || m_\ell \)
 \item Sample \(r_1, \ldots, r_\ell \leftarrow \{0,1\}^n \).
 \item Output \(((r_1, F_k(r_1) \oplus m_1) \ldots, (r_\ell, F_k(r_\ell) \oplus m_\ell)). \)
\end{itemize}

Dec\((k, ((r_1, c_1), \ldots, (r_\ell, c_\ell))) : \)

\begin{itemize}
 \item Compute \(m_i = F_k(r_i) \oplus c_i \).
 \item Output \(m = m_1 || \ldots || m_\ell \).
\end{itemize}

(*) For the moment, assume \(|m| \) is a multiple of \(n \). If not, we can use an appropriate padding scheme to pad the last block.