DFAs A DFA, M, is a quintuple, $M=(Q,\Sigma,q_0,\delta,A)$, where - $lackbox{} Q$ is a finite set of states, - $ightharpoonup \Sigma$ is a finite set of symbols (an alphabet), - $lackbox{ }q_0\in Q$ is a special start state, - $\blacktriangleright \ A \subseteq Q \ \text{is the set of accepting states,}$ - $\delta: Q \times \Sigma \to Q$ is a transition function. #### **DFAs** A DFA, M, is a quintuple, $M=(Q,\Sigma,q_0,\delta,A)$, where - Q is a finite set of states, - $ightharpoonup \Sigma$ is a finite set of symbols (an alphabet), - $lackbox{ }q_0\in Q$ is a special start state, - $\blacktriangleright \ A \subseteq Q \ \text{is the set of accepting states,}$ - lacksquare $\delta: Q \times \Sigma \to Q$ is a transition function. δ maps a state and an input character to another state. Recall, $Q \times \Sigma$ is the set of all ordered pairs (q, σ) such that $q \in Q$ and $\sigma \in \Sigma$. ### **DFAs** A DFA, M, is a quintuple, $M=(Q,\Sigma,q_0,\delta,A)$, where - Q is a finite set of states, - $ightharpoonup \Sigma$ is a finite set of symbols (an alphabet), - $ightharpoonup q_0 \in Q$ is a special start state, - $\blacktriangleright \ A \subseteq Q \ \text{is the set of accepting states,}$ - $\delta: Q \times \Sigma \to Q$ is a transition function. δ maps a state and an input character to another state. Recall, $Q \times \Sigma$ is the set of all ordered pairs (q,σ) such that $q \in Q$ and $\sigma \in \Sigma$. $\delta(q,\sigma)$ denotes the state of the computation when you start in state q and the next character is σ . ### **DFAs** A DFA, M, is a quintuple, $M=(Q,\Sigma,q_0,\delta,A)$, where - Q is a finite set of states, - $ightharpoonup \Sigma$ is a finite set of symbols (an alphabet), - $lackbox{ }q_0\in Q$ is a special start state, - $lackbox{ }A\subseteq Q$ is the set of accepting states, - $\delta: Q \times \Sigma \to Q$ is a transition function. δ maps a state and an input character to another state. Recall, $Q \times \Sigma$ is the set of all ordered pairs (q,σ) such that $q \in Q$ and $\sigma \in \Sigma$. $\delta(q,\sigma)$ denotes the state of the computation when you start in state q and the next character is σ . Note that δ is a total function: it is defined *for every possible input pair*. This assumes a trap state, and assures that the function table for δ doesn't have any empty cells. $M=(Q,\Sigma,q_0,\delta,A)$ where $q_0\in Q$ is the start state, $A\subseteq Q$ are the accepting states, $\delta: Q \times \Sigma \to Q$ $M=(\{q_0,q_1,q_2\},\{a,b\},q_0,\delta,\{q_1\})$, where δ is as follows: | a | | |---|--| | - | | | 10 | q_1 | q_2 | |----|-------|-------| | 1 | q_1 | q_1 | | 12 | q_2 | q_2 | $M=(Q,\Sigma,q_0,\delta,A)$ where $q_0\in Q$ is the start state, $A\subseteq Q$ are the accepting states, $\delta: Q \times \Sigma \to Q$ $M=(\{q_0,q_1,q_2\},\{a,b\},q_0,\delta,\{q_1\}),$ where δ is as follows: | a | | |------|---| | - C- | _ | | 10 | q_1 | q_2 | |-----|-------|-------| | 1 | q_1 | q_1 | | Y-0 | a. | a. | $M=(Q,\Sigma,q_0,\delta,A)$ where $q_0\in Q$ is the start state, $A\subseteq Q$ are the accepting states, $\delta:Q\times\Sigma\to Q$ $M = (\{q_0, q_1, q_2\}, \{a, b\}, q_0, \delta, \{q_1\})$, where δ is as follows: | | a | b | |----|-------|-------| | 0! | q_1 | q_2 | | 1 | q_1 | q_1 | | 10 | ao | ao | $M=(Q,\Sigma,q_0,\delta,A)$ where $q_0\in Q$ is the start state, $A\subseteq Q$ are the accepting states, $\delta:Q\times\Sigma\to Q$ $M = (\{q_0, q_1, q_2\}, \{a, b\}, q_0, \delta, \{q_1\})$, where δ is as follows: | | a | b | |-------|-------|-------| | q_0 | q_1 | q_2 | | q_1 | q_1 | q_1 | | an | an | an | $M=(Q,\Sigma,q_0,\delta,A)$ where $q_0\in Q$ is the start state, $A\subseteq Q$ are the accepting states, $\delta:Q\times\Sigma\to Q$ $M=(\{q_0,q_1,q_2\},\{a,b\},q_0,\delta,\{q_1\})$, where δ is as follows: | | a | b | |-------|-------|-------| | q_0 | q_1 | q_2 | | q_1 | q_1 | q_1 | | an | an | an | $M=(Q,\Sigma,q_0,\delta,A)$ where $q_0\in Q$ is the start state, $A\subseteq Q$ are the accepting states, $\delta:Q\times\Sigma\to Q$ $M=(\{q_0,q_1,q_2\},\{a,b\},q_0,\delta,\{q_1\}),$ where δ is as follows: | | a | b | |----|-------|-------| | 70 | q_1 | q_2 | | 71 | q_1 | q_1 | | 70 | an | an | $M=(Q,\Sigma,q_0,\delta,A)$ where $q_0\in Q$ is the start state, $A\subseteq Q$ are the accepting states, $\delta:Q\times\Sigma\to Q$ $M = (\{q_0, q_1, q_2\}, \{a, b\}, q_0, \delta, \{q_1\})$, where δ is as follows: | | a | b | |----------------|----------------|----------------| | q_0 | q_1 | q_2 | | q_1 | q_1 | q_1 | | a ₂ | a ₂ | a ₂ | #### closure of δ For a given DFA, $M=(Q,\Sigma,q_0,\delta,A)$, δ^* is a function that takes a state and a string as inpu, and produces a resulting state. That is, $\delta^*:Q\times\Sigma^*\to Q$, and - $\qquad \qquad \textbf{For any } q \in Q \text{, } \delta^*(q,\Lambda) = q \text{,}$ - ▶ For any $q \in Q$, any $\sigma \in \Sigma$, and any $x \in \Sigma^*$, $\delta^*(q, x\sigma) = \delta(\delta^*(q, x), \sigma)$ ## Lemma 9.2 If $L=\mathcal{L}(G)$ for some deterministic regular grammar G, then there exists a DFA M such that $L=\mathcal{L}(M).$ ### Lemma 9.2 If $L=\mathcal{L}(G)$ for some deterministic regular grammar G, then there exists a DFA M such that $L=\mathcal{L}(M).$ Let $G=(V,\Sigma,S,P).$ We define DFA $M=(Q,\Sigma,q_0,\delta,A)$ as follows. ### Lemma 9.2 If $L=\mathcal{L}(G)$ for some deterministic regular grammar G, then there exists a DFA M such that $L=\mathcal{L}(M).$ Let $G=(V,\Sigma,S,P).$ We define DFA $M=(Q,\Sigma,q_0,\delta,A)$ as follows. $$Q = V$$, $$q_0 = S$$, $$A = \{ p \mid p \to \Lambda \in P \},\$$ ### Lemma 9.2 If $L=\mathcal{L}(G)$ for some deterministic regular grammar G, then there exists a DFA M such that $L=\mathcal{L}(M).$ Let $G=(V,\Sigma,S,P).$ We define DFA $M=(Q,\Sigma,q_0,\delta,A)$ as follows. Q=V, $q_0=S,$ $A=\{p\mid p\to \Lambda\in P\},$ and, for every $p\in Q,\sigma\in \Sigma,$ $\delta(p,\sigma)=q$ if $p\to \sigma q\in P.$ ## Lemma 9.2 If $L=\mathcal{L}(G)$ for some deterministic regular grammar G, then there exists a DFA M such that $L=\mathcal{L}(M).$ Let $G=(V,\Sigma,S,P).$ We define DFA $M=(Q,\Sigma,q_0,\delta,A)$ as follows. Q=V, $q_0=S,$ $A=\{p\mid p\to \Lambda\in P\},$ and, for every $p\in Q, \sigma\in \Sigma,\ \delta(p,\sigma)=q$ if $p\to \sigma q\in P.$ If δ is not a complete function, we can add a trap state to Q. ### Lemma 9.2 If $L=\mathcal{L}(G)$ for some deterministic regular grammar G, then there exists a DFA M such that $L=\mathcal{L}(M).$ Let $G=(V,\Sigma,S,P).$ We define DFA $M=(Q,\Sigma,q_0,\delta,A)$ as follows. $$Q = V$$ $$q_0 = S$$, $$A = \{p \mid p \to \Lambda \in P\}$$, and, for every $p \in Q, \sigma \in \Sigma$, $\delta(p, \sigma) = q$ if $p \to \sigma q \in P$. If δ is not a complete function, we can add a trap state to Q. Claim: For every $x \in \Sigma^*$ and $A \in V$, $S \stackrel{*}{\Rightarrow} xA$ iff $\delta^*(q_0, x) = A$. ### Lemma 9.2 If $L=\mathcal{L}(G)$ for some deterministic regular grammar G, then there exists a DFA M such that $L=\mathcal{L}(M).$ Let $G=(V,\Sigma,S,P).$ We define DFA $M=(Q,\Sigma,q_0,\delta,A)$ as follows. Q = V, $q_0 = S$, $A=\{p\mid p\to\Lambda\in P\}\text{, and,}$ $\text{for every } p \in Q, \sigma \in \Sigma \text{, } \delta(p,\sigma) = q \text{ if } p \to \sigma q \in P.$ If δ is not a complete function, we can add a trap state to Q. Claim: For every $x \in \Sigma^*$ and $A \in V$, $S \stackrel{*}{\Rightarrow} xA$ iff $\delta^*(q_0, x) = A$. Proof is by induction on the length of x. When |x|=0, note that S can generate A iff A=S (because G is regular), and $\delta(q_0,\Lambda)=S$. 4日 → 4周 → 4 差 → 4 差 → 1 至 り 4 ○ ○ ### Lemma 9.2 If $L=\mathcal{L}(G)$ for some deterministic regular grammar G, then there exists a DFA M such that $L=\mathcal{L}(M).$ Let $G=(V,\Sigma,S,P).$ We define DFA $M=(Q,\Sigma,q_0,\delta,A)$ as follows. Q = V, $q_0 = S$, $A = \{p \mid p \to \Lambda \in P\}$, and, for every $p \in Q, \sigma \in \Sigma$, $\delta(p, \sigma) = q$ if $p \to \sigma q \in P$. If δ is not a complete function, we can add a trap state to Q. Claim: For every $x \in \Sigma^*$ and $A \in V$, $S \stackrel{*}{\Rightarrow} xA$ iff $\delta^*(q_0, x) = A$. Proof is by induction on the length of x. When |x|=0, note that S can generate A iff A=S (because G is regular), and $\delta(q_0,\Lambda)=S$. Suppose the claim holds for all x of length $k \geq 0$. ### Lemma 9.2 If $L=\mathcal{L}(G)$ for some deterministic regular grammar G, then there exists a DFA M such that $L=\mathcal{L}(M).$ Let $G = (V, \Sigma, S, P)$. We define DFA $M = (Q, \Sigma, q_0, \delta, A)$ as follows. $$Q = V$$, $$q_0 = S$$, $$A=\{p\mid p\to\Lambda\in P\}\text{, and,}$$ for every $p \in Q, \sigma \in \Sigma$, $\delta(p, \sigma) = q$ if $p \to \sigma q \in P$. If δ is not a complete function, we can add a trap state to Q. Claim: For every $x \in \Sigma^*$ and $A \in V$, $S \stackrel{*}{\Rightarrow} xA$ iff $\delta^*(q_0, x) = A$. Proof is by induction on the length of x. When |x|=0, note that S can generate A iff A=S (because G is regular), and $\delta(q_0,\Lambda)=S$. Suppose the claim holds for all x of length $k \geq 0$. $$(S \stackrel{*}{\Rightarrow} xA) \to (\delta^*(q_0, x) = A)$$ Suppose that in the k+1st step of a derivation of string yb of length k+1, we use the rule $A\to bC$: we have $S \stackrel{*}{\Rightarrow} yA \Rightarrow ybC$. ### Lemma 9.2 If $L=\mathcal{L}(G)$ for some deterministic regular grammar G, then there exists a DFA M such that $L=\mathcal{L}(M).$ Let $G = (V, \Sigma, S, P)$. We define DFA $M = (Q, \Sigma, q_0, \delta, A)$ as follows. $$Q = V$$, $$q_0 = S$$, $$A = \{p \mid p \to \Lambda \in P\}$$, and, for every $p \in Q, \sigma \in \Sigma$, $\delta(p, \sigma) = q$ if $p \to \sigma q \in P$. If δ is not a complete function, we can add a trap state to Q. Claim: For every $x \in \Sigma^*$ and $A \in V$, $S \stackrel{*}{\Rightarrow} xA$ iff $\delta^*(q_0, x) = A$. Proof is by induction on the length of x. When |x|=0, note that S can generate A iff A=S (because G is regular), and $\delta(q_0,\Lambda)=S$. Suppose the claim holds for all x of length $k \geq 0$. $$(S \stackrel{*}{\Rightarrow} xA) \rightarrow (\delta^*(q_0, x) = A)$$ Suppose that in the k+1st step of a derivation of string yb of length k+1, we use the rule $A\to bC$: we have $S \stackrel{*}{\Rightarrow} yA \Rightarrow ybC$. By the inductive hypothesis, we have $\delta^*(q_0, y) = A$. ### Lemma 9.2 If $L=\mathcal{L}(G)$ for some deterministic regular grammar G, then there exists a DFA M such that $L=\mathcal{L}(M).$ Let $G = (V, \Sigma, S, P)$. We define DFA $M = (Q, \Sigma, q_0, \delta, A)$ as follows. $$Q = V$$, $$q_0 = S$$, $$A = \{p \mid p \to \Lambda \in P\}$$, and, for every $$p \in Q, \sigma \in \Sigma$$, $\delta(p, \sigma) = q$ if $p \to \sigma q \in P$. If δ is not a complete function, we can add a trap state to Q. Claim: For every $x \in \Sigma^*$ and $A \in V$, $S \stackrel{*}{\Rightarrow} xA$ iff $\delta^*(q_0, x) = A$. Proof is by induction on the length of x. When |x|=0, note that S can generate A iff A=S (because G is regular), and $\delta(q_0,\Lambda)=S$. Suppose the claim holds for all x of length $k \geq 0$. $$(S \stackrel{*}{\Rightarrow} xA) \to (\delta^*(q_0, x) = A)$$ Suppose that in the k+1st step of a derivation of string yb of length k+1, we use the rule $A\to bC$: we have $S \stackrel{*}{\Rightarrow} yA \Rightarrow ybC$. By the inductive hypothesis, we have $\delta^*(q_0, y) = A$. By the way we constructed M, we have $\delta(A,b)=C$ Therefore: $\delta^*(q_0, yb) = C$. #### Lemma 9.2 If $L=\mathcal{L}(G)$ for some deterministic regular grammar G, then there exists a DFA M such that $L=\mathcal{L}(M).$ Let $G = (V, \Sigma, S, P)$. We define DFA $M = (Q, \Sigma, q_0, \delta, A)$ as follows. $$Q = V$$, $$q_0 = S$$, $$A = \{p \mid p \to \Lambda \in P\}$$, and, $\text{for every } p \in Q, \sigma \in \Sigma \text{, } \delta(p,\sigma) = q \text{ if } p \to \sigma q \in P.$ If δ is not a complete function, we can add a trap state to Q. Claim: For every $x \in \Sigma^*$ and $A \in V$, $S \stackrel{*}{\Rightarrow} xA$ iff $\delta^*(q_0, x) = A$. Proof is by induction on the length of x. When |x|=0, note that S can generate A iff A=S (because G is regular), and $\delta(q_0,\Lambda)=S$. Suppose the claim holds for all x of length $k \geq 0$. $$(\delta^*(q_0, x) = A) \to (S \stackrel{*}{\Rightarrow} xA)$$ ### Lemma 9.2 If $L=\mathcal{L}(G)$ for some deterministic regular grammar G, then there exists a DFA M such that $L=\mathcal{L}(M).$ Let $G = (V, \Sigma, S, P)$. We define DFA $M = (Q, \Sigma, q_0, \delta, A)$ as follows. $$Q = V$$, $$q_0 = S$$, $$A=\{p\mid p\to\Lambda\in P\}\text{, and,}$$ for every $$p \in Q, \sigma \in \Sigma$$, $\delta(p, \sigma) = q$ if $p \to \sigma q \in P$. If δ is not a complete function, we can add a trap state to Q. Claim: For every $x \in \Sigma^*$ and $A \in V$, $S \stackrel{*}{\Rightarrow} xA$ iff $\delta^*(q_0, x) = A$. Proof is by induction on the length of x. When |x|=0, note that S can generate A iff A=S (because G is regular), and $\delta(q_0,\Lambda)=S$. Suppose the claim holds for all x of length $k \geq 0$. $$(\delta^*(q_0, x) = A) \to (S \stackrel{*}{\Rightarrow} xA)$$ Suppose that on some input yb of length k+1, the k+1st transition in M was $\delta(A,b)=C.$ ### Lemma 9.2 If $L=\mathcal{L}(G)$ for some deterministic regular grammar G, then there exists a DFA M such that $L=\mathcal{L}(M).$ Let $G = (V, \Sigma, S, P)$. We define DFA $M = (Q, \Sigma, q_0, \delta, A)$ as follows. $$Q = V$$, $$q_0 = S$$, $$A=\{p\mid p\to\Lambda\in P\}\text{, and,}$$ $\text{for every } p \in Q, \sigma \in \Sigma \text{, } \delta(p,\sigma) = q \text{ if } p \to \sigma q \in P.$ If δ is not a complete function, we can add a trap state to Q. Claim: For every $x \in \Sigma^*$ and $A \in V$, $S \stackrel{*}{\Rightarrow} xA$ iff $\delta^*(q_0, x) = A$. Proof is by induction on the length of x. When |x|=0, note that S can generate A iff A=S (because G is regular), and $\delta(q_0,\Lambda)=S$. Suppose the claim holds for all x of length $k \geq 0$. $$(\delta^*(q_0, x) = A) \to (S \stackrel{*}{\Rightarrow} xA)$$ Suppose that on some input yb of length k+1, the k+1st transition in M was $\delta(A,b)=C.$ We have: $\delta^*(q_0, y) = A$. ### Lemma 9.2 If $L=\mathcal{L}(G)$ for some deterministic regular grammar G, then there exists a DFA M such that $L=\mathcal{L}(M).$ Let $G = (V, \Sigma, S, P)$. We define DFA $M = (Q, \Sigma, q_0, \delta, A)$ as follows. $$Q = V$$, $$q_0 = S$$, $$A=\{p\mid p\to\Lambda\in P\}\text{, and,}$$ for every $$p \in Q, \sigma \in \Sigma$$, $\delta(p, \sigma) = q$ if $p \to \sigma q \in P$. If δ is not a complete function, we can add a trap state to Q. Claim: For every $x \in \Sigma^*$ and $A \in V$, $S \stackrel{*}{\Rightarrow} xA$ iff $\delta^*(q_0, x) = A$. Proof is by induction on the length of x. When |x|=0, note that S can generate A iff A=S (because G is regular), and $\delta(q_0,\Lambda)=S$. Suppose the claim holds for all x of length $k \geq 0$. $$(\delta^*(q_0, x) = A) \to (S \stackrel{*}{\Rightarrow} xA)$$ Suppose that on some input yb of length k+1, the k+1st transition in M was $\delta(A,b)=C.$ We have: $\delta^*(q_0, y) = A$. By the inductive hypothesis, we have $S \stackrel{*}{\Rightarrow} yA$ ### Lemma 9.2 If $L=\mathcal{L}(G)$ for some deterministic regular grammar G, then there exists a DFA M such that $L=\mathcal{L}(M).$ Let $G = (V, \Sigma, S, P)$. We define DFA $M = (Q, \Sigma, q_0, \delta, A)$ as follows. $$Q = V$$, $$q_0 = S$$, $$A = \{p \mid p \to \Lambda \in P\}$$, and, for every $p \in Q$, $\sigma \in \Sigma$, $\delta(p, \sigma) = q$ if $p \to \sigma q \in P$. If δ is not a complete function, we can add a trap state to Q. Claim: For every $x \in \Sigma^*$ and $A \in V$, $S \stackrel{*}{\Rightarrow} xA$ iff $\delta^*(q_0, x) = A$. Proof is by induction on the length of x. When |x|=0, note that S can generate A iff A=S (because G is regular), and $\delta(q_0,\Lambda)=S$. Suppose the claim holds for all x of length $k \geq 0$. $$(\delta^*(q_0, x) = A) \to (S \stackrel{*}{\Rightarrow} xA)$$ Suppose that on some input yb of length k+1, the k+1st transition in M was $\delta(A,b)=C.$ We have: $\delta^*(q_0, y) = A$. By the inductive hypothesis, we have $S \stackrel{*}{\Rightarrow} yA$ By the way we defined M, there must be a rule $A \to bC$. ### Lemma 9.2 If $L=\mathcal{L}(G)$ for some deterministic regular grammar G, then there exists a DFA M such that $L=\mathcal{L}(M).$ Let $G = (V, \Sigma, S, P)$. We define DFA $M = (Q, \Sigma, q_0, \delta, A)$ as follows. $$Q = V$$, $$q_0 = S$$, $$A = \{p \mid p \to \Lambda \in P\}$$, and, $$\text{for every } p \in Q, \sigma \in \Sigma \text{, } \delta(p,\sigma) = q \text{ if } p \to \sigma q \in P.$$ If δ is not a complete function, we can add a trap state to Q. Claim: For every $x \in \Sigma^*$ and $A \in V$, $S \stackrel{*}{\Rightarrow} xA$ iff $\delta^*(q_0, x) = A$. Proof is by induction on the length of x. When |x|=0, note that S can generate A iff A=S (because G is regular), and $\delta(q_0,\Lambda)=S$. Suppose the claim holds for all x of length $k \geq 0$. $$(\delta^*(q_0, x) = A) \to (S \stackrel{*}{\Rightarrow} xA)$$ Suppose that on some input yb of length k+1, the k+1st transition in M was $\delta(A,b)=C.$ We have: $$\delta^*(q_0, y) = A$$. By the inductive hypothesis, we have $S \stackrel{*}{\Rightarrow} yA$ By the way we defined M, there must be a rule $A \to bC$. Therefore, $S \stackrel{*}{\Rightarrow} ybC$. ### Lemma 9.2 If $L=\mathcal{L}(G)$ for some deterministic regular grammar G, then there exists a DFA M such that $L=\mathcal{L}(M).$ Let $G = (V, \Sigma, S, P)$. We define DFA $M = (Q, \Sigma, q_0, \delta, A)$ as follows. $$Q = V$$, $$q_0 = S$$, $$A=\{p\mid p\to\Lambda\in P\}\text{, and,}$$ for every $p \in Q$, $\sigma \in \Sigma$, $\delta(p, \sigma) = q$ if $p \to \sigma q \in P$. If δ is not a complete function, we can add a trap state to Q. Claim: For every $x \in \Sigma^*$ and $A \in V$, $S \stackrel{*}{\Rightarrow} xA$ iff $\delta^*(q_0, x) = A$. Proof is by induction on the length of x. When |x|=0, note that S can generate A iff A=S (because G is regular), and $\delta(q_0,\Lambda)=S$. Suppose the claim holds for all x of length $k \geq 0$. $$(\delta^*(q_0, x) = A) \to (S \stackrel{*}{\Rightarrow} xA)$$ Suppose that on some input yb of length k+1, the k+1st transition in M was $\delta(A,b)=C.$ We have: $\delta^*(q_0, y) = A$. By the inductive hypothesis, we have $S \stackrel{*}{\Rightarrow} yA$ By the way we defined M, there must be a rule $A \to bC$. Therefore, $S \stackrel{*}{\Rightarrow} ybC$. (Why does this suffice for the proof of the Lemma?) Consider the grammar $G=(\{C,D,E,F\},\{a,b\},C,P)$, where $P=\{C\rightarrow aD;D\rightarrow aC;E\rightarrow aF;F\rightarrow aE;C\rightarrow bE;D\rightarrow bF;E\rightarrow bC;F\rightarrow bD;F\rightarrow\Lambda\}$ For example: consider $\delta^*(C, aab) = E$, and $C \Rightarrow aD \Rightarrow aaC \Rightarrow aabE$. ### Lemma 9.3 If $L=\mathcal{L}(M)$ for some deterministic finite automata M, then there exists a deterministic regular grammar G such that $L=\mathcal{L}(G)$. ### Lemma 9.3 If $L=\mathcal{L}(M)$ for some deterministic finite automata M, then there exists a deterministic regular grammar G such that $L=\mathcal{L}(G)$. The same algorithm works in reverse! ### Lemma 9.3 If $L=\mathcal{L}(M)$ for some deterministic finite automata M, then there exists a deterministic regular grammar G such that $L=\mathcal{L}(G)$. The same algorithm works in reverse! #### Theorem 9.1 L is a regular language if and only if there exists a deterministic finite automata M such that $L=\mathcal{L}(M).$