
Formalizing DFAs

DFAs

A DFA, M , is a quintuple, M = (Q,Σ, q0, δ, A), where

I Q is a finite set of states,

I Σ is a finite set of symbols (an alphabet),

I q0 ∈ Q is a special start state,

I A ⊆ Q is the set of accepting states,

I δ : Q× Σ→ Q is a transition function.

δ maps a state and an input character to another state.
Recall, Q× Σ is the set of all ordered pairs (q, σ) such that q ∈ Q and σ ∈ Σ.
δ(q, σ) denotes the state of the computation when you start in state q and the next
character is σ.

Note that δ is a total function: it is defined for every possible input pair.
This assumes a trap state, and assures that the function table for δ doesn’t have any
empty cells.
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Example

M = (Q,Σ, q0, δ, A) where q0 ∈ Q is the start state, A ⊆ Q are the accepting states,
δ : Q× Σ→ Q
M = ({q0, q1, q2}, {a, b}, q0, δ, {q1}), where δ is as follows:

a b
q0 q1 q2
q1 q1 q1
q2 q2 q2
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δ∗

closure of δ

For a given DFA, M = (Q,Σ, q0, δ, A), δ∗ is a function that takes a state and a string
as inpu, and produces a resulting state. That is, δ∗ : Q× Σ∗ → Q, and

I For any q ∈ Q, δ∗(q,Λ) = q,

I For any q ∈ Q, any σ ∈ Σ, and any x ∈ Σ∗, δ∗(q, xσ) = δ(δ∗(q, x), σ)



DFA from RG

Lemma 9.2

If L = L(G) for some deterministic regular grammar G, then there exists a DFA M
such that L = L(M).

Let G = (V,Σ, S, P ). We define DFA M = (Q,Σ, q0, δ, A) as follows.
Q = V,
q0 = S,
A = {p | p→ Λ ∈ P}, and,
for every p ∈ Q, σ ∈ Σ, δ(p, σ) = q if p→ σq ∈ P .
If δ is not a complete function, we can add a trap state to Q.

Claim: For every x ∈ Σ∗ and A ∈ V , S
∗⇒ xA iff δ∗(q0, x) = A.

Proof is by induction on the length of x. When |x| = 0, note that S can generate A
iff A = S (because G is regular), and δ(q0,Λ) = S.

Suppose the claim holds for all x of length k ≥ 0.

(S
∗⇒ xA)→ (δ∗(q0, x) = A)

Suppose that in the k + 1st step of a derivation of string yb of length k + 1, we use
the rule A→ bC:
we have S

∗⇒ yA⇒ ybC.
By the inductive hypothesis, we have δ∗(q0, y) = A

.

By the way we constructed M , we have δ(A, b) = C
Therefore: δ∗(q0, yb) = C.
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Therefore, S
∗⇒ ybC.

(Why does this suffice for the proof of the Lemma?)
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Consider the grammar G = ({C,D,E, F}, {a, b}, C, P ), where
P = {C → aD;D → aC;E → aF ;F → aE;C → bE;D → bF ;E → bC;

F → bD;F → Λ}
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Example: DFA from G

Consider the grammar G = ({C,D,E, F}, {a, b}, C, P ), where
P = {C → aD;D → aC;E → aF ;F → aE;C → bE;D → bF ;E → bC;

F → bD;F → Λ}

For example: consider δ∗(C, aab) = E, and C ⇒ aD ⇒ aaC ⇒ aabE.
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Lemma 9.3

If L = L(M) for some deterministic finite automata M , then there exists a
deterministic regular grammar G such that L = L(G).

The same algorithm works in reverse!

Theorem 9.1

L is a regular language if and only if there exists a deterministic finite automata M
such that L = L(M).
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