Context Free Grammars

In a regular grammar, production rules have the form: A — bC or A — A.
In a context free grammar, we relax that restriction.
Rules are of the form: A — a, where A€ V and a € (VUX)*

Context Free Grammars

In a regular grammar, production rules have the form: A — bC or A — A.
In a context free grammar, we relax that restriction.
Rules are of the form: A — a, where A€ V and a € (VUX)*

Example:

G = ({8}, {a,b},S,{S — aSb | A})

Context Free Grammars

In a regular grammar, production rules have the form: A — bC or A — A.
In a context free grammar, we relax that restriction.
Rules are of the form: A — a, where A€ V and a € (VUX)*

Example:
G = (F?{S}7 {a,b},S,{S — aSb | A})
L(G) = {a™b™ | n > 0}

Context Free Grammars

In a regular grammar, production rules have the form: A — bC or A — A.
In a context free grammar, we relax that restriction.
Rules are of the form: A — a, where A€ V and a € (VUX)*

Example:
G = (F?{S}7 {a,b},S,{S — aSb | A})
L(G) = {a™b" | n > 0}

Example:
G={SH{(,)}hH5{S—= (9 |S5|A}

Context Free Grammars

In a regular grammar, production rules have the form: A — bC or A — A.
In a context free grammar, we relax that restriction.
Rules are of the form: A — a, where A€ V and a € (VUX)*

Example:

G= (F?{S}7 {a,b},S,{S — aSb | A})
L(G) = {a™b" | n > 0}

Example:

G={SH{(,)ESAS = (S)[SS| A}
Try to derive the strings: (()()) (O)(()))

Derivation Trees

S

Derivation Trees

S
AN
(S)

Derivation Trees

Derivation Trees

Derivation Trees

Derivation Trees

Derivation Trees

Ambiguity

Consider the following CFG:
E—-E+FE|EXE|alblc

Ambiguity

Consider the following CFG:
E—-E+FE|EXE|alblc

=
N
[x E
|

Ambiguity

Consider the following CFG:
E—-E+FE|EXE|alblc

E E
[[
4 L C

Two derivations that are consistent with this structure:
F=FEXE=FE+4+FEXE=a+EXE=a+bxE=a+bxc

Ambiguity

Consider the following CFG:
E—-E+FE|EXE|alblc

E E
[[
a b C
Two derivations that are consistent with this structure:

F=FEXE=FE+4+FEXE=a+EXE=a+bxE=a+bxc
EFE==FExXE=>Exc=>FE+Exc=>FE+bxc=a+bxc

Ambiguity

Consider the following CFG:
E—-E+FE|EXE|alblc

E E

[[

a b C
Two derivations that are consistent with this structure:
F=FEXE=FE+4+FEXE=a+EXE=a+bxE=a+bxc
EFE==FExXE=>Exc=>FE+Exc=>FE+bxc=a+bxc

The first is called a “leftmost derivation”: we always replace the leftmost variable
from V first.

Ambiguity

Consider the following CFG:
E—-E+FE|EXE|alblc

E E
SN IN

[x E [4+ E
/ 1\ Vi
E + E EXE
oL ¢ o Log

Leftmost derivation consistent with the left derivation tree:
FE=FEXE=FE+4+FEXE=a+EXE=a+bxE=a+bxc

Leftmost derivation consistent with the right derivation tree:

Ambiguity

Consider the following CFG:
E—-E+FE|EXE|alblc

E E
AN N

Lo+ E
\ Vi
E E EXE
S oLl

Leftmost derivation consistent with the left derivation tree:
FE=FEXE=FE+4+FEXE=a+EXE=a+bxE=a+bxc
Leftmost derivation consistent with the right derivation tree:
EFE=F+FE=a+F=a+EXFE=a+bxXxE=a+bxc

Ambiguity

Consider the following CFG:
E—-E+FE|EXE|alblc

E E
AN N

Lo+ E
\ Vi
E E EXE
PO noo L

Leftmost derivation consistent with the left derivation tree:
FE=FEXE=FE+4+FEXE=a+EXE=a+bxE=a+bxc

Leftmost derivation consistent with the right derivation tree:
EFE=F+FE=a+FE=a+EXE=a+bxE=a+bxc

“The girl touches the boy with the flower”

Ambiguity

Consider the following CFG:
E—-E+FE|EXE|alblc

E E
AN N

Lo+ E
\ Vi
E E EXE
S oLl

Leftmost derivation consistent with the left derivation tree:
FE=FEXE=FE+4+FEXE=a+EXE=a+bxE=a+bxc

Leftmost derivation consistent with the right derivation tree:
EFE=F+FE=a+FE=a+EXE=a+bxE=a+bxc

“The girl touches the boy with the flower”

Ambiguous Grammars

A string is ambiguous with respect to some CFG if the grammar can generate the
string with at least 2 different derivation trees. An ambiguous grammar is a grammar
that generates at least 1 ambiguous string.

Disambiguating the Grammar

E—-E+T|EXT|T
T—alb|c

Disambiguating the Grammar

E—-E+T|EXT|T
T—alb|c

/I\
/I\ |
|

b

S —N—1

Chomsky Normal Form

We can restrict the grammar without changing the language class (by much):
A— BCorA—a.

Chomsky Normal Form

We can restrict the grammar without changing the language class (by much):
A— BCorA—a.

Note that no A — A is allowed!
Any language that does not contain A is called a A-free language.

Chomsky Normal Form

We can restrict the grammar without changing the language class (by much):
A— BCorA—a.

Note that no A — A is allowed!

Any language that does not contain A is called a A-free language.

Theorem

For any context free language L that is A-free, there exists a CFG in Chomsky Normal
Form such that L = £(G).

Limits on CFGs

L = {a™b™c™ | n > 0} is not context free.

Limits on CFGs
L = {a™b™c™ | n > 0} is not context free.

Claim 1

For any CFL L of infinite size, for any G in Chomsky normal form that generates L,
there is no bound on the height of the derivation trees required of G by strings in L.

Limits on CFGs
L = {a™b™c™ | n > 0} is not context free.

Claim 1

For any CFL L of infinite size, for any G in Chomsky normal form that generates L,
there is no bound on the height of the derivation trees required of G by strings in L.

Proof: The trees are binary trees, and a tree of height h can only generate strings of
length at most 2h—1.

Limits on CFGs
L = {a™b™c™ | n > 0} is not context free.

Claim 1

For any CFL L of infinite size, for any G in Chomsky normal form that generates L,
there is no bound on the height of the derivation trees required of G by strings in L.

Proof: The trees are binary trees, and a tree of height h can only generate strings of
length at most 2h—1.

Claim 2

For any CFL L of infinite size, for any G in Chomsky normal form that generates L, G
has some derivation tree with a path from the root to the leaf containing two
occurrences of the same nonterminal symbol.

S

Limits on CFGs
L = {a™b™c™ | n > 0} is not context free.

Claim 1

For any CFL L of infinite size, for any G in Chomsky normal form that generates L,
there is no bound on the height of the derivation trees required of G by strings in L.

Proof: The trees are binary trees, and a tree of height h can only generate strings of
length at most 2h—1.

Claim 2

For any CFL L of infinite size, for any G in Chomsky normal form that generates L, G
has some derivation tree with a path from the root to the leaf containing two
occurrences of the same nonterminal symbol.

v w x Y 2

Proof: By Claim 1, we know that there are some derivation trees of height greater
than n = |V/|. Since there are no terminal symbols at internal nodes of the tree, by
the pigeon-hole principal, there must be a repetition of one of the variables in V.

Limits on CFGs

L = {a™b™c™ | n > 0} is not context free.
S S

w xr

Limits on CFGs

L = {a™b™c™ | n > 0} is not context free.
S

S

w r oy

Let = be the string generated by the lower A.
Let wxy be the string generated by the upper A.

Limits on CFGs

L = {a™b™c™ | n > 0} is not context free.
S

S

=
=
w

w Ty
Let = be the string generated by the lower A.

Let wxy be the string generated by the upper A.
Note that either w or y is non-empty.

Limits on CFGs

L = {a™b™c™ | n > 0} is not context free.
) S

w r oy

Let = be the string generated by the lower A.
Let wxy be the string generated by the upper A.
Note that either w or y is non-empty.
Let u = vwzyz be the entire string generated by the root of the tree.
Since u € L, u = a™b™c"™ for some integer m > 0.

Limits on CFGs

L = {a™b™c™ | n > 0} is not context free.
) S

w r oy

Let = be the string generated by the lower A.
Let wxy be the string generated by the upper A.
Note that either w or y is non-empty.
Let u = vwzyz be the entire string generated by the root of the tree.
Since u € L, u = a™b™c"™ for some integer m > 0.

Use the subtree rooted at the upper A to replace the subtree rooted at the lower A.
Let v/ = vwwxyyz be the resulting string.
uw' € L, sou = a™b"c" for some n > m.

Limits on CFGs

L = {a™b™c™ | n > 0} is not context free.
S S

w r oy

Let = be the string generated by the lower A.
Let wxy be the string generated by the upper A.
Note that either w or y is non-empty.
Let u = vwzyz be the entire string generated by the root of the tree.
Since u € L, u = a™b™c"™ for some integer m > 0.

Use the subtree rooted at the upper A to replace the subtree rooted at the lower A.
Let v/ = vwwxyyz be the resulting string.
uw' € L, sou = a™b"c" for some n > m.

A string is homogenous if it contains only one symbol.
w is homogenous: suppose it contains ab. Then ww has a b before an a, and v’ ¢ L.

Limits on CFGs

L = {a™b™c™ | n > 0} is not context free.
S

S

w r Yy
Let = be the string generated by the lower A.
Let wxy be the string generated by the upper A.

Note that either w or y is non-empty.
Let u = vwzyz be the entire string generated by the root of the tree.
Since u € L, u = a™b™c"™ for some integer m > 0.

Use the subtree rooted at the upper A to replace the subtree rooted at the lower A.
Let v/ = vwwxyyz be the resulting string.
uw' € L, sou = a™b"c" for some n > m.

A string is homogenous if it contains only one symbol.
w is homogenous: suppose it contains ab. Then ww has a b before an a, and v’ ¢ L.
y is homogenous: suppose it contains ab. Then yy has a b before an a, and v’ ¢ L.

Limits on CFGs

L = {a™b™c™ | n > 0} is not context free.
S S

w r oy

Let = be the string generated by the lower A.
Let wxy be the string generated by the upper A.
Note that either w or y is non-empty.
Let u = vwzyz be the entire string generated by the root of the tree.
Since u € L, u = a™b™c"™ for some integer m > 0.

Use the subtree rooted at the upper A to replace the subtree rooted at the lower A.
Let v/ = vwwxyyz be the resulting string.
uw' € L, sou = a™b"c" for some n > m.

A string is homogenous if it contains only one symbol.

w is homogenous: suppose it contains ab. Then ww has a b before an a, and v’ ¢ L.
y is homogenous: suppose it contains ab. Then yy has a b before an a, and v’ ¢ L.
u’ is bigger than u, but the only added characters come from w and y which are
homogenous, so there exists some terminal character that appears only m times in u’.

