Formalizing DFAs

DFAs
A DFA, M, is a quintuple, M = (Q, X, qo, 9, A), where
> (@ is a finite set of states,
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> go € Q is a special start state,
> A C @ is the set of accepting states,
d:Q X X — Q is a transition function.
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A DFA, M, is a quintuple, M = (Q, X, qo, 9, A), where
> @ is a finite set of states,
» X is a finite set of symbols (an alphabet),
> go € Q is a special start state,
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d:Q X X — Q is a transition function.

& maps a state and an input character to another state.

Recall, Q x ¥ is the set of all ordered pairs (g, o) such that ¢ € Q and o € X.

0(g, o) denotes the state of the computation when you start in state ¢ and the next
character is o.

Note that ¢ is a total function: it is defined for every possible input pair.
This assumes a trap state, and assures that the function table for § doesn’t have any
empty cells.
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M =(Q, %, qo,0,A) where go € Q is the start state, A C Q are the accepting states,

: QXX —=Q
M = ({q0,41,92},{a, b}, qo,d,{q1}), where ¢ is as follows:

a b

q0 q1 q2

q1 q1 q1

q2 q2 g2




Example

M =(Q, %, qo,0,A) where go € Q is the start state, A C Q are the accepting states,
0:QxXE—=Q

M = ({q0,q1,92},{a, b}, qo0,5,{q1}), where § is as follows:

a b
q0 q1 q2
q1 q1 q1
q2 q2 g2

N



Example

M =(Q,%,qo,d, A) where go € Q is the start state, A C Q are the accepting states,
F: QXX —=Q

M = ({qo0,q1,492},{a,b},q0,9,{q1}), where ¢ is as follows:

a b
q0 q1 q2
q1 q1 q1
q2 q2 q2




Example

M =(Q,%,qo,d, A) where go € Q is the start state, A C Q are the accepting states,
F: QXX —=Q

M = ({qo0,q1,492},{a,b},q0,9,{q1}), where ¢ is as follows:

a b
q0 q1 q2
q1 q1 q1
q2 q2 q2

o (1)
(1)

\p>@



Example

M =(Q,%,qo,d, A) where go € Q is the start state, A C Q are the accepting states,
F: QXX —=Q

M = ({qo0,q1,492},{a,b},q0,9,{q1}), where ¢ is as follows:

a b
q0 q1 q2
q1 q1 q1
q2 q2 q2

» b
e @Q

ra@b

\p>@



Example

M =(Q,%,qo,d, A) where go € Q is the start state, A C Q are the accepting states,
F: QXX —=Q

M = ({qo0,q1,492},{a,b},q0,9,{q1}), where ¢ is as follows:

a b
q0 q1 q2
q1 q1 q1
q2 q2 q2

b

e @Q
NG

B



Example

=(Q, %, qo,9, A) where go € Q is the start state, A C Q are the accepting states,
0: QXX —=Q

= ({q0,q1,92},{a, b}, qo0,9,{q1}), where § is as follows:
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6*

closure of §

For a given DFA, M = (Q, X, go,d, A), 6* is a function that takes a state and a string
as inpu, and produces a resulting state. That is, §* : Q X ¥* — @, and

> Forany g € Q, 6%(¢q,A) =g,

> Forany g € Q, any o0 € X, and any z € *, §*(q,z0) = §(6* (g, z),0)




DFA from RG

Lemma 9.2

If L = L(G) for some deterministic regular grammar G, then there exists a DFA M
such that L = L(M).




DFA from RG

Lemma 9.2

If L = L(G) for some deterministic regular grammar G, then there exists a DFA M
such that L = L(M).

Let G = (V, X, S, P). We define DFA M = (Q, %, g0, 9, A) as follows.



DFA from RG

Lemma 9.2

If L = L(G) for some deterministic regular grammar G, then there exists a DFA M
such that L = L(M).

Let G = (V, X, S, P). We define DFA M = (Q, %, g0, 9, A) as follows.
Q=YV,

q =S5,

A={p|p— A€ P},



DFA from RG

Lemma 9.2

If L = L(G) for some deterministic regular grammar G, then there exists a DFA M
such that L = L(M).

Let G = (V, %, S, P). We define DFA M = (Q, %, qo, 6, A) as follows.
=YV,

q =S5,

A={p|p— A€ P} and,

forevery p € Q,0 € %, §(p,0) =q if p— oq € P.



DFA from RG

Lemma 9.2

If L = L(G) for some deterministic regular grammar G, then there exists a DFA M
such that L = L(M).

Let G = (V, %, S, P). We define DFA M = (Q, %, qo, 6, A) as follows.
Q=YV,

q0 =S,

A={p|p— A€ P} and,

forevery p € Q,0 € %, §(p,0) =q if p— oq € P.

If  is not a complete function, we can add a trap state to Q.



DFA from RG

Lemma 9.2

If L = L(G) for some deterministic regular grammar G, then there exists a DFA M
such that L = L(M).

Let G = (V, %, S, P). We define DFA M = (Q, %, qo, 6, A) as follows.
Q=YV,

q0 =S,

A={p|p— A€ P} and,

forevery p € Q,0 € %, §(p,0) =q if p— oq € P.

If  is not a complete function, we can add a trap state to Q.

Claim: For every z € ©* and A € V, § = zA iff §*(qo,z) = A.



DFA from RG

Lemma 9.2

If L = L(G) for some deterministic regular grammar G, then there exists a DFA M
such that L = L(M).

Let G = (V, %, S, P). We define DFA M = (Q, %, qo, 6, A) as follows.
Q=YV,

q0 =S,

A={p|p— A€ P} and,

forevery p € Q,0 € %, §(p,0) =q if p— oq € P.

If  is not a complete function, we can add a trap state to Q.

Claim: For every z € ©* and A € V, § = zA iff §*(qo,z) = A.
Proof is by induction on the length of . When |z| = 0, note that S can generate A
iff A= S (because G is regular), and §(go,A) = S.



DFA from RG

Lemma 9.2

If L = L(G) for some deterministic regular grammar G, then there exists a DFA M
such that L = L(M).

Let G = (V, %, S, P). We define DFA M = (Q, %, qo, 6, A) as follows.
Q = V’

q0 =S,

A={p|p— A€ P} and,

forevery p € Q,0 € %, §(p,0) =q if p— oq € P.

If  is not a complete function, we can add a trap state to Q.

Claim: For every z € ©* and A € V, § = zA iff §*(qo,z) = A.
Proof is by induction on the length of . When |z| = 0, note that S can generate A
iff A= S (because G is regular), and §(go,A) = S.

Suppose the claim holds for all = of length k > 0.



DFA from RG

Lemma 9.2

If L = L(G) for some deterministic regular grammar G, then there exists a DFA M
such that L = L(M).

Let G = (V, %, S, P). We define DFA M = (Q, %, qo, 6, A) as follows.
Q = V’

q0 =S,

A={p|p— A€ P} and,

forevery p € Q,0 € %, §(p,0) =q if p— oq € P.

If  is not a complete function, we can add a trap state to Q.

Claim: For every z € ©* and A € V, § = zA iff §*(qo,z) = A.

Proof is by induction on the length of . When |z| = 0, note that S can generate A
iff A= S (because G is regular), and §(go,A) = S.

Suppose the claim holds for all = of length k > 0.

(S = zA) = (6*(go0,z) = A)

Suppose that in the k + 1st step of a derivation of string yb of length k£ + 1, we use
the rule A — bC"

we have S = yA = ybC.



DFA from RG

Lemma 9.2

If L = L(G) for some deterministic regular grammar G, then there exists a DFA M
such that L = L(M).

Let G = (V, %, S, P). We define DFA M = (Q, %, qo, 6, A) as follows.
Q = V’

q0 =S,

A={p|p— A€ P} and,

forevery p € Q,0 € %, §(p,0) =q if p— oq € P.

If  is not a complete function, we can add a trap state to Q.

Claim: For every z € ©* and A € V, § = zA iff §*(qo,z) = A.

Proof is by induction on the length of . When |z| = 0, note that S can generate A
iff A= S (because G is regular), and §(go,A) = S.

Suppose the claim holds for all = of length k > 0.

(S = zA) = (6*(go0,z) = A)

Suppose that in the k + 1st step of a derivation of string yb of length k£ + 1, we use
the rule A — bC"

we have S = yA = ybC.

By the inductive hypothesis, we have 6*(qo,y) = A.



DFA from RG

Lemma 9.2

If L = L(G) for some deterministic regular grammar G, then there exists a DFA M
such that L = L(M).

Let G = (V, %, S, P). We define DFA M = (Q, %, qo, 6, A) as follows.
Q = V’

q0 =S,

A={p|p— A€ P} and,

forevery p € Q,0 € %, §(p,0) =q if p— oq € P.

If  is not a complete function, we can add a trap state to Q.

Claim: For every z € ©* and A € V, § = zA iff §*(qo,z) = A.

Proof is by induction on the length of . When |z| = 0, note that S can generate A
iff A= S (because G is regular), and §(go,A) = S.

Suppose the claim holds for all = of length k > 0.

(S = zA) = (6*(go0,z) = A)

Suppose that in the k + 1st step of a derivation of string yb of length k£ + 1, we use
the rule A — bC"

we have S = yA = ybC.

By the inductive hypothesis, we have 6*(qo,y) = A.

By the way we constructed M, we have §(A,b) = C

Therefore: §*(go,yb) = C.



DFA from RG

Lemma 9.2

If L = L(G) for some deterministic regular grammar G, then there exists a DFA M
such that L = L(M).

Let G = (V, %, S, P). We define DFA M = (Q, %, qo, 6, A) as follows.
Q = V’

q0 =S,

A={p|p— A€ P} and,

forevery p € Q,0 € %, §(p,0) =q if p— oq € P.

If  is not a complete function, we can add a trap state to Q.

Claim: For every z € ©* and A € V, § = zA iff §*(qo,z) = A.

Proof is by induction on the length of . When |z| = 0, note that S can generate A
iff A =S (because G is regular), and §(go,A) = S.

Suppose the claim holds for all z of length k > 0.

(6*(go,z) = A) — (S = zA)



DFA from RG

Lemma 9.2

If L = L(G) for some deterministic regular grammar G, then there exists a DFA M
such that L = L(M).

Let G = (V, %, S, P). We define DFA M = (Q, %, qo, 6, A) as follows.
Q = V’

q0 =S,

A={p|p— A€ P} and,

forevery p € Q,0 € %, §(p,0) =q if p— oq € P.

If  is not a complete function, we can add a trap state to Q.

Claim: For every z € ©* and A € V, § = zA iff §*(qo,z) = A.

Proof is by induction on the length of . When |z| = 0, note that S can generate A
iff A =S (because G is regular), and §(go,A) = S.

Suppose the claim holds for all z of length k > 0.

(6*(go,z) = A) — (S = zA)

Suppose that on some input yb of length k 4 1, the k + 1st transition in M was
3(A,b) =C.



DFA from RG

Lemma 9.2

If L = L(G) for some deterministic regular grammar G, then there exists a DFA M
such that L = L(M).

Let G = (V, %, S, P). We define DFA M = (Q, %, qo, 6, A) as follows.
Q = V’

q0 =S,

A={p|p— A€ P} and,

forevery p € Q,0 € %, §(p,0) =q if p— oq € P.

If  is not a complete function, we can add a trap state to Q.

Claim: For every z € ©* and A € V, § = zA iff §*(qo,z) = A.

Proof is by induction on the length of . When |z| = 0, note that S can generate A
iff A =S (because G is regular), and §(go,A) = S.

Suppose the claim holds for all z of length k > 0.

(6*(go,z) = A) — (S = zA)

Suppose that on some input yb of length k 4 1, the k + 1st transition in M was
3(A,b) =C.

We have: §*(qo,y) = A.



DFA from RG

Lemma 9.2

If L = L(G) for some deterministic regular grammar G, then there exists a DFA M
such that L = L(M).

Let G = (V, %, S, P). We define DFA M = (Q, %, qo, 6, A) as follows.
Q = V’

q0 =S,

A={p|p— A€ P} and,

forevery p € Q,0 € %, §(p,0) =q if p— oq € P.

If  is not a complete function, we can add a trap state to Q.

Claim: For every z € ©* and A € V, § = zA iff §*(qo,z) = A.

Proof is by induction on the length of . When |z| = 0, note that S can generate A
iff A =S (because G is regular), and §(go,A) = S.

Suppose the claim holds for all z of length k > 0.

(6*(go,z) = A) — (S = zA)

Suppose that on some input yb of length k 4 1, the k + 1st transition in M was
3(A,b) =C.

We have: §*(qo,y) = A.

By the inductive hypothesis, we have S = yA



DFA from RG

Lemma 9.2

If L = L(G) for some deterministic regular grammar G, then there exists a DFA M
such that L = L(M).

Let G = (V, %, S, P). We define DFA M = (Q, %, qo, 6, A) as follows.
Q = V’

q0 =S,

A={p|p— A€ P} and,

forevery p € Q,0 € %, §(p,0) =q if p— oq € P.

If  is not a complete function, we can add a trap state to Q.

Claim: For every z € ©* and A € V, § = zA iff §*(qo,z) = A.

Proof is by induction on the length of . When |z| = 0, note that S can generate A
iff A =S (because G is regular), and §(go,A) = S.

Suppose the claim holds for all z of length k > 0.

(6*(go,z) = A) — (S = zA)

Suppose that on some input yb of length k 4 1, the k + 1st transition in M was
3(A,b) =C.

We have: §*(qo,y) = A.

By the inductive hypothesis, we have S = yA

By the way we defined M, there must be a rule A — bC.



DFA from RG

Lemma 9.2

If L = L(G) for some deterministic regular grammar G, then there exists a DFA M
such that L = L(M).

Let G = (V, %, S, P). We define DFA M = (Q, %, qo, 6, A) as follows.
Q = V’

q0 =S,

A={p|p— A€ P} and,

forevery p € Q,0 € %, §(p,0) =q if p— oq € P.

If  is not a complete function, we can add a trap state to Q.

Claim: For every z € ©* and A € V, § = zA iff §*(qo,z) = A.

Proof is by induction on the length of . When |z| = 0, note that S can generate A
iff A =S (because G is regular), and §(go,A) = S.

Suppose the claim holds for all z of length k > 0.

(6*(go,z) = A) — (S = zA)

Suppose that on some input yb of length k 4 1, the k + 1st transition in M was
3(A,b) =C.

We have: §*(qo,y) = A.

By the inductive hypothesis, we have S = yA

By the way we defined M, there must be a rule A — bC.

Therefore, S = ybC.



DFA from RG

Lemma 9.2

If L = L(G) for some deterministic regular grammar G, then there exists a DFA M
such that L = L(M).

Let G = (V, %, S, P). We define DFA M = (Q, %, qo, 6, A) as follows.
Q = V’

q0 =S,

A={p|p— A€ P} and,

forevery p € Q,0 € %, §(p,0) =q if p— oq € P.

If  is not a complete function, we can add a trap state to Q.

Claim: For every z € ©* and A € V, § = zA iff §*(qo,z) = A.
Proof is by induction on the length of . When |z| = 0, note that S can generate A
iff A =S (because G is regular), and §(go,A) = S.

Suppose the claim holds for all z of length k > 0.

(6*(go,z) = A) — (S = zA)

Suppose that on some input yb of length k 4 1, the k + 1st transition in M was
3(A,b) =C.

We have: §*(qo,y) = A.

By the inductive hypothesis, we have S = yA

By the way we defined M, there must be a rule A — bC.

Therefore, S = ybC.

(Why does this suffice for the proof of the Lemma?)
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Example: DFA from G
Consider the grammar G = ({C, D, E, F'},{a, b}, C, P), where

P={C —aD;D — aC;E — aF;F — aE;C — bE; D — bF; E — bC}
F - bD; F — A}

For example: consider §*(C, aab) = E, and C = aD = aaC = aabFE.
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Lemma 9.3

If L = L(M) for some deterministic finite automata M, then there exists a
deterministic regular grammar G such that L = £L(G).

The same algorithm works in reverse!

Theorem 9.1

L is a regular language if and only if there exists a deterministic finite automata M
such that L = L(M).




