Sets and Sequences

A set: is an unordered collection of distinct elements.
Examples: $\{10,11,12,13\}$, which is the same set as $\{10,12,11,13\}$

Sets and Sequences

A set: is an unordered collection of distinct elements.
Examples: $\{10,11,12,13\}$, which is the same set as $\{10,12,11,13\}$ \{Watermelon, honeydew, cantaloupe\}

Sets and Sequences

A set: is an unordered collection of distinct elements.
Examples: $\{10,11,12,13\}$, which is the same set as $\{10,12,11,13\}$ \{Watermelon, honeydew, cantaloupe\}
\{ all even integers \}

Sets and Sequences

A set: is an unordered collection of distinct elements.
Examples: $\{10,11,12,13\}$, which is the same set as $\{10,12,11,13\}$
\{Watermelon, honeydew, cantaloupe\}
\{ all even integers $\}$ (Note, this set has infinite size!)

Sets and Sequences

A set: is an unordered collection of distinct elements.
Examples: $\{10,11,12,13\}$, which is the same set as $\{10,12,11,13\}$
\{Watermelon, honeydew, cantaloupe\}
\{ all even integers $\}$ (Note, this set has infinite size!)
$\{x \mid x$ is an integer and $10 \leq x \leq 13\}$

Sets and Sequences

A set: is an unordered collection of distinct elements.
Examples: $\{10,11,12,13\}$, which is the same set as $\{10,12,11,13\}$
\{Watermelon, honeydew, cantaloupe\}
\{ all even integers $\}$ (Note, this set has infinite size!)
$\{x \mid x$ is an integer and $10 \leq x \leq 13\}$
$\emptyset:$ special set called the empty set.

Sets and Sequences

A set: is an unordered collection of distinct elements.
Examples: $\{10,11,12,13\}$, which is the same set as $\{10,12,11,13\}$
\{Watermelon, honeydew, cantaloupe\}
\{ all even integers $\}$ (Note, this set has infinite size!)
$\{x \mid x$ is an integer and $10 \leq x \leq 13\}$
\emptyset : special set called the empty set.
A sequence: is an ordered collection of items, possibly containing duplicates

Sets and Sequences

A set: is an unordered collection of distinct elements.
Examples: $\{10,11,12,13\}$, which is the same set as $\{10,12,11,13\}$
\{Watermelon, honeydew, cantaloupe\}
\{ all even integers $\}$ (Note, this set has infinite size!)
$\{x \mid x$ is an integer and $10 \leq x \leq 13\}$
$\emptyset:$ special set called the empty set.
A sequence: is an ordered collection of items, possibly containing duplicates Examples: $(10,11,12,13)$, which is distinct from ($10,12,11,13$).

Sets and Sequences

A set: is an unordered collection of distinct elements.
Examples: $\{10,11,12,13\}$, which is the same set as $\{10,12,11,13\}$
\{Watermelon, honeydew, cantaloupe\}
\{ all even integers $\}$ (Note, this set has infinite size!)
$\{x \mid x$ is an integer and $10 \leq x \leq 13\}$
$\emptyset:$ special set called the empty set.
A sequence: is an ordered collection of items, possibly containing duplicates Examples: $(10,11,12,13)$, which is distinct from ($10,12,11,13$). (1, 2, 2, 2, 3)

Sets and Sequences

A set: is an unordered collection of distinct elements.
Examples: $\{10,11,12,13\}$, which is the same set as $\{10,12,11,13\}$
\{Watermelon, honeydew, cantaloupe\}
\{ all even integers $\}$ (Note, this set has infinite size!)
$\{x \mid x$ is an integer and $10 \leq x \leq 13\}$
$\emptyset:$ special set called the empty set.
A sequence: is an ordered collection of items, possibly containing duplicates Examples: $(10,11,12,13)$, which is distinct from ($10,12,11,13$). (1, 2, 2, 2, 3)

An ordered pair is a sequence of length 2.

Sets and Sequences

A set: is an unordered collection of distinct elements.
Examples: $\{10,11,12,13\}$, which is the same set as $\{10,12,11,13\}$
\{Watermelon, honeydew, cantaloupe\}
\{ all even integers $\}$ (Note, this set has infinite size!)
$\{x \mid x$ is an integer and $10 \leq x \leq 13\}$
$\emptyset:$ special set called the empty set.
A sequence: is an ordered collection of items, possibly containing duplicates Examples: $(10,11,12,13)$, which is distinct from ($10,12,11,13$). (1, 2, 2, 2, 3)

An ordered pair is a sequence of length 2 .
A cross product is a set containing ordered pairs.

Sets and Sequences

A set: is an unordered collection of distinct elements.
Examples: $\{10,11,12,13\}$, which is the same set as $\{10,12,11,13\}$
\{Watermelon, honeydew, cantaloupe\}
\{ all even integers $\}$ (Note, this set has infinite size!)
$\{x \mid x$ is an integer and $10 \leq x \leq 13\}$
$\emptyset:$ special set called the empty set.
A sequence: is an ordered collection of items, possibly containing duplicates Examples: $(10,11,12,13)$, which is distinct from ($10,12,11,13$). (1, 2, 2, 2, 3)

An ordered pair is a sequence of length 2 .
A cross product is a set containing ordered pairs.
We write $S_{1} \times S_{2}$ to denote the set of ordered pairs, where the first item in the pair is from set S_{1} and the second item is from set S_{2}.

Sets and Sequences

A set: is an unordered collection of distinct elements.
Examples: $\{10,11,12,13\}$, which is the same set as $\{10,12,11,13\}$
\{Watermelon, honeydew, cantaloupe\}
\{ all even integers $\}$ (Note, this set has infinite size!)
$\{x \mid x$ is an integer and $10 \leq x \leq 13\}$
\emptyset : special set called the empty set.
A sequence: is an ordered collection of items, possibly containing duplicates Examples: $(10,11,12,13)$, which is distinct from ($10,12,11,13$). (1, 2, 2, 2, 3)

An ordered pair is a sequence of length 2 .
A cross product is a set containing ordered pairs.
We write $S_{1} \times S_{2}$ to denote the set of ordered pairs, where the first item in the pair is from set S_{1} and the second item is from set S_{2}. $\{a, b\} \times\{c, d, e\}=\{(a, c),(a, d),(a, e),(b, c),(b, d),(b, e)\}$

Sets and Sequences

A set: is an unordered collection of distinct elements.
Examples: $\{10,11,12,13\}$, which is the same set as $\{10,12,11,13\}$
\{Watermelon, honeydew, cantaloupe\}
\{ all even integers $\}$ (Note, this set has infinite size!)
$\{x \mid x$ is an integer and $10 \leq x \leq 13\}$
\emptyset : special set called the empty set.
A sequence: is an ordered collection of items, possibly containing duplicates Examples: $(10,11,12,13)$, which is distinct from ($10,12,11,13$). (1, 2, 2, 2, 3)

An ordered pair is a sequence of length 2.
A cross product is a set containing ordered pairs.
We write $S_{1} \times S_{2}$ to denote the set of ordered pairs, where the first item in the pair is from set S_{1} and the second item is from set S_{2}.
$\{a, b\} \times\{c, d, e\}=\{(a, c),(a, d),(a, e),(b, c),(b, d),(b, e)\}$
(What's the size of $S_{1} \times S_{2}$?)

Sets and Sequences

A set: is an unordered collection of distinct elements.
Examples: $\{10,11,12,13\}$, which is the same set as $\{10,12,11,13\}$
\{Watermelon, honeydew, cantaloupe\}
\{ all even integers $\}$ (Note, this set has infinite size!)
$\{x \mid x$ is an integer and $10 \leq x \leq 13\}$
\emptyset : special set called the empty set.
A sequence: is an ordered collection of items, possibly containing duplicates Examples: $(10,11,12,13)$, which is distinct from ($10,12,11,13$). (1, 2, 2, 2, 3)

An ordered pair is a sequence of length 2.
A cross product is a set containing ordered pairs.
We write $S_{1} \times S_{2}$ to denote the set of ordered pairs, where the first item in the pair is from set S_{1} and the second item is from set S_{2}.
$\{a, b\} \times\{c, d, e\}=\{(a, c),(a, d),(a, e),(b, c),(b, d),(b, e)\}$
(What's the size of $S_{1} \times S_{2}$?)
Membership: $x \in S$ or $x \notin S$.

Sets and Sequences

A set: is an unordered collection of distinct elements.
Examples: $\{10,11,12,13\}$, which is the same set as $\{10,12,11,13\}$
\{Watermelon, honeydew, cantaloupe\}
\{ all even integers $\}$ (Note, this set has infinite size!)
$\{x \mid x$ is an integer and $10 \leq x \leq 13\}$
\emptyset : special set called the empty set.
A sequence: is an ordered collection of items, possibly containing duplicates Examples: $(10,11,12,13)$, which is distinct from ($10,12,11,13$). (1, 2, 2, 2, 3)

An ordered pair is a sequence of length 2.
A cross product is a set containing ordered pairs.
We write $S_{1} \times S_{2}$ to denote the set of ordered pairs, where the first item in the pair is from set S_{1} and the second item is from set S_{2}.
$\{a, b\} \times\{c, d, e\}=\{(a, c),(a, d),(a, e),(b, c),(b, d),(b, e)\}$
(What's the size of $S_{1} \times S_{2}$?)
Membership: $x \in S$ or $x \notin S$.
Subsets: $\{1,3\} \subseteq\{1,2,3,4\}$. Also, $\{1,3\} \subset\{1,2,3,4\}$

Functions and Relations

A binary relation is a set of ordered pairs.

Functions and Relations

A binary relation is a set of ordered pairs.
A binary relation R from set S_{1} to set S_{2} is a subset of their cross-product: $R \subseteq S_{1} \times S_{2}$

Functions and Relations

A binary relation is a set of ordered pairs.
A binary relation R from set S_{1} to set S_{2} is a subset of their cross-product:
$R \subseteq S_{1} \times S_{2}$
Example: S_{1} is the set of all students at Mason,
S_{2} is the set of all classes offered at Mason.
Elements in the relation R indicate which students are enrolled in which classes.
$S_{1}=\left\{s_{1}, s_{2}, s_{3}\right\}$ and $S_{2}=\{c s 110, \operatorname{cs} 330\}$
$R=\left\{\left(s_{1}, c s 110\right),\left(s_{2}, c s 110\right),\left(s_{2}, c s 330\right)\right\}$

Functions and Relations

A binary relation is a set of ordered pairs.
A binary relation R from set S_{1} to set S_{2} is a subset of their cross-product:
$R \subseteq S_{1} \times S_{2}$
Example: S_{1} is the set of all students at Mason,
S_{2} is the set of all classes offered at Mason.
Elements in the relation R indicate which students are enrolled in which classes.

$$
S_{1}=\left\{s_{1}, s_{2}, s_{3}\right\} \text { and } S_{2}=\{c s 110, c s 330\}
$$

$$
R=\left\{\left(s_{1}, c s 110\right),\left(s_{2}, c s 110\right),\left(s_{2}, c s 330\right)\right\}
$$

Not all students have to be currently enrolled in a class, and some are enrolled in multiple classes.

Functions and Relations

A binary relation is a set of ordered pairs.
A binary relation R from set S_{1} to set S_{2} is a subset of their cross-product:
$R \subseteq S_{1} \times S_{2}$
Example: S_{1} is the set of all students at Mason,
S_{2} is the set of all classes offered at Mason.
Elements in the relation R indicate which students are enrolled in which classes.

$$
\begin{aligned}
& S_{1}=\left\{s_{1}, s_{2}, s_{3}\right\} \text { and } S_{2}=\{c s 110, c s 330\} \\
& R=\left\{\left(s_{1}, c s 110\right),\left(s_{2}, c s 110\right),\left(s_{2}, c s 330\right)\right\}
\end{aligned}
$$

Not all students have to be currently enrolled in a class, and some are enrolled in multiple classes.

Could have a relation from a set onto itself: $R \subseteq S \times S$
$S=\{$ George VI, Elizabeth II, Prince Charles $\}$ and
P the relation that relates a child to the parent.
Then $P=\{($ Prince Charles, Elizabeth II), (Elizabeth II, George VI) $\}$.

Functions and Relations

A binary relation is a set of ordered pairs.
A binary relation R from set S_{1} to set S_{2} is a subset of their cross-product:
$R \subseteq S_{1} \times S_{2}$
Example: S_{1} is the set of all students at Mason,
S_{2} is the set of all classes offered at Mason.
Elements in the relation R indicate which students are enrolled in which classes.
$S_{1}=\left\{s_{1}, s_{2}, s_{3}\right\}$ and $S_{2}=\{c s 110, \operatorname{cs} 330\}$
$R=\left\{\left(s_{1}, c s 110\right),\left(s_{2}, c s 110\right),\left(s_{2}, c s 330\right)\right\}$
Not all students have to be currently enrolled in a class, and some are enrolled in multiple classes.

Could have a relation from a set onto itself: $R \subseteq S \times S$
$S=\{$ George VI, Elizabeth II, Prince Charles $\}$ and
P the relation that relates a child to the parent.
Then $P=\{($ Prince Charles, Elizabeth II), (Elizabeth II, George VI) $\}$.
Function:
A relation that has only one ordered pair for each element in the first set is called a function.

Functions and Relations

A binary relation is a set of ordered pairs.
A binary relation R from set S_{1} to set S_{2} is a subset of their cross-product:
$R \subseteq S_{1} \times S_{2}$
Example: S_{1} is the set of all students at Mason,
S_{2} is the set of all classes offered at Mason.
Elements in the relation R indicate which students are enrolled in which classes.

$$
\begin{aligned}
& S_{1}=\left\{s_{1}, s_{2}, s_{3}\right\} \text { and } S_{2}=\{c s 110, c s 330\} \\
& R=\left\{\left(s_{1}, c s 110\right),\left(s_{2}, c s 110\right),\left(s_{2}, c s 330\right)\right\}
\end{aligned}
$$

Not all students have to be currently enrolled in a class, and some are enrolled in multiple classes.

Could have a relation from a set onto itself: $R \subseteq S \times S$
$S=\{$ George VI, Elizabeth II, Prince Charles $\}$ and
P the relation that relates a child to the parent.
Then $P=\{($ Prince Charles, Elizabeth II), (Elizabeth II, George VI) $\}$.
Function:
A relation that has only one ordered pair for each element in the first set is called a function.
We then use the notation: $R(x)=y$ instead of $(x, y) \in R$, viewing R as a mapping: $R: S_{1} \rightarrow S_{2}$.

Functions and Relations

A binary relation is a set of ordered pairs.
A binary relation R from set S_{1} to set S_{2} is a subset of their cross-product:
$R \subseteq S_{1} \times S_{2}$
Example: S_{1} is the set of all students at Mason,
S_{2} is the set of all classes offered at Mason.
Elements in the relation R indicate which students are enrolled in which classes.

$$
\begin{aligned}
& S_{1}=\left\{s_{1}, s_{2}, s_{3}\right\} \text { and } S_{2}=\{c s 110, c s 330\} \\
& R=\left\{\left(s_{1}, c s 110\right),\left(s_{2}, c s 110\right),\left(s_{2}, c s 330\right)\right\}
\end{aligned}
$$

Not all students have to be currently enrolled in a class, and some are enrolled in multiple classes.

Could have a relation from a set onto itself: $R \subseteq S \times S$
$S=\{$ George VI, Elizabeth II, Prince Charles $\}$ and
P the relation that relates a child to the parent.
Then $P=\{($ Prince Charles, Elizabeth II), (Elizabeth II, George VI) $\}$.
Function:
A relation that has only one ordered pair for each element in the first set is called a function.
We then use the notation: $R(x)=y$ instead of $(x, y) \in R$, viewing R as a mapping: $R: S_{1} \rightarrow S_{2} . \quad S_{1}$ is called the domain of R and S_{2} the codomain Example: $R: \mathcal{N} \rightarrow \mathcal{N}$, where $R(x)=x^{2}$

More on Functions

Note that cross-product sets are still sets. (They are sets of ordered pairs.)
Therefore, a function could map a cross-product set to some other set.

More on Functions

Note that cross-product sets are still sets. (They are sets of ordered pairs.)
Therefore, a function could map a cross-product set to some other set.
Example: Let C be the set of countries in the world.
Let $Y=\{1980, \ldots, 2021\}$ be the set of years between 1980 and now.

More on Functions

Note that cross-product sets are still sets. (They are sets of ordered pairs.)
Therefore, a function could map a cross-product set to some other set.
Example: Let C be the set of countries in the world.
Let $Y=\{1980, \ldots, 2021\}$ be the set of years between 1980 and now. Consider a table with countries in the rows and years in the columns. Place the GDP of each country in that year in each cell.

More on Functions

Note that cross-product sets are still sets. (They are sets of ordered pairs.)
Therefore, a function could map a cross-product set to some other set.
Example: Let C be the set of countries in the world.
Let $Y=\{1980, \ldots, 2021\}$ be the set of years between 1980 and now.
Consider a table with countries in the rows and years in the columns.
Place the GDP of each country in that year in each cell.
$G: C \times Y \rightarrow \mathbb{N}$

More on Functions

Note that cross-product sets are still sets. (They are sets of ordered pairs.)
Therefore, a function could map a cross-product set to some other set.
Example: Let C be the set of countries in the world.
Let $Y=\{1980, \ldots, 2021\}$ be the set of years between 1980 and now.
Consider a table with countries in the rows and years in the columns.
Place the GDP of each country in that year in each cell.
$G: C \times Y \rightarrow \mathbb{N}$
We sometimes use the binary function notation when the domain is a cross-product: $G(U S A, 2020)=\$ 20.8$ trillion.

More on Functions

Note that cross-product sets are still sets. (They are sets of ordered pairs.)
Therefore, a function could map a cross-product set to some other set.
Example: Let C be the set of countries in the world.
Let $Y=\{1980, \ldots, 2021\}$ be the set of years between 1980 and now.
Consider a table with countries in the rows and years in the columns.
Place the GDP of each country in that year in each cell.
$G: C \times Y \rightarrow \mathbb{N}$
We sometimes use the binary function notation when the domain is a cross-product: $G(U S A, 2020)=\$ 20.8$ trillion.
We sometimes use in-fix notation:
$+: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$
We write $5+7 \rightarrow 12$, not $+(5,7) \rightarrow 12$

More on Functions

Note that cross-product sets are still sets. (They are sets of ordered pairs.)
Therefore, a function could map a cross-product set to some other set.
Example: Let C be the set of countries in the world.
Let $Y=\{1980, \ldots, 2021\}$ be the set of years between 1980 and now.
Consider a table with countries in the rows and years in the columns.
Place the GDP of each country in that year in each cell.
$G: C \times Y \rightarrow \mathbb{N}$
We sometimes use the binary function notation when the domain is a cross-product: $G(U S A, 2020)=\$ 20.8$ trillion.
We sometimes use in-fix notation:
$+: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$
We write $5+7 \rightarrow 12$, not $+(5,7) \rightarrow 12$
Functions on sets:
$S_{1} \cup S_{2}, S_{1} \cap S_{2}, S_{1} \backslash S_{2}:$

More on Functions

Note that cross-product sets are still sets. (They are sets of ordered pairs.)
Therefore, a function could map a cross-product set to some other set.
Example: Let C be the set of countries in the world.
Let $Y=\{1980, \ldots, 2021\}$ be the set of years between 1980 and now.
Consider a table with countries in the rows and years in the columns.
Place the GDP of each country in that year in each cell.
$G: C \times Y \rightarrow \mathbb{N}$
We sometimes use the binary function notation when the domain is a cross-product: $G(U S A, 2020)=\$ 20.8$ trillion.
We sometimes use in-fix notation:
$+: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$
We write $5+7 \rightarrow 12$, not $+(5,7) \rightarrow 12$
Functions on sets:
$S_{1} \cup S_{2}, S_{1} \cap S_{2}, S_{1} \backslash S_{2}:$
$\{1,2,3,4\} \cup\{3,4,5,6\}=\{1,2,3,4,5,6\}$
$\{1,2,3,4\} \cap\{3,4,5,6\}=\{3,4\}$
$\{1,2,3,4\} \backslash\{3,4,5,6\}=\{1,2\}$

More on Functions

Note that cross-product sets are still sets. (They are sets of ordered pairs.)
Therefore, a function could map a cross-product set to some other set.
Example: Let C be the set of countries in the world.
Let $Y=\{1980, \ldots, 2021\}$ be the set of years between 1980 and now.
Consider a table with countries in the rows and years in the columns.
Place the GDP of each country in that year in each cell.
$G: C \times Y \rightarrow \mathbb{N}$
We sometimes use the binary function notation when the domain is a cross-product: $G(U S A, 2020)=\$ 20.8$ trillion.
We sometimes use in-fix notation:
$+: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$
We write $5+7 \rightarrow 12$, not $+(5,7) \rightarrow 12$
Functions on sets:
$S_{1} \cup S_{2}, S_{1} \cap S_{2}, S_{1} \backslash S_{2}:$
$\{1,2,3,4\} \cup\{3,4,5,6\}=\{1,2,3,4,5,6\}$
$\{1,2,3,4\} \cap\{3,4,5,6\}=\{3,4\}$
$\{1,2,3,4\} \backslash\{3,4,5,6\}=\{1,2\}$
\bar{S} : the complement of S.
Only well defined if there is a specified universe of elements.
For example: is $\{1,2,3,4\}$ a set over reals or integers?

More on Functions

Note that cross-product sets are still sets. (They are sets of ordered pairs.)
Therefore, a function could map a cross-product set to some other set.
Example: Let C be the set of countries in the world.
Let $Y=\{1980, \ldots, 2021\}$ be the set of years between 1980 and now.
Consider a table with countries in the rows and years in the columns.
Place the GDP of each country in that year in each cell.
$G: C \times Y \rightarrow \mathbb{N}$
We sometimes use the binary function notation when the domain is a cross-product: $G(U S A, 2020)=\$ 20.8$ trillion.
We sometimes use in-fix notation:
$+: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$
We write $5+7 \rightarrow 12$, not $+(5,7) \rightarrow 12$
Functions on sets:
$S_{1} \cup S_{2}, S_{1} \cap S_{2}, S_{1} \backslash S_{2}:$
$\{1,2,3,4\} \cup\{3,4,5,6\}=\{1,2,3,4,5,6\}$
$\{1,2,3,4\} \cap\{3,4,5,6\}=\{3,4\}$
$\{1,2,3,4\} \backslash\{3,4,5,6\}=\{1,2\}$
\bar{S} : the complement of S.
Only well defined if there is a specified universe of elements.
For example: is $\{1,2,3,4\}$ a set over reals or integers?
Taking $\mathcal{U}=\{0,1,2,3,4,5,6,7,8,9\}$
$S=\{0,2,4,6,8\}, \bar{S}=\{1,3,5,7,9\}$.

Recursive Definitions

We will frequently use definitions that are recursive in this class.

Recursive Definitions

We will frequently use definitions that are recursive in this class.
For example: how do we define valid mathematical expressions?
$((a+b) *(c+d)+e)$ is valid, but $a *+b$ is not. How do we formalize this?

Recursive Definitions

We will frequently use definitions that are recursive in this class.
For example: how do we define valid mathematical expressions?
$((a+b) *(c+d)+e)$ is valid, but $a *+b$ is not. How do we formalize this?
Let R denote the set of simple mathematical expressions.

- If ρ is a variable, then $\rho \in R$.
- If $\rho_{1}, \rho_{2} \in R$ then $\left(\rho_{1}+\rho_{2}\right) \in R$ and $\left(\rho_{1} * \rho_{2}\right) \in R$.
- The first two rules define every element of R.

