
Context Free Grammars

In a regular grammar, production rules have the form: A→ bC or A→ Λ.
In a context free grammar, we relax that restriction.
Rules are of the form: A→ α, where A ∈ V and α ∈ (V ∪ Σ)∗

Example:
G = ({S}, {a, b}, S, {S → aSb | Λ})
L(G) = {anbn | n ≥ 0}

Example:
G = ({S}, {‘(’, ‘)’}, S, {S → (S) | SS | Λ})
Try to derive the strings: (()()) (()(()))



Context Free Grammars

In a regular grammar, production rules have the form: A→ bC or A→ Λ.
In a context free grammar, we relax that restriction.
Rules are of the form: A→ α, where A ∈ V and α ∈ (V ∪ Σ)∗

Example:
G = ({S}, {a, b}, S, {S → aSb | Λ})

L(G) = {anbn | n ≥ 0}

Example:
G = ({S}, {‘(’, ‘)’}, S, {S → (S) | SS | Λ})
Try to derive the strings: (()()) (()(()))



Context Free Grammars

In a regular grammar, production rules have the form: A→ bC or A→ Λ.
In a context free grammar, we relax that restriction.
Rules are of the form: A→ α, where A ∈ V and α ∈ (V ∪ Σ)∗

Example:
G = ({S}, {a, b}, S, {S → aSb | Λ})
L(G) = {anbn | n ≥ 0}

Example:
G = ({S}, {‘(’, ‘)’}, S, {S → (S) | SS | Λ})
Try to derive the strings: (()()) (()(()))



Context Free Grammars

In a regular grammar, production rules have the form: A→ bC or A→ Λ.
In a context free grammar, we relax that restriction.
Rules are of the form: A→ α, where A ∈ V and α ∈ (V ∪ Σ)∗

Example:
G = ({S}, {a, b}, S, {S → aSb | Λ})
L(G) = {anbn | n ≥ 0}

Example:
G = ({S}, {‘(’, ‘)’}, S, {S → (S) | SS | Λ})

Try to derive the strings: (()()) (()(()))



Context Free Grammars

In a regular grammar, production rules have the form: A→ bC or A→ Λ.
In a context free grammar, we relax that restriction.
Rules are of the form: A→ α, where A ∈ V and α ∈ (V ∪ Σ)∗

Example:
G = ({S}, {a, b}, S, {S → aSb | Λ})
L(G) = {anbn | n ≥ 0}

Example:
G = ({S}, {‘(’, ‘)’}, S, {S → (S) | SS | Λ})
Try to derive the strings: (()()) (()(()))



Derivation Trees



Derivation Trees



Derivation Trees



Derivation Trees



Derivation Trees



Derivation Trees



Derivation Trees



Ambiguity

Consider the following CFG:
E → E + E | E × E | a | b | c

Two derivations that are consistent with this structure:
E ⇒ E × E ⇒ E + E × E ⇒ a+ E × E ⇒ a+ b× E ⇒ a+ b× c
E ⇒ E × E ⇒ E × c⇒ E + E × c⇒ E + b× c⇒ a+ b× c
The first is called a “leftmost derivation”: we always replace the leftmost variable
from V first.



Ambiguity

Consider the following CFG:
E → E + E | E × E | a | b | c

Two derivations that are consistent with this structure:
E ⇒ E × E ⇒ E + E × E ⇒ a+ E × E ⇒ a+ b× E ⇒ a+ b× c
E ⇒ E × E ⇒ E × c⇒ E + E × c⇒ E + b× c⇒ a+ b× c
The first is called a “leftmost derivation”: we always replace the leftmost variable
from V first.



Ambiguity

Consider the following CFG:
E → E + E | E × E | a | b | c

Two derivations that are consistent with this structure:
E ⇒ E × E ⇒ E + E × E ⇒ a+ E × E ⇒ a+ b× E ⇒ a+ b× c

E ⇒ E × E ⇒ E × c⇒ E + E × c⇒ E + b× c⇒ a+ b× c
The first is called a “leftmost derivation”: we always replace the leftmost variable
from V first.



Ambiguity

Consider the following CFG:
E → E + E | E × E | a | b | c

Two derivations that are consistent with this structure:
E ⇒ E × E ⇒ E + E × E ⇒ a+ E × E ⇒ a+ b× E ⇒ a+ b× c
E ⇒ E × E ⇒ E × c⇒ E + E × c⇒ E + b× c⇒ a+ b× c

The first is called a “leftmost derivation”: we always replace the leftmost variable
from V first.



Ambiguity

Consider the following CFG:
E → E + E | E × E | a | b | c

Two derivations that are consistent with this structure:
E ⇒ E × E ⇒ E + E × E ⇒ a+ E × E ⇒ a+ b× E ⇒ a+ b× c
E ⇒ E × E ⇒ E × c⇒ E + E × c⇒ E + b× c⇒ a+ b× c
The first is called a “leftmost derivation”: we always replace the leftmost variable
from V first.



Ambiguity

Consider the following CFG:
E → E + E | E × E | a | b | c

Leftmost derivation consistent with the left derivation tree:
E ⇒ E × E ⇒ E + E × E ⇒ a+ E × E ⇒ a+ b× E ⇒ a+ b× c
Leftmost derivation consistent with the right derivation tree:

E ⇒ E + E ⇒ a+ E ⇒ a+ E × E ⇒ a+ b× E ⇒ a+ b× c

“The girl touches the boy with the flower”

Ambiguous Grammars

A string is ambiguous with respect to some CFG if the grammar can generate the
string with at least 2 different derivation trees. An ambiguous grammar is a grammar
that generates at least 1 ambiguous string.



Ambiguity

Consider the following CFG:
E → E + E | E × E | a | b | c

Leftmost derivation consistent with the left derivation tree:
E ⇒ E × E ⇒ E + E × E ⇒ a+ E × E ⇒ a+ b× E ⇒ a+ b× c
Leftmost derivation consistent with the right derivation tree:
E ⇒ E + E ⇒ a+ E ⇒ a+ E × E ⇒ a+ b× E ⇒ a+ b× c

“The girl touches the boy with the flower”

Ambiguous Grammars

A string is ambiguous with respect to some CFG if the grammar can generate the
string with at least 2 different derivation trees. An ambiguous grammar is a grammar
that generates at least 1 ambiguous string.



Ambiguity

Consider the following CFG:
E → E + E | E × E | a | b | c

Leftmost derivation consistent with the left derivation tree:
E ⇒ E × E ⇒ E + E × E ⇒ a+ E × E ⇒ a+ b× E ⇒ a+ b× c
Leftmost derivation consistent with the right derivation tree:
E ⇒ E + E ⇒ a+ E ⇒ a+ E × E ⇒ a+ b× E ⇒ a+ b× c

“The girl touches the boy with the flower”

Ambiguous Grammars

A string is ambiguous with respect to some CFG if the grammar can generate the
string with at least 2 different derivation trees. An ambiguous grammar is a grammar
that generates at least 1 ambiguous string.



Ambiguity

Consider the following CFG:
E → E + E | E × E | a | b | c

Leftmost derivation consistent with the left derivation tree:
E ⇒ E × E ⇒ E + E × E ⇒ a+ E × E ⇒ a+ b× E ⇒ a+ b× c
Leftmost derivation consistent with the right derivation tree:
E ⇒ E + E ⇒ a+ E ⇒ a+ E × E ⇒ a+ b× E ⇒ a+ b× c

“The girl touches the boy with the flower”

Ambiguous Grammars

A string is ambiguous with respect to some CFG if the grammar can generate the
string with at least 2 different derivation trees. An ambiguous grammar is a grammar
that generates at least 1 ambiguous string.



Disambiguating the Grammar

E → E + T | E × T | T
T → a | b | c



Disambiguating the Grammar

E → E + T | E × T | T
T → a | b | c



Chomsky Normal Form

We can restrict the grammar without changing the language class (by much):
A→ BC or A→ a.

Note that no A→ Λ is allowed!
Any language that does not contain Λ is called a Λ-free language.

Theorem

For any context free language L that is Λ-free, there exists a CFG in Chomsky Normal
Form such that L = L(G).



Chomsky Normal Form

We can restrict the grammar without changing the language class (by much):
A→ BC or A→ a.
Note that no A→ Λ is allowed!
Any language that does not contain Λ is called a Λ-free language.

Theorem

For any context free language L that is Λ-free, there exists a CFG in Chomsky Normal
Form such that L = L(G).



Chomsky Normal Form

We can restrict the grammar without changing the language class (by much):
A→ BC or A→ a.
Note that no A→ Λ is allowed!
Any language that does not contain Λ is called a Λ-free language.

Theorem

For any context free language L that is Λ-free, there exists a CFG in Chomsky Normal
Form such that L = L(G).



Limits on CFGs

L = {anbncn | n > 0} is not context free.

Claim 1

For any CFL L of infinite size, for any G in Chomsky normal form that generates L,
there is no bound on the height of the derivation trees required of G by strings in L.

Proof: The trees are binary trees, and a tree of height h can only generate strings of
length at most 2h−1.

Claim 2

For any CFL L of infinite size, for any G in Chomsky normal form that generates L, G
has some derivation tree with a path from the root to the leaf containing two
occurrences of the same nonterminal symbol.

Proof: By Claim 1, we know that there are some derivation trees of height greater
than n = |V |. Since there are no terminal symbols at internal nodes of the tree, by
the pigeon-hole principal, there must be a repetition of one of the variables in V .



Limits on CFGs

L = {anbncn | n > 0} is not context free.

Claim 1

For any CFL L of infinite size, for any G in Chomsky normal form that generates L,
there is no bound on the height of the derivation trees required of G by strings in L.

Proof: The trees are binary trees, and a tree of height h can only generate strings of
length at most 2h−1.

Claim 2

For any CFL L of infinite size, for any G in Chomsky normal form that generates L, G
has some derivation tree with a path from the root to the leaf containing two
occurrences of the same nonterminal symbol.

Proof: By Claim 1, we know that there are some derivation trees of height greater
than n = |V |. Since there are no terminal symbols at internal nodes of the tree, by
the pigeon-hole principal, there must be a repetition of one of the variables in V .



Limits on CFGs

L = {anbncn | n > 0} is not context free.

Claim 1

For any CFL L of infinite size, for any G in Chomsky normal form that generates L,
there is no bound on the height of the derivation trees required of G by strings in L.

Proof: The trees are binary trees, and a tree of height h can only generate strings of
length at most 2h−1.

Claim 2

For any CFL L of infinite size, for any G in Chomsky normal form that generates L, G
has some derivation tree with a path from the root to the leaf containing two
occurrences of the same nonterminal symbol.

Proof: By Claim 1, we know that there are some derivation trees of height greater
than n = |V |. Since there are no terminal symbols at internal nodes of the tree, by
the pigeon-hole principal, there must be a repetition of one of the variables in V .



Limits on CFGs

L = {anbncn | n > 0} is not context free.

Claim 1

For any CFL L of infinite size, for any G in Chomsky normal form that generates L,
there is no bound on the height of the derivation trees required of G by strings in L.

Proof: The trees are binary trees, and a tree of height h can only generate strings of
length at most 2h−1.

Claim 2

For any CFL L of infinite size, for any G in Chomsky normal form that generates L, G
has some derivation tree with a path from the root to the leaf containing two
occurrences of the same nonterminal symbol.

Proof: By Claim 1, we know that there are some derivation trees of height greater
than n = |V |. Since there are no terminal symbols at internal nodes of the tree, by
the pigeon-hole principal, there must be a repetition of one of the variables in V .



Limits on CFGs

L = {anbncn | n > 0} is not context free.

Claim 1

For any CFL L of infinite size, for any G in Chomsky normal form that generates L,
there is no bound on the height of the derivation trees required of G by strings in L.

Proof: The trees are binary trees, and a tree of height h can only generate strings of
length at most 2h−1.

Claim 2

For any CFL L of infinite size, for any G in Chomsky normal form that generates L, G
has some derivation tree with a path from the root to the leaf containing two
occurrences of the same nonterminal symbol.

Proof: By Claim 1, we know that there are some derivation trees of height greater
than n = |V |. Since there are no terminal symbols at internal nodes of the tree, by
the pigeon-hole principal, there must be a repetition of one of the variables in V .



Limits on CFGs

L = {anbncn | n > 0} is not context free.

Let x be the string generated by the lower A.
Let wxy be the string generated by the upper A.

Note that either w or y is non-empty.
Let u = vwxyz be the entire string generated by the root of the tree.
Since u ∈ L, u = ambmcm for some integer m > 0.

Use the subtree rooted at the upper A to replace the subtree rooted at the lower A.
Let u′ = vwwxyyz be the resulting string.
u′ ∈ L, so u′ = anbncn for some n > m.

A string is homogenous if it contains only one symbol.
w is homogenous: suppose it contains ab. Then ww has a b before an a, and u′ /∈ L.
y is homogenous: suppose it contains ab. Then yy has a b before an a, and u′ /∈ L.
u′ is bigger than u, but the only added characters come from w and y which are
homogenous, so there exists some terminal character that appears only m times in u′.



Limits on CFGs

L = {anbncn | n > 0} is not context free.

Let x be the string generated by the lower A.
Let wxy be the string generated by the upper A.

Note that either w or y is non-empty.
Let u = vwxyz be the entire string generated by the root of the tree.
Since u ∈ L, u = ambmcm for some integer m > 0.

Use the subtree rooted at the upper A to replace the subtree rooted at the lower A.
Let u′ = vwwxyyz be the resulting string.
u′ ∈ L, so u′ = anbncn for some n > m.

A string is homogenous if it contains only one symbol.
w is homogenous: suppose it contains ab. Then ww has a b before an a, and u′ /∈ L.
y is homogenous: suppose it contains ab. Then yy has a b before an a, and u′ /∈ L.
u′ is bigger than u, but the only added characters come from w and y which are
homogenous, so there exists some terminal character that appears only m times in u′.



Limits on CFGs

L = {anbncn | n > 0} is not context free.

Let x be the string generated by the lower A.
Let wxy be the string generated by the upper A.

Note that either w or y is non-empty.

Let u = vwxyz be the entire string generated by the root of the tree.
Since u ∈ L, u = ambmcm for some integer m > 0.

Use the subtree rooted at the upper A to replace the subtree rooted at the lower A.
Let u′ = vwwxyyz be the resulting string.
u′ ∈ L, so u′ = anbncn for some n > m.

A string is homogenous if it contains only one symbol.
w is homogenous: suppose it contains ab. Then ww has a b before an a, and u′ /∈ L.
y is homogenous: suppose it contains ab. Then yy has a b before an a, and u′ /∈ L.
u′ is bigger than u, but the only added characters come from w and y which are
homogenous, so there exists some terminal character that appears only m times in u′.



Limits on CFGs

L = {anbncn | n > 0} is not context free.

Let x be the string generated by the lower A.
Let wxy be the string generated by the upper A.

Note that either w or y is non-empty.
Let u = vwxyz be the entire string generated by the root of the tree.
Since u ∈ L, u = ambmcm for some integer m > 0.

Use the subtree rooted at the upper A to replace the subtree rooted at the lower A.
Let u′ = vwwxyyz be the resulting string.
u′ ∈ L, so u′ = anbncn for some n > m.

A string is homogenous if it contains only one symbol.
w is homogenous: suppose it contains ab. Then ww has a b before an a, and u′ /∈ L.
y is homogenous: suppose it contains ab. Then yy has a b before an a, and u′ /∈ L.
u′ is bigger than u, but the only added characters come from w and y which are
homogenous, so there exists some terminal character that appears only m times in u′.



Limits on CFGs

L = {anbncn | n > 0} is not context free.

Let x be the string generated by the lower A.
Let wxy be the string generated by the upper A.

Note that either w or y is non-empty.
Let u = vwxyz be the entire string generated by the root of the tree.
Since u ∈ L, u = ambmcm for some integer m > 0.

Use the subtree rooted at the upper A to replace the subtree rooted at the lower A.
Let u′ = vwwxyyz be the resulting string.
u′ ∈ L, so u′ = anbncn for some n > m.

A string is homogenous if it contains only one symbol.
w is homogenous: suppose it contains ab. Then ww has a b before an a, and u′ /∈ L.
y is homogenous: suppose it contains ab. Then yy has a b before an a, and u′ /∈ L.
u′ is bigger than u, but the only added characters come from w and y which are
homogenous, so there exists some terminal character that appears only m times in u′.



Limits on CFGs

L = {anbncn | n > 0} is not context free.

Let x be the string generated by the lower A.
Let wxy be the string generated by the upper A.

Note that either w or y is non-empty.
Let u = vwxyz be the entire string generated by the root of the tree.
Since u ∈ L, u = ambmcm for some integer m > 0.

Use the subtree rooted at the upper A to replace the subtree rooted at the lower A.
Let u′ = vwwxyyz be the resulting string.
u′ ∈ L, so u′ = anbncn for some n > m.

A string is homogenous if it contains only one symbol.
w is homogenous: suppose it contains ab. Then ww has a b before an a, and u′ /∈ L.

y is homogenous: suppose it contains ab. Then yy has a b before an a, and u′ /∈ L.
u′ is bigger than u, but the only added characters come from w and y which are
homogenous, so there exists some terminal character that appears only m times in u′.



Limits on CFGs

L = {anbncn | n > 0} is not context free.

Let x be the string generated by the lower A.
Let wxy be the string generated by the upper A.

Note that either w or y is non-empty.
Let u = vwxyz be the entire string generated by the root of the tree.
Since u ∈ L, u = ambmcm for some integer m > 0.

Use the subtree rooted at the upper A to replace the subtree rooted at the lower A.
Let u′ = vwwxyyz be the resulting string.
u′ ∈ L, so u′ = anbncn for some n > m.

A string is homogenous if it contains only one symbol.
w is homogenous: suppose it contains ab. Then ww has a b before an a, and u′ /∈ L.
y is homogenous: suppose it contains ab. Then yy has a b before an a, and u′ /∈ L.

u′ is bigger than u, but the only added characters come from w and y which are
homogenous, so there exists some terminal character that appears only m times in u′.



Limits on CFGs

L = {anbncn | n > 0} is not context free.

Let x be the string generated by the lower A.
Let wxy be the string generated by the upper A.

Note that either w or y is non-empty.
Let u = vwxyz be the entire string generated by the root of the tree.
Since u ∈ L, u = ambmcm for some integer m > 0.

Use the subtree rooted at the upper A to replace the subtree rooted at the lower A.
Let u′ = vwwxyyz be the resulting string.
u′ ∈ L, so u′ = anbncn for some n > m.

A string is homogenous if it contains only one symbol.
w is homogenous: suppose it contains ab. Then ww has a b before an a, and u′ /∈ L.
y is homogenous: suppose it contains ab. Then yy has a b before an a, and u′ /∈ L.
u′ is bigger than u, but the only added characters come from w and y which are
homogenous, so there exists some terminal character that appears only m times in u′.


