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Context Free Grammars

In a regular grammar, production rules have the form: A — bC or A — A.
In a context free grammar, we relax that restriction.
Rules are of the form: A — a, where A€ V and a € (VUX)*

Example:

G= (F?{S}7 {a,b},S,{S — aSb | A})
L(G) = {a™b" | n > 0}

Example:

G={SH{(,)ESAS = (S)[SS| A}
Try to derive the strings: (()()) (O)(()))
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Leftmost derivation consistent with the left derivation tree:
FE=FEXE=FE+4+FEXE=a+EXE=a+bxE=a+bxc

Leftmost derivation consistent with the right derivation tree:
EFE=F+FE=a+FE=a+EXE=a+bxE=a+bxc

“The girl touches the boy with the flower”

Ambiguous Grammars

A string is ambiguous with respect to some CFG if the grammar can generate the
string with at least 2 different derivation trees. An ambiguous grammar is a grammar
that generates at least 1 ambiguous string.
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We can restrict the grammar without changing the language class (by much):
A— BCorA—a.

Note that no A — A is allowed!

Any language that does not contain A is called a A-free language.

Theorem

For any context free language L that is A-free, there exists a CFG in Chomsky Normal
Form such that L = £(G).
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Claim 1

For any CFL L of infinite size, for any G in Chomsky normal form that generates L,
there is no bound on the height of the derivation trees required of G by strings in L.

Proof: The trees are binary trees, and a tree of height h can only generate strings of
length at most 2h—1.

Claim 2

For any CFL L of infinite size, for any G in Chomsky normal form that generates L, G
has some derivation tree with a path from the root to the leaf containing two
occurrences of the same nonterminal symbol.
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Proof: By Claim 1, we know that there are some derivation trees of height greater
than n = |V/|. Since there are no terminal symbols at internal nodes of the tree, by
the pigeon-hole principal, there must be a repetition of one of the variables in V.
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Let = be the string generated by the lower A.
Let wxy be the string generated by the upper A.
Note that either w or y is non-empty.
Let u = vwzyz be the entire string generated by the root of the tree.
Since u € L, u = a™b™c"™ for some integer m > 0.

Use the subtree rooted at the upper A to replace the subtree rooted at the lower A.
Let v/ = vwwxyyz be the resulting string.
uw' € L, sou = a™b"c" for some n > m.

A string is homogenous if it contains only one symbol.

w is homogenous: suppose it contains ab. Then ww has a b before an a, and v’ ¢ L.
y is homogenous: suppose it contains ab. Then yy has a b before an a, and v’ ¢ L.
u’ is bigger than u, but the only added characters come from w and y which are
homogenous, so there exists some terminal character that appears only m times in u’.



