Formalizing DFAs

DFAs

A DFA, M, is a quintuple, $M = (Q, \Sigma, q_0, \delta, A)$, where

- Q is a finite set of states,
- Σ is a finite set of symbols (an alphabet),
- $q_0 \in Q$ is a special start state,
- $A \subseteq Q$ is the set of accepting states,
- $\delta : Q \times \Sigma \rightarrow Q$ is a transition function.
Formalizing DFAs

A DFA, M, is a quintuple, $M = (Q, \Sigma, q_0, \delta, A)$, where

- Q is a finite set of states,
- Σ is a finite set of symbols (an alphabet),
- $q_0 \in Q$ is a special start state,
- $A \subseteq Q$ is the set of accepting states,
- $\delta : Q \times \Sigma \rightarrow Q$ is a transition function.

δ maps a state and an input character to another state. Recall, $Q \times \Sigma$ is the set of all ordered pairs (q, σ) such that $q \in Q$ and $\sigma \in \Sigma$.
Formalizing DFAs

<table>
<thead>
<tr>
<th>DFAs</th>
</tr>
</thead>
<tbody>
<tr>
<td>A DFA, M, is a quintuple, $M = (Q, \Sigma, q_0, \delta, A)$, where</td>
</tr>
<tr>
<td>- Q is a finite set of states,</td>
</tr>
<tr>
<td>- Σ is a finite set of symbols (an alphabet),</td>
</tr>
<tr>
<td>- $q_0 \in Q$ is a special start state,</td>
</tr>
<tr>
<td>- $A \subseteq Q$ is the set of accepting states,</td>
</tr>
<tr>
<td>- $\delta : Q \times \Sigma \rightarrow Q$ is a transition function.</td>
</tr>
</tbody>
</table>

δ maps a state and an input character to another state.
Recall, $Q \times \Sigma$ is the set of all ordered pairs (q, σ) such that $q \in Q$ and $\sigma \in \Sigma$.
$\delta(q, \sigma)$ denotes the state of the computation when you start in state q and the next character is σ.

Formalizing DFAs

A DFA, M, is a quintuple, $M = (Q, \Sigma, q_0, \delta, A)$, where

- Q is a finite set of states,
- Σ is a finite set of symbols (an alphabet),
- $q_0 \in Q$ is a special start state,
- $A \subseteq Q$ is the set of accepting states,
- $\delta : Q \times \Sigma \rightarrow Q$ is a transition function.

δ maps a state and an input character to another state. Recall, $Q \times \Sigma$ is the set of all ordered pairs (q, σ) such that $q \in Q$ and $\sigma \in \Sigma$. $\delta(q, \sigma)$ denotes the state of the computation when you start in state q and the next character is σ.

Note that δ is a total function: it is defined for every possible input pair. This assumes a trap state, and assures that the function table for δ doesn’t have any empty cells.
Example

\[M = (Q, \Sigma, q_0, \delta, A) \] where \(q_0 \in Q \) is the start state, \(A \subseteq Q \) are the accepting states, \(\delta : Q \times \Sigma \to Q \).

\[M = (\{q_0, q_1, q_2\}, \{a, b\}, q_0, \delta, \{q_1\}) \], where \(\delta \) is as follows:

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>q0</td>
<td>q1</td>
<td>q2</td>
</tr>
<tr>
<td>q1</td>
<td>q1</td>
<td>q1</td>
</tr>
<tr>
<td>q2</td>
<td>q2</td>
<td>q2</td>
</tr>
</tbody>
</table>
Example

\[M = (Q, \Sigma, q_0, \delta, A) \]

where \(q_0 \in Q \) is the start state, \(A \subseteq Q \) are the accepting states,
\(\delta : Q \times \Sigma \rightarrow Q \)

\[M = (\{q_0, q_1, q_2\}, \{a, b\}, q_0, \delta, \{q_1\}) \]

where \(\delta \) is as follows:

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>q0</td>
<td>q1</td>
<td>q2</td>
</tr>
<tr>
<td>q1</td>
<td>q1</td>
<td>q1</td>
</tr>
<tr>
<td>q2</td>
<td>q2</td>
<td>q2</td>
</tr>
</tbody>
</table>

[Diagram of state transitions]
Example

\[M = (Q, \Sigma, q_0, \delta, A) \] where \(q_0 \in Q \) is the start state, \(A \subseteq Q \) are the accepting states, \(\delta : Q \times \Sigma \rightarrow Q \).

\[M = (\{q_0, q_1, q_2\}, \{a, b\}, q_0, \delta, \{q_1\}) \], where \(\delta \) is as follows:

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>q0</td>
<td>q1</td>
<td>q2</td>
</tr>
<tr>
<td>q1</td>
<td>q1</td>
<td>q1</td>
</tr>
<tr>
<td>q2</td>
<td>q2</td>
<td>q2</td>
</tr>
</tbody>
</table>

\[\delta \]

- \(q_0 \rightarrow q_1 \rightarrow q_1 \rightarrow q_1 \)
- \(q_0 \rightarrow q_0 \rightarrow q_0 \rightarrow q_1 \)
Example

\[M = (Q, \Sigma, q_0, \delta, A) \] where \(q_0 \in Q \) is the start state, \(A \subseteq Q \) are the accepting states, \(\delta : Q \times \Sigma \rightarrow Q \)

\[M = (\{q_0, q_1, q_2\}, \{a, b\}, q_0, \delta, \{q_1\}) \] where \(\delta \) is as follows:

\[
\begin{array}{c|cc}
 & a & b \\
\hline
q_0 & q_1 & q_2 \\
q_1 & q_1 & q_1 \\
q_2 & q_2 & q_2 \\
\end{array}
\]
Example

\[M = (Q, \Sigma, q_0, \delta, A) \] where \(q_0 \in Q \) is the start state, \(A \subseteq Q \) are the accepting states, \(\delta : Q \times \Sigma \to Q \)

\[M = (\{q_0, q_1, q_2\}, \{a, b\}, q_0, \delta, \{q_1\}) \], where \(\delta \) is as follows:

\[
\begin{array}{ccc}
q_0 & q_1 & q_2 \\
q_0 & q_1 & q_2 \\
q_2 & q_2 & q_2 \\
\end{array}
\]
Example

\[M = (Q, \Sigma, q_0, \delta, A) \] where \(q_0 \in Q \) is the start state, \(A \subseteq Q \) are the accepting states, \(\delta : Q \times \Sigma \to Q \)

\[M = (\{q_0, q_1, q_2\}, \{a, b\}, q_0, \delta, \{q_1\}) \], where \(\delta \) is as follows:

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>q0</td>
<td>q1</td>
<td>q2</td>
</tr>
<tr>
<td>q1</td>
<td>q1</td>
<td>q1</td>
</tr>
<tr>
<td>q2</td>
<td>q2</td>
<td>q2</td>
</tr>
</tbody>
</table>
Example

\(M = (Q, \Sigma, q_0, \delta, A) \) where \(q_0 \in Q \) is the start state, \(A \subseteq Q \) are the accepting states, \(\delta : Q \times \Sigma \rightarrow Q \)

\(M = (\{q_0, q_1, q_2\}, \{a, b\}, q_0, \delta, \{q_1\}) \), where \(\delta \) is as follows:

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>q0</td>
<td>q1</td>
<td>q2</td>
</tr>
<tr>
<td>q1</td>
<td>q1</td>
<td>q1</td>
</tr>
<tr>
<td>q2</td>
<td>q2</td>
<td>q2</td>
</tr>
</tbody>
</table>

![Diagram of the automaton](image)
closure of δ

For a given DFA, $M = (Q, \Sigma, q_0, \delta, A)$, δ^* is a function that takes a state and a string as input, and produces a resulting state. That is, $\delta^* : Q \times \Sigma^* \rightarrow Q$, and

1. For any $q \in Q$, $\delta^*(q, \Lambda) = q$,
2. For any $q \in Q$, any $\sigma \in \Sigma$, and any $x \in \Sigma^*$, $\delta^*(q, x\sigma) = \delta(\delta^*(q, x), \sigma)$
Lemma 9.2

If \(L = \mathcal{L}(G) \) for some deterministic regular grammar \(G \), then there exists a DFA \(M \) such that \(L = \mathcal{L}(M) \).

Let \(G = (V, \Sigma, S, P) \). We define DFA \(M = (Q, \Sigma, q_0, \delta, A) \) as follows.

\[Q = V, \quad q_0 = S, \quad A = \{ p \mid p \rightarrow \Lambda \in P \}, \]

and, for every \(p \in Q, \sigma \in \Sigma \),
\[\delta(p, \sigma) = q \text{ if } p \rightarrow \sigma q \in P. \]

If \(\delta \) is not a complete function, we can add a trap state to \(Q \).

Claim: For every \(x \in \Sigma^* \) and \(A \in V \), \(S^* \Rightarrow xA \) iff \(\delta^*(q_0, x) = A \).

Proof is by induction on the length of \(x \). When \(|x| = 0 \), note that \(S \) can generate \(A \) (because \(G \) is regular), and \(\delta(q_0, \Lambda) = S \).

Suppose the claim holds for all \(x \) of length \(k \geq 0 \).

\[(S^* \Rightarrow xA) \rightarrow (\delta^*(q_0, x) = A) \]

Suppose that in the \(k+1 \)st step of a derivation of string \(yb \) of length \(k+1 \), we use the rule \(A \rightarrow bC \): we have \(S^* \Rightarrow yA \Rightarrow ybC \).

By the inductive hypothesis, we have \(\delta^*(q_0, y) = A \).

By the way we constructed \(M \), we have \(\delta(A, b) = C \).

Therefore:
\[\delta^*(q_0, yb) = C. \]
Lemma 9.2

If $L = L(G)$ for some deterministic regular grammar G, then there exists a DFA M such that $L = L(M)$.

Let $G = (V, \Sigma, S, P)$. We define DFA $M = (Q, \Sigma, q_0, \delta, A)$ as follows.
Lemma 9.2

If \(L = \mathcal{L}(G) \) for some deterministic regular grammar \(G \), then there exists a DFA \(M \) such that \(L = \mathcal{L}(M) \).

Let \(G = (V, \Sigma, S, P) \). We define DFA \(M = (Q, \Sigma, q_0, \delta, A) \) as follows.

\(Q = V, \)
\(q_0 = S, \)
\(A = \{ p \mid p \to \Lambda \in P \}, \)
\(\delta \).
Lemma 9.2

If $L = L(G)$ for some deterministic regular grammar G, then there exists a DFA M such that $L = L(M)$.

Let $G = (V, \Sigma, S, P)$. We define DFA $M = (Q, \Sigma, q_0, \delta, A)$ as follows.

$Q = V$,
$q_0 = S$,
$A = \{p \mid p \rightarrow \Lambda \in P\}$, and,
for every $p \in Q, \sigma \in \Sigma$, $\delta(p, \sigma) = q$ if $p \rightarrow \sigma q \in P$.
Lemma 9.2

If \(L = \mathcal{L}(G) \) for some deterministic regular grammar \(G \), then there exists a DFA \(M \) such that \(L = \mathcal{L}(M) \).

Let \(G = (V, \Sigma, S, P) \). We define DFA \(M = (Q, \Sigma, q_0, \delta, A) \) as follows.

\(Q = V \),
\(q_0 = S \),
\(A = \{ p \mid p \rightarrow \Lambda \in P \} \), and,
for every \(p \in Q, \sigma \in \Sigma, \delta(p, \sigma) = q \) if \(p \rightarrow \sigma q \in P \).
If \(\delta \) is not a complete function, we can add a trap state to \(Q \).
Lemma 9.2

If \(L = \mathcal{L}(G) \) for some deterministic regular grammar \(G \), then there exists a DFA \(M \) such that \(L = \mathcal{L}(M) \).

Let \(G = (V, \Sigma, S, P) \). We define DFA \(M = (Q, \Sigma, q_0, \delta, A) \) as follows.

\(Q = V \),
\(q_0 = S \),
\(A = \{ p \mid p \rightarrow \Lambda \in P \} \), and,
for every \(p \in Q, \sigma \in \Sigma, \delta(p, \sigma) = q \) if \(p \rightarrow \sigma q \in P \).

If \(\delta \) is not a complete function, we can add a trap state to \(Q \).

Claim: For every \(x \in \Sigma^* \) and \(A \in V \), \(S \xrightarrow{*} xA \) iff \(\delta^*(q_0, x) = A \).
Lemma 9.2

If $L = L(G)$ for some deterministic regular grammar G, then there exists a DFA M such that $L = L(M)$.

Let $G = (V, \Sigma, S, P)$. We define DFA $M = (Q, \Sigma, q_0, \delta, A)$ as follows.

$Q = V$,
$q_0 = S$,
$A = \{p \mid p \rightarrow \Lambda \in P\}$, and,
for every $p \in Q, \sigma \in \Sigma$, $\delta(p, \sigma) = q$ if $p \rightarrow \sigma q \in P$.

If δ is not a complete function, we can add a trap state to Q.

Claim: For every $x \in \Sigma^*$ and $A \in V$, $S \Rightarrow^* xA$ iff $\delta^*(q_0, x) = A$.

Proof is by induction on the length of x. When $|x| = 0$, note that S can generate A iff $A = S$ (because G is regular), and $\delta(q_0, \Lambda) = S$.

Lemma 9.2

If $L = \mathcal{L}(G)$ for some deterministic regular grammar G, then there exists a DFA M such that $L = \mathcal{L}(M)$.

Let $G = (V, \Sigma, S, P)$. We define DFA $M = (Q, \Sigma, q_0, \delta, A)$ as follows.

- $Q = V$,
- $q_0 = S$,
- $A = \{p \mid p \rightarrow \Lambda \in P\}$, and,
- for every $p \in Q$, $\sigma \in \Sigma$, $\delta(p, \sigma) = q$ if $p \rightarrow \sigma q \in P$.

If δ is not a complete function, we can add a trap state to Q.

Claim: For every $x \in \Sigma^*$ and $A \in V$, $S \overset{*}{\Rightarrow} xA$ iff $\delta^*(q_0, x) = A$.

Proof is by induction on the length of x. When $|x| = 0$, note that S can generate A iff $A = S$ (because G is regular), and $\delta(q_0, \Lambda) = S$.

Suppose the claim holds for all x of length $k \geq 0$.

.
Lemma 9.2

If \(L = \mathcal{L}(G) \) for some deterministic regular grammar \(G \), then there exists a DFA \(M \) such that \(L = \mathcal{L}(M) \).

Let \(G = (V, \Sigma, S, P) \). We define DFA \(M = (Q, \Sigma, q_0, \delta, A) \) as follows.

\[
Q = V, \\
q_0 = S, \\
A = \{ p \mid p \rightarrow \Lambda \in P \}, \text{ and,} \\
\text{for every } p \in Q, \sigma \in \Sigma, \, \delta(p, \sigma) = q \text{ if } p \rightarrow \sigma q \in P.
\]

If \(\delta \) is not a complete function, we can add a trap state to \(Q \).

Claim: For every \(x \in \Sigma^* \) and \(A \in V \), \(S \Rightarrow^* xA \) iff \(\delta^*(q_0, x) = A \).

Proof is by induction on the length of \(x \). When \(|x| = 0 \), note that \(S \) can generate \(A \) iff \(A = S \) (because \(G \) is regular), and \(\delta(q_0, \Lambda) = S \).

Suppose the claim holds for all \(x \) of length \(k \geq 0 \).

\[
(S \Rightarrow^* xA) \rightarrow (\delta^*(q_0, x) = A)
\]

Suppose that in the \(k + 1 \)st step of a derivation of string \(yb \) of length \(k + 1 \), we use the rule \(A \rightarrow bC \):

we have \(S \Rightarrow^* yA \Rightarrow ybC \).
Lemma 9.2

If \(L = L(G) \) for some deterministic regular grammar \(G \), then there exists a DFA \(M \) such that \(L = L(M) \).

Let \(G = (V, \Sigma, S, P) \). We define DFA \(M = (Q, \Sigma, q_0, \delta, A) \) as follows.

\[Q = V, \]
\[q_0 = S, \]
\[A = \{ p \mid p \rightarrow \Lambda \in P \}, \]

and, for every \(p \in Q, \sigma \in \Sigma, \delta(p, \sigma) = q \) if \(p \rightarrow \sigma q \in P \).

If \(\delta \) is not a complete function, we can add a trap state to \(Q \).

Claim: For every \(x \in \Sigma^* \) and \(A \in V \), \(S \Rightarrow^*xA \) iff \(\delta^*(q_0, x) = A \).

Proof is by induction on the length of \(x \). When \(|x| = 0 \), note that \(S \) can generate \(A \) iff \(A = S \) (because \(G \) is regular), and \(\delta(q_0, \Lambda) = S \).

Suppose the claim holds for all \(x \) of length \(k \geq 0 \).

\[(S \Rightarrow^*xA) \rightarrow (\delta^*(q_0, x) = A) \]

Suppose that in the \(k+1 \)st step of a derivation of string \(yb \) of length \(k + 1 \), we use the rule \(A \rightarrow bC \):

we have \(S \Rightarrow^*yA \Rightarrow^*ybC \).

By the inductive hypothesis, we have \(\delta^*(q_0, y) = A \).
Lemma 9.2

If $L = \mathcal{L}(G)$ for some deterministic regular grammar G, then there exists a DFA M such that $L = \mathcal{L}(M)$.

Let $G = (V, \Sigma, S, P)$. We define DFA $M = (Q, \Sigma, q_0, \delta, A)$ as follows.

$Q = V, \quad q_0 = S, \quad A = \{p \mid p \rightarrow \Lambda \in P\}$, and,

for every $p \in Q, \sigma \in \Sigma$, $\delta(p, \sigma) = q$ if $p \rightarrow \sigma q \in P$.

If δ is not a complete function, we can add a trap state to Q.

Claim: For every $x \in \Sigma^*$ and $A \in V$, $S \Rightarrow^* xA$ iff $\delta^*(q_0, x) = A$.

Proof is by induction on the length of x. When $|x| = 0$, note that S can generate A iff $A = S$ (because G is regular), and $\delta(q_0, \Lambda) = S$.

Suppose the claim holds for all x of length $k \geq 0$.

$$(S \Rightarrow^* xA) \rightarrow (\delta^*(q_0, x) = A)$$

Suppose that in the $k + 1$st step of a derivation of string yb of length $k + 1$, we use the rule $A \rightarrow bC$:

we have $S \Rightarrow^* yA \Rightarrow ybC$.

By the inductive hypothesis, we have $\delta^*(q_0, y) = A$.

By the way we constructed M, we have $\delta(A, b) = C$.

Therefore: $\delta^*(q_0, yb) = C$.

\[\text{DFA from RG}\]
Lemma 9.2

If \(L = \mathcal{L}(G) \) for some deterministic regular grammar \(G \), then there exists a DFA \(M \) such that \(L = \mathcal{L}(M) \).

Let \(G = (V, \Sigma, S, P) \). We define DFA \(M = (Q, \Sigma, q_0, \delta, A) \) as follows.

- \(Q = V \),
- \(q_0 = S \),
- \(A = \{ p \mid p \rightarrow \Lambda \in P \} \), and,
- for every \(p \in Q, \sigma \in \Sigma, \delta(p, \sigma) = q \) if \(p \rightarrow \sigma q \in P \).

If \(\delta \) is not a complete function, we can add a trap state to \(Q \).

Claim: For every \(x \in \Sigma^* \) and \(A \in V \), \(S \overset{*}{\Rightarrow} xA \) iff \(\delta^*(q_0, x) = A \).

Proof is by induction on the length of \(x \). When \(|x| = 0 \), note that \(S \) can generate \(A \) iff \(A = S \) (because \(G \) is regular), and \(\delta(q_0, \Lambda) = S \).

Suppose the claim holds for all \(x \) of length \(k \geq 0 \).

\((\delta^*(q_0, x) = A) \rightarrow (S \overset{*}{\Rightarrow} xA)\)
Lemma 9.2

If \(L = \mathcal{L}(G) \) for some deterministic regular grammar \(G \), then there exists a DFA \(M \) such that \(L = \mathcal{L}(M) \).

Let \(G = (V, \Sigma, S, P) \). We define DFA \(M = (Q, \Sigma, q_0, \delta, A) \) as follows.

- \(Q = V \),
- \(q_0 = S \),
- \(A = \{ p \mid p \rightarrow \Lambda \in P \} \), and,
- for every \(p \in Q, \sigma \in \Sigma, \delta(p, \sigma) = q \) if \(p \rightarrow \sigma q \in P \).

If \(\delta \) is not a complete function, we can add a trap state to \(Q \).

Claim: For every \(x \in \Sigma^* \) and \(A \in V \), \(S \overset{x}{\Rightarrow} xA \) iff \(\delta^*(q_0, x) = A \).

Proof is by induction on the length of \(x \). When \(|x| = 0 \), note that \(S \) can generate \(A \) iff \(A = S \) (because \(G \) is regular), and \(\delta(q_0, \Lambda) = S \).

Suppose the claim holds for all \(x \) of length \(k \geq 0 \).

\[(\delta^*(q_0, x) = A) \rightarrow (S \overset{x}{\Rightarrow} xA)\]

Suppose that on some input \(yb \) of length \(k + 1 \), the \(k + 1 \)st transition in \(M \) was \(\delta(A, b) = C \).
Lemma 9.2

If $L = L(G)$ for some deterministic regular grammar G, then there exists a DFA M such that $L = L(M)$.

Let $G = (V, \Sigma, S, P)$. We define DFA $M = (Q, \Sigma, q_0, \delta, A)$ as follows.

$Q = V$,
$q_0 = S$,
$A = \{ p \mid p \rightarrow \Lambda \in P \}$, and,
for every $p \in Q, \sigma \in \Sigma$, $\delta(p, \sigma) = q$ if $p \rightarrow \sigma q \in P$.

If δ is not a complete function, we can add a trap state to Q.

Claim: For every $x \in \Sigma^*$ and $A \in V$, $S \xrightarrow{*} xA$ iff $\delta^*(q_0, x) = A$.

Proof is by induction on the length of x. When $|x| = 0$, note that S can generate A iff $A = S$ (because G is regular), and $\delta(q_0, \Lambda) = S$.

Suppose the claim holds for all x of length $k \geq 0$.

$(\delta^*(q_0, x) = A) \rightarrow (S \xrightarrow{*} xA)$

Suppose that on some input yb of length $k + 1$, the $k + 1$st transition in M was $\delta(A, b) = A$.

We have: $\delta^*(q_0, y) = A$.
Lemma 9.2

If \(L = \mathcal{L}(G) \) for some deterministic regular grammar \(G \), then there exists a DFA \(M \) such that \(L = \mathcal{L}(M) \).

Let \(G = (V, \Sigma, S, P) \). We define DFA \(M = (Q, \Sigma, q_0, \delta, A) \) as follows.

- \(Q = V \),
- \(q_0 = S \),
- \(A = \{ p \mid p \rightarrow \Lambda \in P \} \), and,
- for every \(p \in Q, \sigma \in \Sigma, \delta(p, \sigma) = q \) if \(p \rightarrow \sigma q \in P \).

If \(\delta \) is not a complete function, we can add a trap state to \(Q \).

Claim: For every \(x \in \Sigma^* \) and \(A \in V \), \(S \Rightarrow^* xA \) iff \(\delta^*(q_0, x) = A \).

Proof is by induction on the length of \(x \). When \(|x| = 0 \), note that \(S \) can generate \(A \) iff \(A = S \) (because \(G \) is regular), and \(\delta(q_0, \Lambda) = S \).

Suppose the claim holds for all \(x \) of length \(k \geq 0 \).

\((\delta^*(q_0, x) = A) \rightarrow (S \Rightarrow^* xA)\)

Suppose that on some input \(yb \) of length \(k + 1 \), the \(k + 1 \)st transition in \(M \) was \(\delta(A, b) = C \).

We have: \(\delta^*(q_0, y) = A \).

By the inductive hypothesis, we have \(S \Rightarrow^* yA \).
Lemma 9.2

If \(L = \mathcal{L}(G) \) for some deterministic regular grammar \(G \), then there exists a DFA \(M \) such that \(L = \mathcal{L}(M) \).

Let \(G = (V, \Sigma, S, P) \). We define DFA \(M = (Q, \Sigma, q_0, \delta, A) \) as follows.

- \(Q = V \),
- \(q_0 = S \),
- \(A = \{ p \mid p \rightarrow \Lambda \in P \} \), and,
- for every \(p \in Q, \sigma \in \Sigma, \delta(p, \sigma) = q \) if \(p \rightarrow \sigma q \in P \).

If \(\delta \) is not a complete function, we can add a trap state to \(Q \).

Claim: For every \(x \in \Sigma^* \) and \(A \in V \), \(S \xrightarrow{*} xA \) iff \(\delta^*(q_0, x) = A \).

Proof is by induction on the length of \(x \). When \(|x| = 0\), note that \(S \) can generate \(A \) iff \(A = S \) (because \(G \) is regular), and \(\delta(q_0, \Lambda) = S \).

Suppose the claim holds for all \(x \) of length \(k \geq 0 \).

\((\delta^*(q_0, x) = A) \rightarrow (S \xrightarrow{*} xA)\)

Suppose that on some input \(yb \) of length \(k + 1 \), the \(k + 1 \)st transition in \(M \) was \(\delta(A, b) = C \).

We have: \(\delta^*(q_0, y) = A \).

By the inductive hypothesis, we have \(S \xrightarrow{*} yA \).

By the way we defined \(M \), there must be a rule \(A \rightarrow bC \).
Lemma 9.2

If \(L = \mathcal{L}(G) \) for some deterministic regular grammar \(G \), then there exists a DFA \(M \) such that \(L = \mathcal{L}(M) \).

Let \(G = (V, \Sigma, S, P) \). We define DFA \(M = (Q, \Sigma, q_0, \delta, A) \) as follows.
\[
Q = V, \\
q_0 = S, \\
A = \{p \mid p \rightarrow \Lambda \in P\}, \\
\text{and,}
\]
for every \(p \in Q, \sigma \in \Sigma, \delta(p, \sigma) = q \) if \(p \rightarrow \sigma q \in P \).
If \(\delta \) is not a complete function, we can add a trap state to \(Q \).

Claim: For every \(x \in \Sigma^* \) and \(A \in V \), \(S \xrightarrow{*} xA \) iff \(\delta^*(q_0, x) = A \).
Proof is by induction on the length of \(x \). When \(|x| = 0 \), note that \(S \) can generate \(A \) iff \(A = S \) (because \(G \) is regular), and \(\delta(q_0, \Lambda) = S \).

Suppose the claim holds for all \(x \) of length \(k \geq 0 \).
\[(\delta^*(q_0, x) = A) \rightarrow (S \xrightarrow{*} xA)\]
Suppose that on some input \(yb \) of length \(k + 1 \), the \(k + 1 \)st transition in \(M \) was \(\delta(A, b) = C \).
We have: \(\delta^*(q_0, y) = A \).
By the inductive hypothesis, we have \(S \xrightarrow{*} yA \)
By the way we defined \(M \), there must be a rule \(A \rightarrow bC \).
Therefore, \(S \xrightarrow{*} ybC \).
Lemma 9.2

If \(L = \mathcal{L}(G) \) for some deterministic regular grammar \(G \), then there exists a DFA \(M \) such that \(L = \mathcal{L}(M) \).

Let \(G = (V, \Sigma, S, P) \). We define DFA \(M = (Q, \Sigma, q_0, \delta, A) \) as follows.

\[Q = V, \]
\[q_0 = S, \]
\[A = \{ p \mid p \rightarrow \Lambda \in P \}, \]
and,

for every \(p \in Q, \sigma \in \Sigma, \delta(p, \sigma) = q \) if \(p \rightarrow \sigma q \in P \).

If \(\delta \) is not a complete function, we can add a trap state to \(Q \).

Claim: For every \(x \in \Sigma^* \) and \(A \in V, S \xrightarrow{*} xA \) iff \(\delta^*(q_0, x) = A \).

Proof is by induction on the length of \(x \). When \(|x| = 0 \), note that \(S \) can generate \(A \) iff \(A = S \) (because \(G \) is regular), and \(\delta(q_0, \Lambda) = S \).

Suppose the claim holds for all \(x \) of length \(k \geq 0 \).

\[(\delta^*(q_0, x) = A) \rightarrow (S \xrightarrow{*} xA) \]

Suppose that on some input \(yb \) of length \(k + 1 \), the \(k + 1 \)st transition in \(M \) was \(\delta(A, b) = C \).

We have: \(\delta^*(q_0, y) = A \).

By the inductive hypothesis, we have \(S \xrightarrow{*} yA \)

By the way we defined \(M \), there must be a rule \(A \rightarrow bC \).

Therefore, \(S \xrightarrow{*} ybC \).

(Why does this suffice for the proof of the Lemma?)
Example: DFA from G

Consider the grammar $G = (\{C, D, E, F\}, \{a, b\}, C, P)$, where

$P = \{C \rightarrow aD; D \rightarrow aC; E \rightarrow aF; F \rightarrow aE; C \rightarrow bE; D \rightarrow bF; E \rightarrow bC; F \rightarrow bD; F \rightarrow \Lambda\}$
Example: DFA from G

Consider the grammar $G = (\{C, D, E, F\}, \{a, b\}, C, P)$, where

$P = \{C \rightarrow aD; D \rightarrow aC; E \rightarrow aF; F \rightarrow aE; C \rightarrow bE; D \rightarrow bF; E \rightarrow bC; F \rightarrow bD; F \rightarrow \Lambda\}$
Example: DFA from G

Consider the grammar $G = (\{C, D, E, F\}, \{a, b\}, C, P)$, where

$P = \{C \rightarrow aD; D \rightarrow aC; E \rightarrow aF; F \rightarrow aE; C \rightarrow bE; D \rightarrow bF; E \rightarrow bC; F \rightarrow bD; F \rightarrow \Lambda\}$
Example: DFA from G

Consider the grammar $G = (\{C, D, E, F\}, \{a, b\}, C, P)$, where

$P = \{C \rightarrow aD; D \rightarrow aC; E \rightarrow aF; F \rightarrow aE; C \rightarrow bE; D \rightarrow bF; E \rightarrow bC; F \rightarrow bD; F \rightarrow \Lambda\}$
Example: DFA from G

Consider the grammar $G = (\{C, D, E, F\}, \{a, b\}, C, P)$, where

$P = \{C \rightarrow aD; D \rightarrow aC; E \rightarrow aF; F \rightarrow aE; C \rightarrow bE; D \rightarrow bF; E \rightarrow bC; F \rightarrow bD; F \rightarrow \Lambda\}$
Example: DFA from G

Consider the grammar $G = (\{C, D, E, F\}, \{a, b\}, C, P)$, where

$P = \{C \rightarrow aD; D \rightarrow aC; E \rightarrow aF; F \rightarrow aE; C \rightarrow bE; D \rightarrow bF; E \rightarrow bC; F \rightarrow bD; F \rightarrow \Lambda\}$
Example: DFA from G

Consider the grammar $G = (\{C, D, E, F\}, \{a, b\}, C, P)$, where

$P = \{C \rightarrow aD; D \rightarrow aC; E \rightarrow aF; F \rightarrow aE; C \rightarrow bE; D \rightarrow bF; E \rightarrow bC; F \rightarrow bD; F \rightarrow \Lambda\}$
Example: DFA from G

Consider the grammar $G = (\{C, D, E, F\}, \{a, b\}, C, P)$, where

$P = \{C \rightarrow aD; D \rightarrow aC; E \rightarrow aF; F \rightarrow aE; C \rightarrow bE; D \rightarrow bF; E \rightarrow bC; F \rightarrow bD; F \rightarrow \Lambda\}$
Example: DFA from G

Consider the grammar $G = (\{C, D, E, F\}, \{a, b\}, C, P)$, where $P = \{C \to aD; D \to aC; E \to aF; F \to aE; C \to bE; D \to bF; E \to bC; F \to bD; F \to \Lambda\}$

For example: consider $\delta^*(C, aab) = E$, and $C \Rightarrow aD \Rightarrow aaC \Rightarrow aabE$.
Lemma 9.3

If $L = \mathcal{L}(M)$ for some deterministic finite automata M, then there exists a deterministic regular grammar G such that $L = \mathcal{L}(G)$.

The same algorithm works in reverse!

Theorem 9.1

L is a regular language if and only if there exists a deterministic finite automata M such that $L = \mathcal{L}(M)$.
Lemma 9.3

If $L = L(M)$ for some deterministic finite automata M, then there exists a deterministic regular grammar G such that $L = L(G)$.

The same algorithm works in reverse!
Lemma 9.3

If $L = \mathcal{L}(M)$ for some deterministic finite automata M, then there exists a deterministic regular grammar G such that $L = \mathcal{L}(G)$.

The same algorithm works in reverse!

Theorem 9.1

L is a regular language if and only if there exists a deterministic finite automata M such that $L = \mathcal{L}(M)$.