DFAs

A DFA, M, is a quintuple, $M=(Q,\Sigma,q_0,\delta,A)$, where

- $lackbox{} Q$ is a finite set of states,
- $ightharpoonup \Sigma$ is a finite set of symbols (an alphabet),
- $lackbox{ }q_0\in Q$ is a special start state,
- $\blacktriangleright \ A \subseteq Q \ \text{is the set of accepting states,}$
- $\delta: Q \times \Sigma \to Q$ is a transition function.

DFAs

A DFA, M, is a quintuple, $M=(Q,\Sigma,q_0,\delta,A)$, where

- Q is a finite set of states,
- $ightharpoonup \Sigma$ is a finite set of symbols (an alphabet),
- $lackbox{ }q_0\in Q$ is a special start state,
- $\blacktriangleright \ A \subseteq Q \ \text{is the set of accepting states,}$
- lacksquare $\delta: Q \times \Sigma \to Q$ is a transition function.

 δ maps a state and an input character to another state.

Recall, $Q \times \Sigma$ is the set of all ordered pairs (q, σ) such that $q \in Q$ and $\sigma \in \Sigma$.

DFAs

A DFA, M, is a quintuple, $M=(Q,\Sigma,q_0,\delta,A)$, where

- Q is a finite set of states,
- $ightharpoonup \Sigma$ is a finite set of symbols (an alphabet),
- $ightharpoonup q_0 \in Q$ is a special start state,
- $\blacktriangleright \ A \subseteq Q \ \text{is the set of accepting states,}$
- $\delta: Q \times \Sigma \to Q$ is a transition function.

 δ maps a state and an input character to another state.

Recall, $Q \times \Sigma$ is the set of all ordered pairs (q,σ) such that $q \in Q$ and $\sigma \in \Sigma$. $\delta(q,\sigma)$ denotes the state of the computation when you start in state q and the next character is σ .

DFAs

A DFA, M, is a quintuple, $M=(Q,\Sigma,q_0,\delta,A)$, where

- Q is a finite set of states,
- $ightharpoonup \Sigma$ is a finite set of symbols (an alphabet),
- $lackbox{ }q_0\in Q$ is a special start state,
- $lackbox{ }A\subseteq Q$ is the set of accepting states,
- $\delta: Q \times \Sigma \to Q$ is a transition function.

 δ maps a state and an input character to another state.

Recall, $Q \times \Sigma$ is the set of all ordered pairs (q,σ) such that $q \in Q$ and $\sigma \in \Sigma$. $\delta(q,\sigma)$ denotes the state of the computation when you start in state q and the next character is σ .

Note that δ is a total function: it is defined *for every possible input pair*. This assumes a trap state, and assures that the function table for δ doesn't have any empty cells.

 $M=(Q,\Sigma,q_0,\delta,A)$ where $q_0\in Q$ is the start state, $A\subseteq Q$ are the accepting states, $\delta: Q \times \Sigma \to Q$

 $M=(\{q_0,q_1,q_2\},\{a,b\},q_0,\delta,\{q_1\})$, where δ is as follows:

a	
-	

10	q_1	q_2
1	q_1	q_1
12	q_2	q_2

 $M=(Q,\Sigma,q_0,\delta,A)$ where $q_0\in Q$ is the start state, $A\subseteq Q$ are the accepting states,

 $\delta: Q \times \Sigma \to Q$

 $M=(\{q_0,q_1,q_2\},\{a,b\},q_0,\delta,\{q_1\}),$ where δ is as follows:

a	
- C-	_

10	q_1	q_2
1	q_1	q_1
Y-0	a.	a.

 $M=(Q,\Sigma,q_0,\delta,A)$ where $q_0\in Q$ is the start state, $A\subseteq Q$ are the accepting states, $\delta:Q\times\Sigma\to Q$

 $M = (\{q_0, q_1, q_2\}, \{a, b\}, q_0, \delta, \{q_1\})$, where δ is as follows:

	a	b
0!	q_1	q_2
1	q_1	q_1
10	ao	ao

 $M=(Q,\Sigma,q_0,\delta,A)$ where $q_0\in Q$ is the start state, $A\subseteq Q$ are the accepting states, $\delta:Q\times\Sigma\to Q$

 $M = (\{q_0, q_1, q_2\}, \{a, b\}, q_0, \delta, \{q_1\})$, where δ is as follows:

	a	b
q_0	q_1	q_2
q_1	q_1	q_1
an	an	an

 $M=(Q,\Sigma,q_0,\delta,A)$ where $q_0\in Q$ is the start state, $A\subseteq Q$ are the accepting states, $\delta:Q\times\Sigma\to Q$

 $M=(\{q_0,q_1,q_2\},\{a,b\},q_0,\delta,\{q_1\})$, where δ is as follows:

	a	b
q_0	q_1	q_2
q_1	q_1	q_1
an	an	an

 $M=(Q,\Sigma,q_0,\delta,A)$ where $q_0\in Q$ is the start state, $A\subseteq Q$ are the accepting states, $\delta:Q\times\Sigma\to Q$

 $M=(\{q_0,q_1,q_2\},\{a,b\},q_0,\delta,\{q_1\}),$ where δ is as follows:

	a	b
70	q_1	q_2
71	q_1	q_1
70	an	an

 $M=(Q,\Sigma,q_0,\delta,A)$ where $q_0\in Q$ is the start state, $A\subseteq Q$ are the accepting states, $\delta:Q\times\Sigma\to Q$

 $M = (\{q_0, q_1, q_2\}, \{a, b\}, q_0, \delta, \{q_1\})$, where δ is as follows:

	a	b
q_0	q_1	q_2
q_1	q_1	q_1
a ₂	a ₂	a ₂

closure of δ

For a given DFA, $M=(Q,\Sigma,q_0,\delta,A)$, δ^* is a function that takes a state and a string as inpu, and produces a resulting state. That is, $\delta^*:Q\times\Sigma^*\to Q$, and

- $\qquad \qquad \textbf{For any } q \in Q \text{, } \delta^*(q,\Lambda) = q \text{,}$
- ▶ For any $q \in Q$, any $\sigma \in \Sigma$, and any $x \in \Sigma^*$, $\delta^*(q, x\sigma) = \delta(\delta^*(q, x), \sigma)$

Lemma 9.2

If $L=\mathcal{L}(G)$ for some deterministic regular grammar G, then there exists a DFA M such that $L=\mathcal{L}(M).$

Lemma 9.2

If $L=\mathcal{L}(G)$ for some deterministic regular grammar G, then there exists a DFA M such that $L=\mathcal{L}(M).$

Let $G=(V,\Sigma,S,P).$ We define DFA $M=(Q,\Sigma,q_0,\delta,A)$ as follows.

Lemma 9.2

If $L=\mathcal{L}(G)$ for some deterministic regular grammar G, then there exists a DFA M such that $L=\mathcal{L}(M).$

Let $G=(V,\Sigma,S,P).$ We define DFA $M=(Q,\Sigma,q_0,\delta,A)$ as follows.

$$Q = V$$
,

$$q_0 = S$$
,

$$A = \{ p \mid p \to \Lambda \in P \},\$$

Lemma 9.2

If $L=\mathcal{L}(G)$ for some deterministic regular grammar G, then there exists a DFA M such that $L=\mathcal{L}(M).$

Let $G=(V,\Sigma,S,P).$ We define DFA $M=(Q,\Sigma,q_0,\delta,A)$ as follows. Q=V, $q_0=S,$ $A=\{p\mid p\to \Lambda\in P\},$ and, for every $p\in Q,\sigma\in \Sigma,$ $\delta(p,\sigma)=q$ if $p\to \sigma q\in P.$

Lemma 9.2

If $L=\mathcal{L}(G)$ for some deterministic regular grammar G, then there exists a DFA M such that $L=\mathcal{L}(M).$

Let $G=(V,\Sigma,S,P).$ We define DFA $M=(Q,\Sigma,q_0,\delta,A)$ as follows. Q=V, $q_0=S,$ $A=\{p\mid p\to \Lambda\in P\},$ and, for every $p\in Q, \sigma\in \Sigma,\ \delta(p,\sigma)=q$ if $p\to \sigma q\in P.$ If δ is not a complete function, we can add a trap state to Q.

Lemma 9.2

If $L=\mathcal{L}(G)$ for some deterministic regular grammar G, then there exists a DFA M such that $L=\mathcal{L}(M).$

Let $G=(V,\Sigma,S,P).$ We define DFA $M=(Q,\Sigma,q_0,\delta,A)$ as follows.

$$Q = V$$

$$q_0 = S$$
,

$$A = \{p \mid p \to \Lambda \in P\}$$
, and,

for every $p \in Q, \sigma \in \Sigma$, $\delta(p, \sigma) = q$ if $p \to \sigma q \in P$.

If δ is not a complete function, we can add a trap state to Q.

Claim: For every $x \in \Sigma^*$ and $A \in V$, $S \stackrel{*}{\Rightarrow} xA$ iff $\delta^*(q_0, x) = A$.

Lemma 9.2

If $L=\mathcal{L}(G)$ for some deterministic regular grammar G, then there exists a DFA M such that $L=\mathcal{L}(M).$

Let $G=(V,\Sigma,S,P).$ We define DFA $M=(Q,\Sigma,q_0,\delta,A)$ as follows.

Q = V,

 $q_0 = S$,

 $A=\{p\mid p\to\Lambda\in P\}\text{, and,}$

 $\text{for every } p \in Q, \sigma \in \Sigma \text{, } \delta(p,\sigma) = q \text{ if } p \to \sigma q \in P.$

If δ is not a complete function, we can add a trap state to Q.

Claim: For every $x \in \Sigma^*$ and $A \in V$, $S \stackrel{*}{\Rightarrow} xA$ iff $\delta^*(q_0, x) = A$.

Proof is by induction on the length of x. When |x|=0, note that S can generate A iff A=S (because G is regular), and $\delta(q_0,\Lambda)=S$.

4日 → 4周 → 4 差 → 4 差 → 1 至 り 4 ○ ○

Lemma 9.2

If $L=\mathcal{L}(G)$ for some deterministic regular grammar G, then there exists a DFA M such that $L=\mathcal{L}(M).$

Let $G=(V,\Sigma,S,P).$ We define DFA $M=(Q,\Sigma,q_0,\delta,A)$ as follows.

Q = V,

 $q_0 = S$,

 $A = \{p \mid p \to \Lambda \in P\}$, and,

for every $p \in Q, \sigma \in \Sigma$, $\delta(p, \sigma) = q$ if $p \to \sigma q \in P$.

If δ is not a complete function, we can add a trap state to Q.

Claim: For every $x \in \Sigma^*$ and $A \in V$, $S \stackrel{*}{\Rightarrow} xA$ iff $\delta^*(q_0, x) = A$.

Proof is by induction on the length of x. When |x|=0, note that S can generate A iff A=S (because G is regular), and $\delta(q_0,\Lambda)=S$.

Suppose the claim holds for all x of length $k \geq 0$.

Lemma 9.2

If $L=\mathcal{L}(G)$ for some deterministic regular grammar G, then there exists a DFA M such that $L=\mathcal{L}(M).$

Let $G = (V, \Sigma, S, P)$. We define DFA $M = (Q, \Sigma, q_0, \delta, A)$ as follows.

$$Q = V$$
,

$$q_0 = S$$
,

$$A=\{p\mid p\to\Lambda\in P\}\text{, and,}$$

for every $p \in Q, \sigma \in \Sigma$, $\delta(p, \sigma) = q$ if $p \to \sigma q \in P$.

If δ is not a complete function, we can add a trap state to Q.

Claim: For every $x \in \Sigma^*$ and $A \in V$, $S \stackrel{*}{\Rightarrow} xA$ iff $\delta^*(q_0, x) = A$.

Proof is by induction on the length of x. When |x|=0, note that S can generate A iff A=S (because G is regular), and $\delta(q_0,\Lambda)=S$.

Suppose the claim holds for all x of length $k \geq 0$.

$$(S \stackrel{*}{\Rightarrow} xA) \to (\delta^*(q_0, x) = A)$$

Suppose that in the k+1st step of a derivation of string yb of length k+1, we use the rule $A\to bC$:

we have $S \stackrel{*}{\Rightarrow} yA \Rightarrow ybC$.

Lemma 9.2

If $L=\mathcal{L}(G)$ for some deterministic regular grammar G, then there exists a DFA M such that $L=\mathcal{L}(M).$

Let $G = (V, \Sigma, S, P)$. We define DFA $M = (Q, \Sigma, q_0, \delta, A)$ as follows.

$$Q = V$$
,

$$q_0 = S$$
,

$$A = \{p \mid p \to \Lambda \in P\}$$
, and,

for every $p \in Q, \sigma \in \Sigma$, $\delta(p, \sigma) = q$ if $p \to \sigma q \in P$.

If δ is not a complete function, we can add a trap state to Q.

Claim: For every $x \in \Sigma^*$ and $A \in V$, $S \stackrel{*}{\Rightarrow} xA$ iff $\delta^*(q_0, x) = A$.

Proof is by induction on the length of x. When |x|=0, note that S can generate A iff A=S (because G is regular), and $\delta(q_0,\Lambda)=S$.

Suppose the claim holds for all x of length $k \geq 0$.

$$(S \stackrel{*}{\Rightarrow} xA) \rightarrow (\delta^*(q_0, x) = A)$$

Suppose that in the k+1st step of a derivation of string yb of length k+1, we use the rule $A\to bC$:

we have $S \stackrel{*}{\Rightarrow} yA \Rightarrow ybC$.

By the inductive hypothesis, we have $\delta^*(q_0, y) = A$.

Lemma 9.2

If $L=\mathcal{L}(G)$ for some deterministic regular grammar G, then there exists a DFA M such that $L=\mathcal{L}(M).$

Let $G = (V, \Sigma, S, P)$. We define DFA $M = (Q, \Sigma, q_0, \delta, A)$ as follows.

$$Q = V$$
,

$$q_0 = S$$
,

$$A = \{p \mid p \to \Lambda \in P\}$$
, and,

for every
$$p \in Q, \sigma \in \Sigma$$
, $\delta(p, \sigma) = q$ if $p \to \sigma q \in P$.

If δ is not a complete function, we can add a trap state to Q.

Claim: For every $x \in \Sigma^*$ and $A \in V$, $S \stackrel{*}{\Rightarrow} xA$ iff $\delta^*(q_0, x) = A$.

Proof is by induction on the length of x. When |x|=0, note that S can generate A iff A=S (because G is regular), and $\delta(q_0,\Lambda)=S$.

Suppose the claim holds for all x of length $k \geq 0$.

$$(S \stackrel{*}{\Rightarrow} xA) \to (\delta^*(q_0, x) = A)$$

Suppose that in the k+1st step of a derivation of string yb of length k+1, we use the rule $A\to bC$:

we have $S \stackrel{*}{\Rightarrow} yA \Rightarrow ybC$.

By the inductive hypothesis, we have $\delta^*(q_0, y) = A$.

By the way we constructed M, we have $\delta(A,b)=C$

Therefore: $\delta^*(q_0, yb) = C$.

Lemma 9.2

If $L=\mathcal{L}(G)$ for some deterministic regular grammar G, then there exists a DFA M such that $L=\mathcal{L}(M).$

Let $G = (V, \Sigma, S, P)$. We define DFA $M = (Q, \Sigma, q_0, \delta, A)$ as follows.

$$Q = V$$
,

$$q_0 = S$$
,

$$A = \{p \mid p \to \Lambda \in P\}$$
, and,

 $\text{for every } p \in Q, \sigma \in \Sigma \text{, } \delta(p,\sigma) = q \text{ if } p \to \sigma q \in P.$

If δ is not a complete function, we can add a trap state to Q.

Claim: For every $x \in \Sigma^*$ and $A \in V$, $S \stackrel{*}{\Rightarrow} xA$ iff $\delta^*(q_0, x) = A$.

Proof is by induction on the length of x. When |x|=0, note that S can generate A iff A=S (because G is regular), and $\delta(q_0,\Lambda)=S$.

Suppose the claim holds for all x of length $k \geq 0$.

$$(\delta^*(q_0, x) = A) \to (S \stackrel{*}{\Rightarrow} xA)$$

Lemma 9.2

If $L=\mathcal{L}(G)$ for some deterministic regular grammar G, then there exists a DFA M such that $L=\mathcal{L}(M).$

Let $G = (V, \Sigma, S, P)$. We define DFA $M = (Q, \Sigma, q_0, \delta, A)$ as follows.

$$Q = V$$
,

$$q_0 = S$$
,

$$A=\{p\mid p\to\Lambda\in P\}\text{, and,}$$

for every
$$p \in Q, \sigma \in \Sigma$$
, $\delta(p, \sigma) = q$ if $p \to \sigma q \in P$.

If δ is not a complete function, we can add a trap state to Q.

Claim: For every $x \in \Sigma^*$ and $A \in V$, $S \stackrel{*}{\Rightarrow} xA$ iff $\delta^*(q_0, x) = A$.

Proof is by induction on the length of x. When |x|=0, note that S can generate A iff A=S (because G is regular), and $\delta(q_0,\Lambda)=S$.

Suppose the claim holds for all x of length $k \geq 0$.

$$(\delta^*(q_0, x) = A) \to (S \stackrel{*}{\Rightarrow} xA)$$

Suppose that on some input yb of length k+1, the k+1st transition in M was $\delta(A,b)=C.$

Lemma 9.2

If $L=\mathcal{L}(G)$ for some deterministic regular grammar G, then there exists a DFA M such that $L=\mathcal{L}(M).$

Let $G = (V, \Sigma, S, P)$. We define DFA $M = (Q, \Sigma, q_0, \delta, A)$ as follows.

$$Q = V$$
,

$$q_0 = S$$
,

$$A=\{p\mid p\to\Lambda\in P\}\text{, and,}$$

 $\text{for every } p \in Q, \sigma \in \Sigma \text{, } \delta(p,\sigma) = q \text{ if } p \to \sigma q \in P.$

If δ is not a complete function, we can add a trap state to Q.

Claim: For every $x \in \Sigma^*$ and $A \in V$, $S \stackrel{*}{\Rightarrow} xA$ iff $\delta^*(q_0, x) = A$.

Proof is by induction on the length of x. When |x|=0, note that S can generate A iff A=S (because G is regular), and $\delta(q_0,\Lambda)=S$.

Suppose the claim holds for all x of length $k \geq 0$.

$$(\delta^*(q_0, x) = A) \to (S \stackrel{*}{\Rightarrow} xA)$$

Suppose that on some input yb of length k+1, the k+1st transition in M was $\delta(A,b)=C.$

We have: $\delta^*(q_0, y) = A$.

Lemma 9.2

If $L=\mathcal{L}(G)$ for some deterministic regular grammar G, then there exists a DFA M such that $L=\mathcal{L}(M).$

Let $G = (V, \Sigma, S, P)$. We define DFA $M = (Q, \Sigma, q_0, \delta, A)$ as follows.

$$Q = V$$
,

$$q_0 = S$$
,

$$A=\{p\mid p\to\Lambda\in P\}\text{, and,}$$

for every
$$p \in Q, \sigma \in \Sigma$$
, $\delta(p, \sigma) = q$ if $p \to \sigma q \in P$.

If δ is not a complete function, we can add a trap state to Q.

Claim: For every $x \in \Sigma^*$ and $A \in V$, $S \stackrel{*}{\Rightarrow} xA$ iff $\delta^*(q_0, x) = A$.

Proof is by induction on the length of x. When |x|=0, note that S can generate A iff A=S (because G is regular), and $\delta(q_0,\Lambda)=S$.

Suppose the claim holds for all x of length $k \geq 0$.

$$(\delta^*(q_0, x) = A) \to (S \stackrel{*}{\Rightarrow} xA)$$

Suppose that on some input yb of length k+1, the k+1st transition in M was $\delta(A,b)=C.$

We have: $\delta^*(q_0, y) = A$.

By the inductive hypothesis, we have $S \stackrel{*}{\Rightarrow} yA$

Lemma 9.2

If $L=\mathcal{L}(G)$ for some deterministic regular grammar G, then there exists a DFA M such that $L=\mathcal{L}(M).$

Let $G = (V, \Sigma, S, P)$. We define DFA $M = (Q, \Sigma, q_0, \delta, A)$ as follows.

$$Q = V$$
,

$$q_0 = S$$
,

$$A = \{p \mid p \to \Lambda \in P\}$$
, and,

for every $p \in Q$, $\sigma \in \Sigma$, $\delta(p, \sigma) = q$ if $p \to \sigma q \in P$.

If δ is not a complete function, we can add a trap state to Q.

Claim: For every $x \in \Sigma^*$ and $A \in V$, $S \stackrel{*}{\Rightarrow} xA$ iff $\delta^*(q_0, x) = A$.

Proof is by induction on the length of x. When |x|=0, note that S can generate A iff A=S (because G is regular), and $\delta(q_0,\Lambda)=S$.

Suppose the claim holds for all x of length $k \geq 0$.

$$(\delta^*(q_0, x) = A) \to (S \stackrel{*}{\Rightarrow} xA)$$

Suppose that on some input yb of length k+1, the k+1st transition in M was $\delta(A,b)=C.$

We have: $\delta^*(q_0, y) = A$.

By the inductive hypothesis, we have $S \stackrel{*}{\Rightarrow} yA$

By the way we defined M, there must be a rule $A \to bC$.

Lemma 9.2

If $L=\mathcal{L}(G)$ for some deterministic regular grammar G, then there exists a DFA M such that $L=\mathcal{L}(M).$

Let $G = (V, \Sigma, S, P)$. We define DFA $M = (Q, \Sigma, q_0, \delta, A)$ as follows.

$$Q = V$$
,

$$q_0 = S$$
,

$$A = \{p \mid p \to \Lambda \in P\}$$
, and,

$$\text{for every } p \in Q, \sigma \in \Sigma \text{, } \delta(p,\sigma) = q \text{ if } p \to \sigma q \in P.$$

If δ is not a complete function, we can add a trap state to Q.

Claim: For every $x \in \Sigma^*$ and $A \in V$, $S \stackrel{*}{\Rightarrow} xA$ iff $\delta^*(q_0, x) = A$.

Proof is by induction on the length of x. When |x|=0, note that S can generate A iff A=S (because G is regular), and $\delta(q_0,\Lambda)=S$.

Suppose the claim holds for all x of length $k \geq 0$.

$$(\delta^*(q_0, x) = A) \to (S \stackrel{*}{\Rightarrow} xA)$$

Suppose that on some input yb of length k+1, the k+1st transition in M was $\delta(A,b)=C.$

We have:
$$\delta^*(q_0, y) = A$$
.

By the inductive hypothesis, we have $S \stackrel{*}{\Rightarrow} yA$

By the way we defined M, there must be a rule $A \to bC$.

Therefore, $S \stackrel{*}{\Rightarrow} ybC$.

Lemma 9.2

If $L=\mathcal{L}(G)$ for some deterministic regular grammar G, then there exists a DFA M such that $L=\mathcal{L}(M).$

Let $G = (V, \Sigma, S, P)$. We define DFA $M = (Q, \Sigma, q_0, \delta, A)$ as follows.

$$Q = V$$
,

$$q_0 = S$$
,

$$A=\{p\mid p\to\Lambda\in P\}\text{, and,}$$

for every $p \in Q$, $\sigma \in \Sigma$, $\delta(p, \sigma) = q$ if $p \to \sigma q \in P$.

If δ is not a complete function, we can add a trap state to Q.

Claim: For every $x \in \Sigma^*$ and $A \in V$, $S \stackrel{*}{\Rightarrow} xA$ iff $\delta^*(q_0, x) = A$.

Proof is by induction on the length of x. When |x|=0, note that S can generate A iff A=S (because G is regular), and $\delta(q_0,\Lambda)=S$.

Suppose the claim holds for all x of length $k \geq 0$.

$$(\delta^*(q_0, x) = A) \to (S \stackrel{*}{\Rightarrow} xA)$$

Suppose that on some input yb of length k+1, the k+1st transition in M was $\delta(A,b)=C.$

We have: $\delta^*(q_0, y) = A$.

By the inductive hypothesis, we have $S \stackrel{*}{\Rightarrow} yA$

By the way we defined M, there must be a rule $A \to bC$.

Therefore, $S \stackrel{*}{\Rightarrow} ybC$.

(Why does this suffice for the proof of the Lemma?)

Consider the grammar $G=(\{C,D,E,F\},\{a,b\},C,P)$, where $P=\{C\rightarrow aD;D\rightarrow aC;E\rightarrow aF;F\rightarrow aE;C\rightarrow bE;D\rightarrow bF;E\rightarrow bC;F\rightarrow bD;F\rightarrow\Lambda\}$

For example: consider $\delta^*(C, aab) = E$, and $C \Rightarrow aD \Rightarrow aaC \Rightarrow aabE$.

Lemma 9.3

If $L=\mathcal{L}(M)$ for some deterministic finite automata M, then there exists a deterministic regular grammar G such that $L=\mathcal{L}(G)$.

Lemma 9.3

If $L=\mathcal{L}(M)$ for some deterministic finite automata M, then there exists a deterministic regular grammar G such that $L=\mathcal{L}(G)$.

The same algorithm works in reverse!

Lemma 9.3

If $L=\mathcal{L}(M)$ for some deterministic finite automata M, then there exists a deterministic regular grammar G such that $L=\mathcal{L}(G)$.

The same algorithm works in reverse!

Theorem 9.1

L is a regular language if and only if there exists a deterministic finite automata M such that $L=\mathcal{L}(M).$