Formalizing DFAs

DFAs

A DFA, M, is a quintuple, $M=\left(Q, \Sigma, q_{0}, \delta, A\right)$, where

- Q is a finite set of states,
- Σ is a finite set of symbols (an alphabet),
- $q_{0} \in Q$ is a special start state,
- $A \subseteq Q$ is the set of accepting states,
- $\delta: Q \times \Sigma \rightarrow Q$ is a transition function.

Formalizing DFAs

DFAs

A DFA, M, is a quintuple, $M=\left(Q, \Sigma, q_{0}, \delta, A\right)$, where

- Q is a finite set of states,
- Σ is a finite set of symbols (an alphabet),
- $q_{0} \in Q$ is a special start state,
- $A \subseteq Q$ is the set of accepting states,
- $\delta: Q \times \Sigma \rightarrow Q$ is a transition function.
δ maps a state and an input character to another state.
Recall, $Q \times \Sigma$ is the set of all ordered pairs (q, σ) such that $q \in Q$ and $\sigma \in \Sigma$.

Formalizing DFAs

DFAs

A DFA, M, is a quintuple, $M=\left(Q, \Sigma, q_{0}, \delta, A\right)$, where

- Q is a finite set of states,
- Σ is a finite set of symbols (an alphabet),
- $q_{0} \in Q$ is a special start state,
- $A \subseteq Q$ is the set of accepting states,
- $\delta: Q \times \Sigma \rightarrow Q$ is a transition function.
δ maps a state and an input character to another state.
Recall, $Q \times \Sigma$ is the set of all ordered pairs (q, σ) such that $q \in Q$ and $\sigma \in \Sigma$. $\delta(q, \sigma)$ denotes the state of the computation when you start in state q and the next character is σ.

Formalizing DFAs

DFAs

A DFA, M, is a quintuple, $M=\left(Q, \Sigma, q_{0}, \delta, A\right)$, where

- Q is a finite set of states,
- Σ is a finite set of symbols (an alphabet),
- $q_{0} \in Q$ is a special start state,
- $A \subseteq Q$ is the set of accepting states,
- $\delta: Q \times \Sigma \rightarrow Q$ is a transition function.
δ maps a state and an input character to another state.
Recall, $Q \times \Sigma$ is the set of all ordered pairs (q, σ) such that $q \in Q$ and $\sigma \in \Sigma$. $\delta(q, \sigma)$ denotes the state of the computation when you start in state q and the next character is σ.

Note that δ is a total function: it is defined for every possible input pair.
This assumes a trap state, and assures that the function table for δ doesn't have any empty cells.

Example

$M=\left(Q, \Sigma, q_{0}, \delta, A\right)$ where $q_{0} \in Q$ is the start state, $A \subseteq Q$ are the accepting states, $\delta: Q \times \Sigma \rightarrow Q$
$M=\left(\left\{q_{0}, q_{1}, q_{2}\right\},\{a, b\}, q_{0}, \delta,\left\{q_{1}\right\}\right)$, where δ is as follows:

	a	b
q_{0}	q_{1}	q_{2}
q_{1}	q_{1}	q_{1}
q_{2}	q_{2}	q_{2}

Example

$M=\left(Q, \Sigma, q_{0}, \delta, A\right)$ where $q_{0} \in Q$ is the start state, $A \subseteq Q$ are the accepting states, $\delta: Q \times \Sigma \rightarrow Q$
$M=\left(\left\{q_{0}, q_{1}, q_{2}\right\},\{a, b\}, q_{0}, \delta,\left\{q_{1}\right\}\right)$, where δ is as follows:

	a	b
q_{0}	q_{1}	q_{2}
q_{1}	q_{1}	q_{1}
q_{2}	q_{2}	q_{2}

Example

$M=\left(Q, \Sigma, q_{0}, \delta, A\right)$ where $q_{0} \in Q$ is the start state, $A \subseteq Q$ are the accepting states, $\delta: Q \times \Sigma \rightarrow Q$
$M=\left(\left\{q_{0}, q_{1}, q_{2}\right\},\{a, b\}, q_{0}, \delta,\left\{q_{1}\right\}\right)$, where δ is as follows:

	a	b
q_{0}	q_{1}	q_{2}
q_{1}	q_{1}	q_{1}
q_{2}	q_{2}	q_{2}

Example

$M=\left(Q, \Sigma, q_{0}, \delta, A\right)$ where $q_{0} \in Q$ is the start state, $A \subseteq Q$ are the accepting states, $\delta: Q \times \Sigma \rightarrow Q$
$M=\left(\left\{q_{0}, q_{1}, q_{2}\right\},\{a, b\}, q_{0}, \delta,\left\{q_{1}\right\}\right)$, where δ is as follows:

	a	b
q_{0}	q_{1}	q_{2}
q_{1}	q_{1}	q_{1}
q_{2}	q_{2}	q_{2}

Example

$M=\left(Q, \Sigma, q_{0}, \delta, A\right)$ where $q_{0} \in Q$ is the start state, $A \subseteq Q$ are the accepting states, $\delta: Q \times \Sigma \rightarrow Q$
$M=\left(\left\{q_{0}, q_{1}, q_{2}\right\},\{a, b\}, q_{0}, \delta,\left\{q_{1}\right\}\right)$, where δ is as follows:

	a	b
q_{0}	q_{1}	q_{2}
q_{1}	q_{1}	q_{1}
q_{2}	q_{2}	q_{2}

Example

$M=\left(Q, \Sigma, q_{0}, \delta, A\right)$ where $q_{0} \in Q$ is the start state, $A \subseteq Q$ are the accepting states, $\delta: Q \times \Sigma \rightarrow Q$
$M=\left(\left\{q_{0}, q_{1}, q_{2}\right\},\{a, b\}, q_{0}, \delta,\left\{q_{1}\right\}\right)$, where δ is as follows:

	a	b
q_{0}	q_{1}	q_{2}
q_{1}	q_{1}	q_{1}
q_{2}	q_{2}	q_{2}

Example

$M=\left(Q, \Sigma, q_{0}, \delta, A\right)$ where $q_{0} \in Q$ is the start state, $A \subseteq Q$ are the accepting states, $\delta: Q \times \Sigma \rightarrow Q$
$M=\left(\left\{q_{0}, q_{1}, q_{2}\right\},\{a, b\}, q_{0}, \delta,\left\{q_{1}\right\}\right)$, where δ is as follows:

	a	b
q_{0}	q_{1}	q_{2}
q_{1}	q_{1}	q_{1}
q_{2}	q_{2}	q_{2}

closure of δ

For a given DFA, $M=\left(Q, \Sigma, q_{0}, \delta, A\right), \delta^{*}$ is a function that takes a state and a string as inpu, and produces a resulting state. That is, $\delta^{*}: Q \times \Sigma^{*} \rightarrow Q$, and

- For any $q \in Q, \delta^{*}(q, \Lambda)=q$,
- For any $q \in Q$, any $\sigma \in \Sigma$, and any $x \in \Sigma^{*}, \delta^{*}(q, x \sigma)=\delta\left(\delta^{*}(q, x), \sigma\right)$

DFA from RG

Lemma 9.2
If $L=\mathcal{L}(G)$ for some deterministic regular grammar G, then there exists a DFA M such that $L=\mathcal{L}(M)$.

DFA from RG

Lemma 9.2

If $L=\mathcal{L}(G)$ for some deterministic regular grammar G, then there exists a DFA M such that $L=\mathcal{L}(M)$.

Let $G=(V, \Sigma, S, P)$. We define DFA $M=\left(Q, \Sigma, q_{0}, \delta, A\right)$ as follows.

DFA from RG

Lemma 9.2

If $L=\mathcal{L}(G)$ for some deterministic regular grammar G, then there exists a DFA M such that $L=\mathcal{L}(M)$.

Let $G=(V, \Sigma, S, P)$. We define DFA $M=\left(Q, \Sigma, q_{0}, \delta, A\right)$ as follows.
$Q=V$,
$q_{0}=S$,
$A=\{p \mid p \rightarrow \Lambda \in P\}$,

DFA from RG

Lemma 9.2

If $L=\mathcal{L}(G)$ for some deterministic regular grammar G, then there exists a DFA M such that $L=\mathcal{L}(M)$.

Let $G=(V, \Sigma, S, P)$. We define DFA $M=\left(Q, \Sigma, q_{0}, \delta, A\right)$ as follows.
$Q=V$,
$q_{0}=S$,
$A=\{p \mid p \rightarrow \Lambda \in P\}$, and,
for every $p \in Q, \sigma \in \Sigma, \delta(p, \sigma)=q$ if $p \rightarrow \sigma q \in P$.

DFA from RG

Lemma 9.2

If $L=\mathcal{L}(G)$ for some deterministic regular grammar G, then there exists a DFA M such that $L=\mathcal{L}(M)$.

Let $G=(V, \Sigma, S, P)$. We define DFA $M=\left(Q, \Sigma, q_{0}, \delta, A\right)$ as follows.
$Q=V$,
$q_{0}=S$,
$A=\{p \mid p \rightarrow \Lambda \in P\}$, and,
for every $p \in Q, \sigma \in \Sigma, \delta(p, \sigma)=q$ if $p \rightarrow \sigma q \in P$.
If δ is not a complete function, we can add a trap state to Q.

DFA from RG

Lemma 9.2

If $L=\mathcal{L}(G)$ for some deterministic regular grammar G, then there exists a DFA M such that $L=\mathcal{L}(M)$.

Let $G=(V, \Sigma, S, P)$. We define DFA $M=\left(Q, \Sigma, q_{0}, \delta, A\right)$ as follows.
$Q=V$,
$q_{0}=S$,
$A=\{p \mid p \rightarrow \Lambda \in P\}$, and,
for every $p \in Q, \sigma \in \Sigma, \delta(p, \sigma)=q$ if $p \rightarrow \sigma q \in P$.
If δ is not a complete function, we can add a trap state to Q.
Claim: For every $x \in \Sigma^{*}$ and $A \in V, S \xrightarrow{*} x A$ iff $\delta^{*}\left(q_{0}, x\right)=A$.

DFA from RG

Lemma 9.2

If $L=\mathcal{L}(G)$ for some deterministic regular grammar G, then there exists a DFA M such that $L=\mathcal{L}(M)$.

Let $G=(V, \Sigma, S, P)$. We define DFA $M=\left(Q, \Sigma, q_{0}, \delta, A\right)$ as follows.
$Q=V$,
$q_{0}=S$,
$A=\{p \mid p \rightarrow \Lambda \in P\}$, and,
for every $p \in Q, \sigma \in \Sigma, \delta(p, \sigma)=q$ if $p \rightarrow \sigma q \in P$.
If δ is not a complete function, we can add a trap state to Q.
Claim: For every $x \in \Sigma^{*}$ and $A \in V, S \xrightarrow{*} x A$ iff $\delta^{*}\left(q_{0}, x\right)=A$.
Proof is by induction on the length of x. When $|x|=0$, note that S can generate A iff $A=S$ (because G is regular), and $\delta\left(q_{0}, \Lambda\right)=S$.

DFA from RG

Lemma 9.2

If $L=\mathcal{L}(G)$ for some deterministic regular grammar G, then there exists a DFA M such that $L=\mathcal{L}(M)$.

Let $G=(V, \Sigma, S, P)$. We define DFA $M=\left(Q, \Sigma, q_{0}, \delta, A\right)$ as follows.
$Q=V$,
$q_{0}=S$,
$A=\{p \mid p \rightarrow \Lambda \in P\}$, and,
for every $p \in Q, \sigma \in \Sigma, \delta(p, \sigma)=q$ if $p \rightarrow \sigma q \in P$.
If δ is not a complete function, we can add a trap state to Q.
Claim: For every $x \in \Sigma^{*}$ and $A \in V, S \xrightarrow{*} x A$ iff $\delta^{*}\left(q_{0}, x\right)=A$.
Proof is by induction on the length of x. When $|x|=0$, note that S can generate A iff $A=S$ (because G is regular), and $\delta\left(q_{0}, \Lambda\right)=S$.
Suppose the claim holds for all x of length $k \geq 0$.

DFA from RG

Lemma 9.2

If $L=\mathcal{L}(G)$ for some deterministic regular grammar G, then there exists a DFA M such that $L=\mathcal{L}(M)$.

Let $G=(V, \Sigma, S, P)$. We define DFA $M=\left(Q, \Sigma, q_{0}, \delta, A\right)$ as follows.
$Q=V$,
$q_{0}=S$,
$A=\{p \mid p \rightarrow \Lambda \in P\}$, and,
for every $p \in Q, \sigma \in \Sigma, \delta(p, \sigma)=q$ if $p \rightarrow \sigma q \in P$.
If δ is not a complete function, we can add a trap state to Q.
Claim: For every $x \in \Sigma^{*}$ and $A \in V, S \xrightarrow{*} x A$ iff $\delta^{*}\left(q_{0}, x\right)=A$.
Proof is by induction on the length of x. When $|x|=0$, note that S can generate A iff $A=S$ (because G is regular), and $\delta\left(q_{0}, \Lambda\right)=S$.
Suppose the claim holds for all x of length $k \geq 0$.
$(S \stackrel{*}{\Rightarrow} x A) \rightarrow\left(\delta^{*}\left(q_{0}, x\right)=A\right)$
Suppose that in the $k+1$ st step of a derivation of string $y b$ of length $k+1$, we use the rule $A \rightarrow b C$:
we have $S \stackrel{*}{\Rightarrow} y A \Rightarrow y b C$.

DFA from RG

Lemma 9.2

If $L=\mathcal{L}(G)$ for some deterministic regular grammar G, then there exists a DFA M such that $L=\mathcal{L}(M)$.

Let $G=(V, \Sigma, S, P)$. We define DFA $M=\left(Q, \Sigma, q_{0}, \delta, A\right)$ as follows.
$Q=V$,
$q_{0}=S$,
$A=\{p \mid p \rightarrow \Lambda \in P\}$, and,
for every $p \in Q, \sigma \in \Sigma, \delta(p, \sigma)=q$ if $p \rightarrow \sigma q \in P$.
If δ is not a complete function, we can add a trap state to Q.
Claim: For every $x \in \Sigma^{*}$ and $A \in V, S \xrightarrow{*} x A$ iff $\delta^{*}\left(q_{0}, x\right)=A$.
Proof is by induction on the length of x. When $|x|=0$, note that S can generate A iff $A=S$ (because G is regular), and $\delta\left(q_{0}, \Lambda\right)=S$.
Suppose the claim holds for all x of length $k \geq 0$.
$(S \stackrel{*}{\Rightarrow} x A) \rightarrow\left(\delta^{*}\left(q_{0}, x\right)=A\right)$
Suppose that in the $k+1$ st step of a derivation of string $y b$ of length $k+1$, we use the rule $A \rightarrow b C$:
we have $S \stackrel{*}{\Rightarrow} y A \Rightarrow y b C$.
By the inductive hypothesis, we have $\delta^{*}\left(q_{0}, y\right)=A$.

DFA from RG

Lemma 9.2

If $L=\mathcal{L}(G)$ for some deterministic regular grammar G, then there exists a DFA M such that $L=\mathcal{L}(M)$.

Let $G=(V, \Sigma, S, P)$. We define DFA $M=\left(Q, \Sigma, q_{0}, \delta, A\right)$ as follows.
$Q=V$,
$q_{0}=S$,
$A=\{p \mid p \rightarrow \Lambda \in P\}$, and,
for every $p \in Q, \sigma \in \Sigma, \delta(p, \sigma)=q$ if $p \rightarrow \sigma q \in P$.
If δ is not a complete function, we can add a trap state to Q.
Claim: For every $x \in \Sigma^{*}$ and $A \in V, S \xrightarrow{*} x A$ iff $\delta^{*}\left(q_{0}, x\right)=A$.
Proof is by induction on the length of x. When $|x|=0$, note that S can generate A iff $A=S$ (because G is regular), and $\delta\left(q_{0}, \Lambda\right)=S$.
Suppose the claim holds for all x of length $k \geq 0$.
$(S \stackrel{*}{\Rightarrow} x A) \rightarrow\left(\delta^{*}\left(q_{0}, x\right)=A\right)$
Suppose that in the $k+1$ st step of a derivation of string $y b$ of length $k+1$, we use the rule $A \rightarrow b C$:
we have $S \stackrel{*}{\Rightarrow} y A \Rightarrow y b C$.
By the inductive hypothesis, we have $\delta^{*}\left(q_{0}, y\right)=A$.
By the way we constructed M, we have $\delta(A, b)=C$
Therefore: $\delta^{*}\left(q_{0}, y b\right)=C$.

DFA from RG

Lemma 9.2

If $L=\mathcal{L}(G)$ for some deterministic regular grammar G, then there exists a DFA M such that $L=\mathcal{L}(M)$.

Let $G=(V, \Sigma, S, P)$. We define DFA $M=\left(Q, \Sigma, q_{0}, \delta, A\right)$ as follows.
$Q=V$,
$q_{0}=S$,
$A=\{p \mid p \rightarrow \Lambda \in P\}$, and,
for every $p \in Q, \sigma \in \Sigma, \delta(p, \sigma)=q$ if $p \rightarrow \sigma q \in P$.
If δ is not a complete function, we can add a trap state to Q.
Claim: For every $x \in \Sigma^{*}$ and $A \in V, S \xrightarrow{*} x A$ iff $\delta^{*}\left(q_{0}, x\right)=A$.
Proof is by induction on the length of x. When $|x|=0$, note that S can generate A iff $A=S$ (because G is regular), and $\delta\left(q_{0}, \Lambda\right)=S$.
Suppose the claim holds for all x of length $k \geq 0$.

$$
\left(\delta^{*}\left(q_{0}, x\right)=A\right) \rightarrow(S \stackrel{*}{\Rightarrow} x A)
$$

DFA from RG

Lemma 9.2

If $L=\mathcal{L}(G)$ for some deterministic regular grammar G, then there exists a DFA M such that $L=\mathcal{L}(M)$.

Let $G=(V, \Sigma, S, P)$. We define DFA $M=\left(Q, \Sigma, q_{0}, \delta, A\right)$ as follows.
$Q=V$,
$q_{0}=S$,
$A=\{p \mid p \rightarrow \Lambda \in P\}$, and,
for every $p \in Q, \sigma \in \Sigma, \delta(p, \sigma)=q$ if $p \rightarrow \sigma q \in P$.
If δ is not a complete function, we can add a trap state to Q.
Claim: For every $x \in \Sigma^{*}$ and $A \in V, S \xrightarrow{*} x A$ iff $\delta^{*}\left(q_{0}, x\right)=A$.
Proof is by induction on the length of x. When $|x|=0$, note that S can generate A iff $A=S$ (because G is regular), and $\delta\left(q_{0}, \Lambda\right)=S$.
Suppose the claim holds for all x of length $k \geq 0$.

$$
\left(\delta^{*}\left(q_{0}, x\right)=A\right) \rightarrow(S \stackrel{*}{\Rightarrow} x A)
$$

Suppose that on some input $y b$ of length $k+1$, the $k+1$ st transition in M was $\delta(A, b)=C$.

DFA from RG

Lemma 9.2

If $L=\mathcal{L}(G)$ for some deterministic regular grammar G, then there exists a DFA M such that $L=\mathcal{L}(M)$.

Let $G=(V, \Sigma, S, P)$. We define DFA $M=\left(Q, \Sigma, q_{0}, \delta, A\right)$ as follows.
$Q=V$,
$q_{0}=S$,
$A=\{p \mid p \rightarrow \Lambda \in P\}$, and,
for every $p \in Q, \sigma \in \Sigma, \delta(p, \sigma)=q$ if $p \rightarrow \sigma q \in P$.
If δ is not a complete function, we can add a trap state to Q.
Claim: For every $x \in \Sigma^{*}$ and $A \in V, S \xrightarrow{*} x A$ iff $\delta^{*}\left(q_{0}, x\right)=A$.
Proof is by induction on the length of x. When $|x|=0$, note that S can generate A iff $A=S$ (because G is regular), and $\delta\left(q_{0}, \Lambda\right)=S$.
Suppose the claim holds for all x of length $k \geq 0$.

$$
\left(\delta^{*}\left(q_{0}, x\right)=A\right) \rightarrow(S \stackrel{*}{\Rightarrow} x A)
$$

Suppose that on some input $y b$ of length $k+1$, the $k+1$ st transition in M was $\delta(A, b)=C$.
We have: $\delta^{*}\left(q_{0}, y\right)=A$.

DFA from RG

Lemma 9.2

If $L=\mathcal{L}(G)$ for some deterministic regular grammar G, then there exists a DFA M such that $L=\mathcal{L}(M)$.

Let $G=(V, \Sigma, S, P)$. We define DFA $M=\left(Q, \Sigma, q_{0}, \delta, A\right)$ as follows.
$Q=V$,
$q_{0}=S$,
$A=\{p \mid p \rightarrow \Lambda \in P\}$, and,
for every $p \in Q, \sigma \in \Sigma, \delta(p, \sigma)=q$ if $p \rightarrow \sigma q \in P$.
If δ is not a complete function, we can add a trap state to Q.
Claim: For every $x \in \Sigma^{*}$ and $A \in V, S \xrightarrow{*} x A$ iff $\delta^{*}\left(q_{0}, x\right)=A$.
Proof is by induction on the length of x. When $|x|=0$, note that S can generate A iff $A=S$ (because G is regular), and $\delta\left(q_{0}, \Lambda\right)=S$.
Suppose the claim holds for all x of length $k \geq 0$.

$$
\left(\delta^{*}\left(q_{0}, x\right)=A\right) \rightarrow(S \stackrel{*}{\Rightarrow} x A)
$$

Suppose that on some input $y b$ of length $k+1$, the $k+1$ st transition in M was $\delta(A, b)=C$.
We have: $\delta^{*}\left(q_{0}, y\right)=A$.
By the inductive hypothesis, we have $S \stackrel{*}{\Rightarrow} y A$

DFA from RG

Lemma 9.2

If $L=\mathcal{L}(G)$ for some deterministic regular grammar G, then there exists a DFA M such that $L=\mathcal{L}(M)$.

Let $G=(V, \Sigma, S, P)$. We define DFA $M=\left(Q, \Sigma, q_{0}, \delta, A\right)$ as follows.
$Q=V$,
$q_{0}=S$,
$A=\{p \mid p \rightarrow \Lambda \in P\}$, and,
for every $p \in Q, \sigma \in \Sigma, \delta(p, \sigma)=q$ if $p \rightarrow \sigma q \in P$.
If δ is not a complete function, we can add a trap state to Q.
Claim: For every $x \in \Sigma^{*}$ and $A \in V, S \xrightarrow{*} x A$ iff $\delta^{*}\left(q_{0}, x\right)=A$.
Proof is by induction on the length of x. When $|x|=0$, note that S can generate A iff $A=S$ (because G is regular), and $\delta\left(q_{0}, \Lambda\right)=S$.
Suppose the claim holds for all x of length $k \geq 0$.
$\left(\delta^{*}\left(q_{0}, x\right)=A\right) \rightarrow(S \stackrel{*}{\Rightarrow} x A)$
Suppose that on some input $y b$ of length $k+1$, the $k+1$ st transition in M was $\delta(A, b)=C$.
We have: $\delta^{*}\left(q_{0}, y\right)=A$.
By the inductive hypothesis, we have $S \stackrel{*}{\Rightarrow} y A$
By the way we defined M, there must be a rule $A \rightarrow b C$.

DFA from RG

Lemma 9.2

If $L=\mathcal{L}(G)$ for some deterministic regular grammar G, then there exists a DFA M such that $L=\mathcal{L}(M)$.

Let $G=(V, \Sigma, S, P)$. We define DFA $M=\left(Q, \Sigma, q_{0}, \delta, A\right)$ as follows.
$Q=V$,
$q_{0}=S$,
$A=\{p \mid p \rightarrow \Lambda \in P\}$, and,
for every $p \in Q, \sigma \in \Sigma, \delta(p, \sigma)=q$ if $p \rightarrow \sigma q \in P$.
If δ is not a complete function, we can add a trap state to Q.
Claim: For every $x \in \Sigma^{*}$ and $A \in V, S \xrightarrow{*} x A$ iff $\delta^{*}\left(q_{0}, x\right)=A$.
Proof is by induction on the length of x. When $|x|=0$, note that S can generate A iff $A=S$ (because G is regular), and $\delta\left(q_{0}, \Lambda\right)=S$.
Suppose the claim holds for all x of length $k \geq 0$.
$\left(\delta^{*}\left(q_{0}, x\right)=A\right) \rightarrow(S \stackrel{*}{\Rightarrow} x A)$
Suppose that on some input $y b$ of length $k+1$, the $k+1$ st transition in M was $\delta(A, b)=C$.
We have: $\delta^{*}\left(q_{0}, y\right)=A$.
By the inductive hypothesis, we have $S \stackrel{*}{\Rightarrow} y A$ By the way we defined M, there must be a rule $A \rightarrow b C$.
Therefore, $S \stackrel{*}{\Rightarrow} y b C$.

DFA from RG

Lemma 9.2

If $L=\mathcal{L}(G)$ for some deterministic regular grammar G, then there exists a DFA M such that $L=\mathcal{L}(M)$.

Let $G=(V, \Sigma, S, P)$. We define DFA $M=\left(Q, \Sigma, q_{0}, \delta, A\right)$ as follows.
$Q=V$,
$q_{0}=S$,
$A=\{p \mid p \rightarrow \Lambda \in P\}$, and,
for every $p \in Q, \sigma \in \Sigma, \delta(p, \sigma)=q$ if $p \rightarrow \sigma q \in P$.
If δ is not a complete function, we can add a trap state to Q.
Claim: For every $x \in \Sigma^{*}$ and $A \in V, S \xrightarrow{*} x A$ iff $\delta^{*}\left(q_{0}, x\right)=A$.
Proof is by induction on the length of x. When $|x|=0$, note that S can generate A iff $A=S$ (because G is regular), and $\delta\left(q_{0}, \Lambda\right)=S$.
Suppose the claim holds for all x of length $k \geq 0$.
$\left(\delta^{*}\left(q_{0}, x\right)=A\right) \rightarrow(S \stackrel{*}{\Rightarrow} x A)$
Suppose that on some input $y b$ of length $k+1$, the $k+1$ st transition in M was $\delta(A, b)=C$.
We have: $\delta^{*}\left(q_{0}, y\right)=A$.
By the inductive hypothesis, we have $S \stackrel{*}{\Rightarrow} y A$
By the way we defined M, there must be a rule $A \rightarrow b C$.
Therefore, $S \stackrel{*}{\Rightarrow} y b C$.
(Why does this suffice for the proof of the Lemma?)

Example: DFA from G

Consider the grammar $G=(\{C, D, E, F\},\{a, b\}, C, P)$, where

$$
\begin{aligned}
& P=\{C \rightarrow a D ; D \rightarrow a C ; E \rightarrow a F ; F \rightarrow a E ; C \rightarrow b E ; D \rightarrow b F ; E \rightarrow b C ; \\
&F \rightarrow b D ; F \rightarrow \Lambda\}
\end{aligned}
$$

Example: DFA from G

Consider the grammar $G=(\{C, D, E, F\},\{a, b\}, C, P)$, where $P=\begin{aligned} & \{C \rightarrow a D ; D \rightarrow a C ; E \rightarrow a F ; F \rightarrow a E ; C \rightarrow b E ; D \rightarrow b F ; E \rightarrow b C ; ~ \\ & F \rightarrow b D ; F \rightarrow \Lambda\}\end{aligned}$ $F \rightarrow b D ; F \rightarrow \Lambda\}$

Example: DFA from G

Consider the grammar $G=(\{C, D, E, F\},\{a, b\}, C, P)$, where $P=\{C \rightarrow a D ; D \rightarrow a C ; E \rightarrow a F ; F \rightarrow a E ; C \rightarrow b E ; D \rightarrow b F ; E \rightarrow b C ;$

$$
F \rightarrow b D ; F \rightarrow \Lambda\}
$$

Example: DFA from G

Consider the grammar $G=(\{C, D, E, F\},\{a, b\}, C, P)$, where $P=\{C \rightarrow a D ; D \rightarrow a C ; E \rightarrow a F ; F \rightarrow a E ; C \rightarrow b E ; D \rightarrow b F ; E \rightarrow b C ;$

$$
F \rightarrow b D ; F \rightarrow \Lambda\}
$$

Example: DFA from G

Consider the grammar $G=(\{C, D, E, F\},\{a, b\}, C, P)$, where $P=\{C \rightarrow a D ; D \rightarrow a C ; E \rightarrow a F ; F \rightarrow a E ; C \rightarrow b E ; D \rightarrow b F ; E \rightarrow b C ;$ $F \rightarrow b D ; F \rightarrow \Lambda\}$

Example: DFA from G

Consider the grammar $G=(\{C, D, E, F\},\{a, b\}, C, P)$, where $P=\{C \rightarrow a D ; D \rightarrow a C ; E \rightarrow a F ; F \rightarrow a E ; C \rightarrow b E ; D \rightarrow b F ; E \rightarrow b C ;$ $F \rightarrow b D ; F \rightarrow \Lambda\}$

Example: DFA from G

Consider the grammar $G=(\{C, D, E, F\},\{a, b\}, C, P)$, where $P=\{C \rightarrow a D ; D \rightarrow a C ; E \rightarrow a F ; F \rightarrow a E ; C \rightarrow b E ; D \rightarrow b F ; E \rightarrow b C ;$ $F \rightarrow b D ; F \rightarrow \Lambda\}$

Example: DFA from G

Consider the grammar $G=(\{C, D, E, F\},\{a, b\}, C, P)$, where $P=\{C \rightarrow a D ; D \rightarrow a C ; E \rightarrow a F ; F \rightarrow a E ; C \rightarrow b E ; D \rightarrow b F ; E \rightarrow b C ;$ $F \rightarrow b D ; F \rightarrow \Lambda\}$

Example: DFA from G

Consider the grammar $G=(\{C, D, E, F\},\{a, b\}, C, P)$, where $P=\{C \rightarrow a D ; D \rightarrow a C ; E \rightarrow a F ; F \rightarrow a E ; C \rightarrow b E ; D \rightarrow b F ; E \rightarrow b C ;$ $F \rightarrow b D ; F \rightarrow \Lambda\}$

For example: consider $\delta^{*}(C, a a b)=E$, and $C \Rightarrow a D \Rightarrow a a C \Rightarrow a a b E$.

DFA from RG

Lemma 9.3
If $L=\mathcal{L}(M)$ for some deterministic finite automata M, then there exists a deterministic regular grammar G such that $L=\mathcal{L}(G)$.

DFA from RG

Lemma 9.3
If $L=\mathcal{L}(M)$ for some deterministic finite automata M, then there exists a deterministic regular grammar G such that $L=\mathcal{L}(G)$.

The same algorithm works in reverse!

DFA from RG

Lemma 9.3

If $L=\mathcal{L}(M)$ for some deterministic finite automata M, then there exists a deterministic regular grammar G such that $L=\mathcal{L}(G)$.

The same algorithm works in reverse!

Theorem 9.1

L is a regular language if and only if there exists a deterministic finite automata M such that $L=\mathcal{L}(M)$.

