In a regular grammar, production rules have the form: $A \to bC$ or $A \to \Lambda$. In a context free grammar, we relax that restriction. Rules are of the form: $A \to \alpha$, where $A \in V$ and $\alpha \in (V \cup \Sigma)^*$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

In a regular grammar, production rules have the form: $A \to bC$ or $A \to \Lambda$. In a context free grammar, we relax that restriction. Rules are of the form: $A \to \alpha$, where $A \in V$ and $\alpha \in (V \cup \Sigma)^*$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

Example: $G = (\{S\}, \{a, b\}, S, \{S \rightarrow aSb \mid \Lambda\})$

In a regular grammar, production rules have the form: $A \to bC$ or $A \to \Lambda$. In a context free grammar, we relax that restriction. Rules are of the form: $A \to \alpha$, where $A \in V$ and $\alpha \in (V \cup \Sigma)^*$

 $\begin{array}{l} \mbox{Example:} \\ G = (\{S\}, \{a,b\}, S, \{S \rightarrow aSb \mid \Lambda\}) \\ L(G) = \{a^n b^n \mid n \geq 0\} \end{array}$

In a regular grammar, production rules have the form: $A \to bC$ or $A \to \Lambda$. In a context free grammar, we relax that restriction. Rules are of the form: $A \to \alpha$, where $A \in V$ and $\alpha \in (V \cup \Sigma)^*$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Example:
$$\begin{split} &G = (\{S\}, \{a, b\}, S, \{S \rightarrow aSb \mid \Lambda\}) \\ &L(G) = \{a^n b^n \mid n \geq 0\} \end{split}$$

Example:

 $G = (\{S\}, \{`(\texttt{'},\texttt{'})'\}, S, \{S \rightarrow (S) \mid SS \mid \Lambda\})$

In a regular grammar, production rules have the form: $A \to bC$ or $A \to \Lambda$. In a context free grammar, we relax that restriction. Rules are of the form: $A \to \alpha$, where $A \in V$ and $\alpha \in (V \cup \Sigma)^*$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

 $\begin{array}{l} \mbox{Example:} \\ G = (\{S\}, \{a, b\}, S, \{S \rightarrow aSb \mid \Lambda\}) \\ L(G) = \{a^n b^n \mid n \geq 0\} \end{array}$

Example:

 $G = (\{S\}, \{`(', ')'\}, S, \{S \to (S) \mid SS \mid \Lambda\})$ Try to derive the strings: (()()) (()(()))

5

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

S / | \ (S) / | \ (S)

▲ロト ▲母 ト ▲目 ト ▲目 ト ● ○ ○ ○ ○ ○

(S) (S)

▲ロト ▲母 ト ▲目 ト ▲目 ト ● ○ ○ ○ ○ ○

Consider the following CFG: $E \rightarrow E + E \mid E \times E \mid a \mid b \mid c$

Consider the following CFG: $E \rightarrow E + E \mid E \times E \mid a \mid b \mid c$

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

Two derivations that are consistent with this structure: $E \Rightarrow E \times E \Rightarrow E + E \times E \Rightarrow a + E \times E \Rightarrow a + b \times E \Rightarrow a + b \times c$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Two derivations that are consistent with this structure: $E \Rightarrow E \times E \Rightarrow E + E \times E \Rightarrow a + E \times E \Rightarrow a + b \times E \Rightarrow a + b \times c$ $E \Rightarrow E \times E \Rightarrow E \times c \Rightarrow E + E \times c \Rightarrow E + b \times c \Rightarrow a + b \times c$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Two derivations that are consistent with this structure:

 $\begin{array}{l} E\Rightarrow E\times E\Rightarrow E+E\times E\Rightarrow a+E\times E\Rightarrow a+b\times E\Rightarrow a+b\times c\\ E\Rightarrow E\times E\Rightarrow E\times c\Rightarrow E+E\times c\Rightarrow E+b\times c\Rightarrow a+b\times c\\ \end{array}$ The first is called a "leftmost derivation": we always replace the leftmost variable

from V first.

Leftmost derivation consistent with the left derivation tree: $E \Rightarrow E \times E \Rightarrow E + E \times E \Rightarrow a + E \times E \Rightarrow a + b \times E \Rightarrow a + b \times c$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Leftmost derivation consistent with the right derivation tree:

Leftmost derivation consistent with the left derivation tree: $E \Rightarrow E \times E \Rightarrow E + E \times E \Rightarrow a + E \times E \Rightarrow a + b \times E \Rightarrow a + b \times c$

Leftmost derivation consistent with the right derivation tree: $E \Rightarrow E + E \Rightarrow a + E \Rightarrow a + E \times E \Rightarrow a + b \times E \Rightarrow a + b \times c$

Leftmost derivation consistent with the left derivation tree: $E \Rightarrow E \times E \Rightarrow E + E \times E \Rightarrow a + E \times E \Rightarrow a + b \times E \Rightarrow a + b \times c$

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Leftmost derivation consistent with the right derivation tree: $E \Rightarrow E + E \Rightarrow a + E \Rightarrow a + E \times E \Rightarrow a + b \times E \Rightarrow a + b \times c$

"The girl touches the boy with the flower"

Leftmost derivation consistent with the left derivation tree: $E \Rightarrow E \times E \Rightarrow E + E \times E \Rightarrow a + E \times E \Rightarrow a + b \times E \Rightarrow a + b \times c$

Leftmost derivation consistent with the right derivation tree: $E \Rightarrow E + E \Rightarrow a + E \Rightarrow a + E \times E \Rightarrow a + b \times E \Rightarrow a + b \times c$

"The girl touches the boy with the flower"

Ambiguous Grammars

A string is *ambiguous* with respect to some CFG if the grammar can generate the string with at least 2 different derivation trees. An ambiguous grammar is a grammar that generates at least 1 ambiguous string.

Disambiguating the Grammar

 $\begin{array}{l} E \rightarrow E + T \mid E \times T \mid T \\ T \rightarrow a \mid b \mid c \end{array}$

Disambiguating the Grammar

 $\begin{array}{l} E \rightarrow E + T \mid E \times T \mid T \\ T \rightarrow a \mid b \mid c \end{array}$

・ロト ・四ト ・ヨト ・ヨト

æ

Chomsky Normal Form

We can restrict the grammar without changing the language class (by much): $A \to BC$ or $A \to a.$

Chomsky Normal Form

We can restrict the grammar without changing the language class (by much): $A \to BC$ or $A \to a.$

Note that no $A \to \Lambda$ is allowed!

Any language that does not contain Λ is called a $\Lambda\text{-}\mathsf{free}$ language.

Chomsky Normal Form

We can restrict the grammar without changing the language class (by much): $A \rightarrow BC$ or $A \rightarrow a$. Note that no $A \rightarrow \Lambda$ is allowed! Any language that does not contain Λ is called a Λ -free language.

Theorem

For any context free language L that is $\Lambda\text{-free}$, there exists a CFG in Chomsky Normal Form such that $L=\mathcal{L}(G).$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

 $L = \{a^n b^n c^n \mid n > 0\}$ is not context free.

 $L = \{a^n b^n c^n \mid n > 0\}$ is not context free.

Claim 1

For any CFL L of infinite size, for any G in Chomsky normal form that generates L, there is no bound on the height of the derivation trees required of G by strings in L.

 $L = \{a^n b^n c^n \mid n > 0\}$ is not context free.

Claim 1

For any CFL L of infinite size, for any G in Chomsky normal form that generates L, there is no bound on the height of the derivation trees required of G by strings in L.

Proof: The trees are binary trees, and a tree of height h can only generate strings of length at most 2^{h-1} .

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

 $L = \{a^n b^n c^n \mid n > 0\}$ is not context free.

Claim 1

For any CFL L of infinite size, for any G in Chomsky normal form that generates L, there is no bound on the height of the derivation trees required of G by strings in L.

Proof: The trees are binary trees, and a tree of height h can only generate strings of length at most 2^{h-1} .

Claim 2

For any CFL L of infinite size, for any G in Chomsky normal form that generates L, G has some derivation tree with a path from the root to the leaf containing two occurrences of the same nonterminal symbol.

 $L = \{a^n b^n c^n \mid n > 0\}$ is not context free.

Claim 1

For any CFL L of infinite size, for any G in Chomsky normal form that generates L, there is no bound on the height of the derivation trees required of G by strings in L.

Proof: The trees are binary trees, and a tree of height h can only generate strings of length at most 2^{h-1} .

Claim 2

For any CFL L of infinite size, for any G in Chomsky normal form that generates L, G has some derivation tree with a path from the root to the leaf containing two occurrences of the same nonterminal symbol.

Proof: By Claim 1, we know that there are some derivation trees of height greater than n = |V|. Since there are no terminal symbols at internal nodes of the tree, by the pigeon-hole principal, there must be a repetition of one of the variables in V.

Let x be the string generated by the lower A. Let wxy be the string generated by the upper A.

Let x be the string generated by the lower A. Let wxy be the string generated by the upper A. Note that either w or y is non-empty.

Let x be the string generated by the lower A. Let wxy be the string generated by the upper A.

Note that either w or y is non-empty. Let u = vwxyz be the entire string generated by the root of the tree. Since $u \in L$, $u = a^m b^m c^m$ for some integer m > 0.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Let x be the string generated by the lower A. Let wxy be the string generated by the upper A.

Note that either w or y is non-empty. Let u = vwxyz be the entire string generated by the root of the tree. Since $u \in L$, $u = a^m b^m c^m$ for some integer m > 0.

Use the subtree rooted at the upper A to replace the subtree rooted at the lower A. Let u' = vwwxyyz be the resulting string. $u' \in L$, so $u' = a^n b^n c^n$ for some n > m.

Let x be the string generated by the lower A. Let wxy be the string generated by the upper A.

Note that either w or y is non-empty. Let u = vwxyz be the entire string generated by the root of the tree.

Since $u \in L$, $u = a^m b^m c^m$ for some integer m > 0.

Use the subtree rooted at the upper A to replace the subtree rooted at the lower A. Let u' = vwwxyyz be the resulting string. $u' \in L$, so $u' = a^n b^n c^n$ for some n > m.

A string is homogenous if it contains only one symbol.

w is homogenous: suppose it contains ab. Then ww has a b before an a, and $u' \notin L$.

Let x be the string generated by the lower A. Let wxy be the string generated by the upper A.

Note that either w or y is non-empty. Let u = vwxyz be the entire string generated by the root of the tree.

Since $u \in L$, $u = a^m b^m c^m$ for some integer m > 0.

Use the subtree rooted at the upper A to replace the subtree rooted at the lower A. Let u' = vwwxyyz be the resulting string. $u' \in L$, so $u' = a^n b^n c^n$ for some n > m.

A string is homogenous if it contains only one symbol.

w is homogenous: suppose it contains *ab*. Then *ww* has a *b* before an *a*, and $u' \notin L$. *y* is homogenous: suppose it contains *ab*. Then *yy* has a *b* before an *a*, and $u' \notin L$.

Let x be the string generated by the lower A. Let wxy be the string generated by the upper A.

Note that either w or y is non-empty. Let u = vwxyz be the entire string generated by the root of the tree. Since $u \in L$, $u = a^m b^m c^m$ for some integer m > 0.

Use the subtree rooted at the upper A to replace the subtree rooted at the lower A. Let u' = vwwxyyz be the resulting string. $u' \in L$, so $u' = a^n b^n c^n$ for some n > m.

A string is homogenous if it contains only one symbol.

w is homogenous: suppose it contains ab. Then ww has a b before an a, and $u' \notin L$. y is homogenous: suppose it contains ab. Then yy has a b before an a, and $u' \notin L$. u' is bigger than u, but the only added characters come from w and y which are homogenous, so there exists some terminal character that appears only m times in u'.