Consider the following machine. What is different about it?

・ロト ・ 一 ト ・ モト ・ モト

Consider the following machine. What is different about it?

We call this a non-deterministic finite automata (NFA).

イロト 不得 トイヨト イヨト

Consider the following machine. What is different about it?

We call this a non-deterministic finite automata (NFA). We say it accepts input x if and only if there exists a path that accepts x.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

Consider the following machine. What is different about it?

We call this a non-deterministic finite automata (NFA). We say it accepts input x if and only if there exists a path that accepts x. What is the language of the above machine?

イロト 不得 トイヨト イヨト

Consider the following machine. What is different about it?

We call this a non-deterministic finite automata (NFA). We say it accepts input x if and only if there exists a path that accepts x. What is the language of the above machine?

イロト 不得 トイヨト イヨト

Write a DFA that recognizes the language $L = \{x \mid x \in \{a, b\}^* \text{ and } x \text{ ends with } ab\}.$

<□ > < @ > < E > < E > E のQ @

Write a DFA that recognizes the language $L = \{x \mid x \in \{a, b\}^* \text{ and } x \text{ ends with } ab\}.$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Write a DFA that recognizes the language $L = \{x \mid x \in \{a, b\}^* \text{ and } x \text{ ends with } ab\}.$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Write an NFA that recognizes the language L.

Write a DFA that recognizes the language $L = \{x \mid x \in \{a, b\}^* \text{ and } x \text{ ends with } ab\}.$

Write an NFA that recognizes the language L.

Equivalence between RG and NFA

Lemma 9.4

If $L = \mathcal{L}(G)$ for some regular grammar G, then there exists an NFA M such that $L = \mathcal{L}(M)$.

Lemma 9.5

If $L = \mathcal{L}(M)$ for some NFA M, then there exists a regular grammar G such that $L = \mathcal{L}(G)$.

Theorem 9.2

L is regular if and only if there exists an NFA M such that $L = \mathcal{L}(M)$.

Example: RG from NFA

イロト イ理ト イヨト イヨト

Example: RG from NFA

$$\begin{split} G &= (\{Q_0, Q_1, Q_2\}, \{a, b\}, q_0, P), \text{ where:} \\ P &= \{Q_0 \to aQ_0, Q_0 \to bQ_0, Q_0 \to aQ_1, Q_1 \to bQ_2, Q_2 \to \Lambda\} \end{split}$$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Given a set of elements, Q, we denote the set of all subsets of Q, which we call the *power set* of Q, by 2^Q .

Given a set of elements, Q, we denote the set of all subsets of Q, which we call the power set of Q, by 2^Q . Example: $Q = \{A, B, C\}$, $2^Q = \{\emptyset, \{A\}, \{B\}, \{C\}, \{A, B\}, \{A, C\}, \{B, C\}, \{A, B, C\}\}$

Given a set of elements, Q, we denote the set of all subsets of Q, which we call the power set of Q, by 2^Q . Example: $Q = \{A, B, C\}$, $2^Q = \{\emptyset, \{A\}, \{B\}, \{C\}, \{A, B\}, \{A, C\}, \{B, C\}, \{A, B, C\}\}$

NFAs

An NFA, M, is a quintuple, $(Q,\Sigma,q_0,\delta,A),$ where Q,Σ,q_0 and A are defined as in DFAs, and $\delta:Q\times\Sigma\to 2^Q$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Given a set of elements, Q, we denote the set of all subsets of Q, which we call the power set of Q, by 2^Q . Example: $Q = \{A, B, C\}$, $2^Q = \left\{ \emptyset, \{A\}, \{B\}, \{C\}, \{A, B\}, \{A, C\}, \{B, C\}, \{A, B, C\} \right\}$

NFAs

An NFA, M, is a quintuple, $(Q,\Sigma,q_0,\delta,A),$ where Q,Σ,q_0 and A are defined as in DFAs, and $\delta:Q\times\Sigma\to 2^Q$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

 δ maps to a set of states, rather than a single state!

Given a set of elements, Q, we denote the set of all subsets of Q, which we call the power set of Q, by 2^Q . Example: $Q = \{A, B, C\},$ $2^Q = \{\emptyset, \{A\}, \{B\}, \{C\}, \{A, B\}, \{A, C\}, \{B, C\}, \{A, B, C\}\}$

NFAs

An NFA, M, is a quintuple, $(Q, \Sigma, q_0, \delta, A)$, where Q, Σ, q_0 and A are defined as in DFAs, and $\delta: Q \times \Sigma \to 2^Q$

 δ maps to a set of states, rather than a single state!

δ^*

For NFA $M = (Q, \Sigma, q_0, \delta, A)$, δ^* is a function that takes a state and a string as input and produces a resulting set of states. That is $\delta^* : Q \times \Sigma^* \to 2^Q$, such that:

- ▶ for any $q \in Q$, $\delta^*(q, \Lambda) = \{q\}$, and
- for any $q \in Q$, any $\sigma \in \Sigma$, and any $x \in \Sigma^*$,

$$\delta^*(q,x\sigma) = \bigcup_{p \in \delta^*(q,x)} \delta(p,\sigma).$$

イロト イ理ト イヨト イヨト

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

bj (290,93) 293

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

・ロト ・聞ト ・ヨト ・ヨト

<ロト <回ト < 注ト < 注ト

<ロト <回ト < 注ト < 注ト

▲□▶ ▲□▶ ▲注▶ ▲注▶ ……注: のへ(?).

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

<ロト <回ト < 注ト < 注ト

・日・・四・・日・・日・

 $\rightarrow (\overline{z} q_0) \xrightarrow{\alpha} (\overline{z} q_1, q_2)$

(a+aa+as)(ba + baa + bas)*

(a+aa+as)(ba+baa+bas)*

<ロト <回ト < 注ト < 注ト

・ロト ・ 日 ・ ・ ヨ ・

- ∢ ≣ →

<ロト <回ト < 注ト < 注ト

æ

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○□ のへで

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─ のへで

▲□▶ ▲圖▶ ▲国▶ ▲国▶ 三国 - のへで

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ─臣

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─ のへで

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 – 釣�?

h

< □ > < □ > < □ > < □ > < □ > < □ >

э

SA,D

< □ > < □ > < □ > < □ > < □ > < □ >

э

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

SA,D

ABD

SA,D

Ь

イロト イポト イヨト イヨト

э

Theorem

For any NFA $M = (\Sigma, Q, q_0, A, \delta)$, there exists a DFA, $M' = (\Sigma, Q', S', A', \delta')$, such that $\mathcal{L}(M') = \mathcal{L}(M)$.

Theorem

For any NFA $M = (\Sigma, Q, q_0, A, \delta)$, there exists a DFA, $M' = (\Sigma, Q', S', A', \delta')$, such that $\mathcal{L}(M') = \mathcal{L}(M)$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

We prove it by demonstrating an algorithm that constructs M' from M.

Theorem

For any NFA $M = (\Sigma, Q, q_0, A, \delta)$, there exists a DFA, $M' = (\Sigma, Q', S', A', \delta')$, such that $\mathcal{L}(M') = \mathcal{L}(M)$.

We prove it by demonstrating an algorithm that constructs M' from M. $M' = (\Sigma, Q', \{q_0\}, A', \delta')$, where: $Q' = 2^Q$, $A' = \{T \in Q' \mid \exists t \in T \text{ s.t. } t \in A\}$, and

Theorem

For any NFA $M = (\Sigma, Q, q_0, A, \delta)$, there exists a DFA, $M' = (\Sigma, Q', S', A', \delta')$, such that $\mathcal{L}(M') = \mathcal{L}(M)$.

We prove it by demonstrating an algorithm that constructs M' from M. $M' = (\Sigma, Q', \{q_0\}, A', \delta'), \text{ where:} \\ Q' = 2^Q, A' = \{T \in Q' \mid \exists t \in T \text{ s.t. } t \in A\}, \text{ and} \\ \delta'(T, x) = \bigcup_{q \in T} \delta(q, x)$

Theorem

For any NFA $M = (\Sigma, Q, q_0, A, \delta)$, there exists a DFA, $M' = (\Sigma, Q', S', A', \delta')$, such that $\mathcal{L}(M') = \mathcal{L}(M)$.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

We prove it by demonstrating an algorithm that constructs M' from M. $M' = (\Sigma, Q', \{q_0\}, A', \delta')$, where: $Q' = 2^Q$, $A' = \{T \in Q' \mid \exists t \in T \text{ s.t. } t \in A\}$, and $\delta'(T, x) = \bigcup_{q \in T} \delta(q, x)$

Claim: If $w = w_0 \cdots w_{k-1} \in \mathcal{L}(M)$, then $w \in \mathcal{L}(M')$

Theorem

For any NFA $M = (\Sigma, Q, q_0, A, \delta)$, there exists a DFA, $M' = (\Sigma, Q', S', A', \delta')$, such that $\mathcal{L}(M') = \mathcal{L}(M)$.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

We prove it by demonstrating an algorithm that constructs M' from M. $M' = (\Sigma, Q', \{q_0\}, A', \delta')$, where: $Q' = 2^Q$, $A' = \{T \in Q' \mid \exists t \in T \text{ s.t. } t \in A\}$, and $\delta'(T, x) = \bigcup_{q \in T} \delta(q, x)$

Claim: If $w = w_0 \cdots w_{k-1} \in \mathcal{L}(M)$, then $w \in \mathcal{L}(M')$ Because M is an NFA, $\exists (q_0, q_1, \ldots, q_k)$, s.t. $q_{i+1} \in \delta(q_i, w_i)$, and $q_k \in A$.

Theorem

For any NFA $M = (\Sigma, Q, q_0, A, \delta)$, there exists a DFA, $M' = (\Sigma, Q', S', A', \delta')$, such that $\mathcal{L}(M') = \mathcal{L}(M)$.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

We prove it by demonstrating an algorithm that constructs M' from M. $M' = (\Sigma, Q', \{q_0\}, A', \delta')$, where: $Q' = 2^Q$, $A' = \{T \in Q' \mid \exists t \in T \text{ s.t. } t \in A\}$, and $\delta'(T, x) = \bigcup_{q \in T} \delta(q, x)$

Claim: If $w = w_0 \cdots w_{k-1} \in \mathcal{L}(M)$, then $w \in \mathcal{L}(M')$ Because M is an NFA, $\exists (q_0, q_1, \ldots, q_k)$, s.t. $q_{i+1} \in \delta(q_i, w_i)$, and $q_k \in A$. Let T_0, T_1, \ldots, T_k , be the states in M' such that $T_{i+1} = \delta'(T_i, w_i)$. We claim that $T_k \in A'$.

Theorem

For any NFA $M = (\Sigma, Q, q_0, A, \delta)$, there exists a DFA, $M' = (\Sigma, Q', S', A', \delta')$, such that $\mathcal{L}(M') = \mathcal{L}(M)$.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

We prove it by demonstrating an algorithm that constructs M' from M. $M' = (\Sigma, Q', \{q_0\}, A', \delta')$, where: $Q' = 2^Q$, $A' = \{T \in Q' \mid \exists t \in T \text{ s.t. } t \in A\}$, and $\delta'(T, x) = \bigcup_{q \in T} \delta(q, x)$

Claim: If $w = w_0 \cdots w_{k-1} \in \mathcal{L}(M)$, then $w \in \mathcal{L}(M')$ Because M is an NFA, $\exists (q_0, q_1, \ldots, q_k)$, s.t. $q_{i+1} \in \delta(q_i, w_i)$, and $q_k \in A$. Let T_0, T_1, \ldots, T_k , be the states in M' such that $T_{i+1} = \delta'(T_i, w_i)$. We claim that $T_k \in A'$. First, we show that $q_i \in T_i$.

Theorem

For any NFA $M = (\Sigma, Q, q_0, A, \delta)$, there exists a DFA, $M' = (\Sigma, Q', S', A', \delta')$, such that $\mathcal{L}(M') = \mathcal{L}(M)$.

We prove it by demonstrating an algorithm that constructs M' from M. $M' = (\Sigma, Q', \{q_0\}, A', \delta'), \text{ where:} \\ Q' = 2^Q, A' = \{T \in Q' \mid \exists t \in T \text{ s.t. } t \in A\}, \text{ and} \\ \delta'(T, x) = \bigcup_{q \in T} \delta(q, x)$

Claim: If $w = w_0 \cdots w_{k-1} \in \mathcal{L}(M)$, then $w \in \mathcal{L}(M')$ Because M is an NFA, $\exists (q_0, q_1, \ldots, q_k)$, s.t. $q_{i+1} \in \delta(q_i, w_i)$, and $q_k \in A$. Let T_0, T_1, \ldots, T_k , be the states in M' such that $T_{i+1} = \delta'(T_i, w_i)$. We claim that $T_k \in A'$. First, we show that $q_i \in T_i$. Proof by induction: clearly this holds for q_0 , since $T_0 = \{q_0\}$

Theorem

For any NFA $M = (\Sigma, Q, q_0, A, \delta)$, there exists a DFA, $M' = (\Sigma, Q', S', A', \delta')$, such that $\mathcal{L}(M') = \mathcal{L}(M)$.

We prove it by demonstrating an algorithm that constructs M' from M. $M' = (\Sigma, Q', \{q_0\}, A', \delta'), \text{ where:} \\ Q' = 2^Q, A' = \{T \in Q' \mid \exists t \in T \text{ s.t. } t \in A\}, \text{ and} \\ \delta'(T, x) = \bigcup_{q \in T} \delta(q, x)$

Claim: If $w = w_0 \cdots w_{k-1} \in \mathcal{L}(M)$, then $w \in \mathcal{L}(M')$ Because M is an NFA, $\exists (q_0, q_1, \ldots, q_k)$, s.t. $q_{i+1} \in \delta(q_i, w_i)$, and $q_k \in A$. Let T_0, T_1, \ldots, T_k , be the states in M' such that $T_{i+1} = \delta'(T_i, w_i)$. We claim that $T_k \in A'$. First, we show that $q_i \in T_i$. Proof by induction: clearly this holds for q_0 , since $T_0 = \{q_0\}$ Assume it holds for q_i . Recall: $T_{i+1} = \bigcup_{q \in T_i} \delta(q, w_i)$.

Theorem

For any NFA $M = (\Sigma, Q, q_0, A, \delta)$, there exists a DFA, $M' = (\Sigma, Q', S', A', \delta')$, such that $\mathcal{L}(M') = \mathcal{L}(M)$.

We prove it by demonstrating an algorithm that constructs M' from M. $M' = (\Sigma, Q', \{q_0\}, A', \delta')$, where: $Q' = 2^Q$, $A' = \{T \in Q' \mid \exists t \in T \text{ s.t. } t \in A\}$, and $\delta'(T, x) = \bigcup_{q \in T} \delta(q, x)$

Claim: If $w = w_0 \cdots w_{k-1} \in \mathcal{L}(M)$, then $w \in \mathcal{L}(M')$ Because M is an NFA, $\exists (q_0, q_1, \ldots, q_k)$, s.t. $q_{i+1} \in \delta(q_i, w_i)$, and $q_k \in A$. Let T_0, T_1, \ldots, T_k , be the states in M' such that $T_{i+1} = \delta'(T_i, w_i)$. We claim that $T_k \in A'$. First, we show that $q_i \in T_i$. Proof by induction: clearly this holds for q_0 , since $T_0 = \{q_0\}$ Assume it holds for q_i . Recall: $T_{i+1} = \bigcup_{q \in T_i} \delta(q, w_i)$. Since $q_{i+1} \in \delta(q_i, w_i)$, and $q_i \in T_i$, it follows that $q_{i+1} \in T_{i+1}$.

Theorem

For any NFA $M = (\Sigma, Q, q_0, A, \delta)$, there exists a DFA, $M' = (\Sigma, Q', S', A', \delta')$, such that $\mathcal{L}(M') = \mathcal{L}(M)$.

We prove it by demonstrating an algorithm that constructs M' from M. $M' = (\Sigma, Q', \{q_0\}, A', \delta')$, where: $Q' = 2^Q$, $A' = \{T \in Q' \mid \exists t \in T \text{ s.t. } t \in A\}$, and $\delta'(T, x) = \bigcup_{q \in T} \delta(q, x)$ Claim: If $w = w_0 \cdots w_{k-1} \in \mathcal{L}(M)$, then $w \in \mathcal{L}(M')$ Because M is an NFA, $\exists (q_0, q_1, \ldots, q_k)$, s.t. $q_{i+1} \in \delta(q_i, w_i)$, and $q_k \in A$. Let T_0, T_1, \ldots, T_k , be the states in M' such that $T_{i+1} = \delta'(T_i, w_i)$. We claim that $T_k \in A'$. First, we show that $q_i \in T_i$. Proof by induction: clearly this holds for q_0 , since $T_0 = \{q_0\}$ Assume it holds for q_i . Recall: $T_{i+1} = \bigcup_{q \in T_i} \delta(q, w_i)$. Since $q_{i+1} \in \delta(q_i, w_i)$, and $q_i \in T_i$, it follows that $q_{i+1} \in T_{i+1}$. Finally, since $q_k \in T_k$, and $q_k \in A$, it follows that $T_k \in A'$.

Theorem

For any NFA $M = (\Sigma, Q, q_0, A, \delta)$, there exists a DFA, $M' = (\Sigma, Q', S', A', \delta')$, such that $\mathcal{L}(M') = \mathcal{L}(M)$.

We prove it by demonstrating an algorithm that constructs M' from M. $M' = (\Sigma, Q', \{q_0\}, A', \delta'), \text{ where:} \\ Q' = 2^Q, A' = \{T \in Q' \mid \exists t \in T \text{ s.t. } t \in A\}, \text{ and} \\ \delta'(T, x) = \bigcup_{q \in T} \delta(q, x)$

Theorem

For any NFA $M = (\Sigma, Q, q_0, A, \delta)$, there exists a DFA, $M' = (\Sigma, Q', S', A', \delta')$, such that $\mathcal{L}(M') = \mathcal{L}(M)$.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

We prove it by demonstrating an algorithm that constructs M' from M. $M' = (\Sigma, Q', \{q_0\}, A', \delta')$, where: $Q' = 2^Q$, $A' = \{T \in Q' \mid \exists t \in T \text{ s.t. } t \in A\}$, and $\delta'(T, x) = \bigcup_{q \in T} \delta(q, x)$

Claim: If $w = w_0 \cdots w_{k-1} \in \mathcal{L}(M')$, then $w \in \mathcal{L}(M)$

Theorem

For any NFA $M = (\Sigma, Q, q_0, A, \delta)$, there exists a DFA, $M' = (\Sigma, Q', S', A', \delta')$, such that $\mathcal{L}(M') = \mathcal{L}(M)$.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

We prove it by demonstrating an algorithm that constructs M' from M. $M' = (\Sigma, Q', \{q_0\}, A', \delta')$, where: $Q' = 2^Q$, $A' = \{T \in Q' \mid \exists t \in T \text{ s.t. } t \in A\}$, and $\delta'(T, x) = \bigcup_{q \in T} \delta(q, x)$

Claim: If $w = w_0 \cdots w_{k-1} \in \mathcal{L}(M')$, then $w \in \mathcal{L}(M)$ Let T_0, \ldots, T_k be the sequence of states such that $T_{i+1} = \delta'(T_i, w_i)$.

Theorem

For any NFA $M = (\Sigma, Q, q_0, A, \delta)$, there exists a DFA, $M' = (\Sigma, Q', S', A', \delta')$, such that $\mathcal{L}(M') = \mathcal{L}(M)$.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

We prove it by demonstrating an algorithm that constructs M' from M. $M' = (\Sigma, Q', \{q_0\}, A', \delta')$, where: $Q' = 2^Q$, $A' = \{T \in Q' \mid \exists t \in T \text{ s.t. } t \in A\}$, and $\delta'(T, x) = \bigcup_{q \in T} \delta(q, x)$

Claim: If $w = w_0 \cdots w_{k-1} \in \mathcal{L}(M')$, then $w \in \mathcal{L}(M)$ Let T_0, \ldots, T_k be the sequence of states such that $T_{i+1} = \delta'(T_i, w_i)$. Claim $\exists (q_0, \ldots, q_k)$, such that $q_i \in Q$, $q_{i+1} \in \delta(q_i, w_i)$, and $q_k \in A$.

Theorem

For any NFA $M = (\Sigma, Q, q_0, A, \delta)$, there exists a DFA, $M' = (\Sigma, Q', S', A', \delta')$, such that $\mathcal{L}(M') = \mathcal{L}(M)$.

We prove it by demonstrating an algorithm that constructs M' from M. $M' = (\Sigma, Q', \{q_0\}, A', \delta'), \text{ where:} \\ Q' = 2^Q, A' = \{T \in Q' \mid \exists t \in T \text{ s.t. } t \in A\}, \text{ and} \\ \delta'(T, x) = \bigcup_{q \in T} \delta(q, x)$

Claim: If $w = w_0 \cdots w_{k-1} \in \mathcal{L}(M')$, then $w \in \mathcal{L}(M)$ Let T_0, \ldots, T_k be the sequence of states such that $T_{i+1} = \delta'(T_i, w_i)$. Claim $\exists (q_0, \ldots, q_k)$, such that $q_i \in Q$, $q_{i+1} \in \delta(q_i, w_i)$, and $q_k \in A$. We start by choosing q_k and work backwards. To choose q_k , note that because $T_k \in A'$, $\exists q_k \in T_k$ s.t. $q_k \in A$. Choose any such q_k .

Theorem

For any NFA $M = (\Sigma, Q, q_0, A, \delta)$, there exists a DFA, $M' = (\Sigma, Q', S', A', \delta')$, such that $\mathcal{L}(M') = \mathcal{L}(M)$.

We prove it by demonstrating an algorithm that constructs M' from M. $M' = (\Sigma, Q', \{q_0\}, A', \delta'), \text{ where:} \\ Q' = 2^Q, A' = \{T \in Q' \mid \exists t \in T \text{ s.t. } t \in A\}, \text{ and} \\ \delta'(T, x) = \bigcup_{q \in T} \delta(q, x)$

Claim: If $w = w_0 \cdots w_{k-1} \in \mathcal{L}(M')$, then $w \in \mathcal{L}(M)$ Let T_0, \ldots, T_k be the sequence of states such that $T_{i+1} = \delta'(T_i, w_i)$. Claim $\exists (q_0, \ldots, q_k)$, such that $q_i \in Q$, $q_{i+1} \in \delta(q_i, w_i)$, and $q_k \in A$. We start by choosing q_k and work backwards. To choose q_k , note that because $T_k \in A'$, $\exists q_k \in T_k$ s.t. $q_k \in A$. Choose any such q_k . For i < k, assume q_{i+1} has already be chosen.
NFA to DFA: Formalization

Theorem

For any NFA $M = (\Sigma, Q, q_0, A, \delta)$, there exists a DFA, $M' = (\Sigma, Q', S', A', \delta')$, such that $\mathcal{L}(M') = \mathcal{L}(M)$.

We prove it by demonstrating an algorithm that constructs M' from M. $M' = (\Sigma, Q', \{q_0\}, A', \delta'), \text{ where:} \\ Q' = 2^Q, A' = \{T \in Q' \mid \exists t \in T \text{ s.t. } t \in A\}, \text{ and} \\ \delta'(T, x) = \bigcup_{q \in T} \delta(q, x)$

Claim: If $w = w_0 \cdots w_{k-1} \in \mathcal{L}(M')$, then $w \in \mathcal{L}(M)$ Let T_0, \ldots, T_k be the sequence of states such that $T_{i+1} = \delta'(T_i, w_i)$. Claim $\exists (q_0, \ldots, q_k)$, such that $q_i \in Q$, $q_{i+1} \in \delta(q_i, w_i)$, and $q_k \in A$. We start by choosing q_k and work backwards. To choose q_k , note that because $T_k \in A'$, $\exists q_k \in T_k$ s.t. $q_k \in A$. Choose any such q_k . For i < k, assume q_{i+1} has already be chosen. Since $T_{i+1} = \bigcup_{q \in T_i} \delta(q, w_i)$, there exists some $q_i \in T_i$ such that $q_{i+1} \in \delta(q_i, w_i)$.

NFA to DFA: Formalization

Theorem

For any NFA $M = (\Sigma, Q, q_0, A, \delta)$, there exists a DFA, $M' = (\Sigma, Q', S', A', \delta')$, such that $\mathcal{L}(M') = \mathcal{L}(M)$.

We prove it by demonstrating an algorithm that constructs M' from M. $M' = (\Sigma, Q', \{q_0\}, A', \delta'), \text{ where:} \\ Q' = 2^Q, A' = \{T \in Q' \mid \exists t \in T \text{ s.t. } t \in A\}, \text{ and} \\ \delta'(T, x) = \bigcup_{q \in T} \delta(q, x)$

Claim: If $w = w_0 \cdots w_{k-1} \in \mathcal{L}(M')$, then $w \in \mathcal{L}(M)$ Let T_0, \ldots, T_k be the sequence of states such that $T_{i+1} = \delta'(T_i, w_i)$. Claim $\exists (q_0, \ldots, q_k)$, such that $q_i \in Q$, $q_{i+1} \in \delta(q_i, w_i)$, and $q_k \in A$. We start by choosing q_k and work backwards. To choose q_k , note that because $T_k \in A'$, $\exists q_k \in T_k$ s.t. $q_k \in A$. Choose any such q_k . For i < k, assume q_{i+1} has already be chosen. Since $T_{i+1} = \bigcup_{q \in T_i} \delta(q, w_i)$, there exists some $q_i \in T_i$ such that $q_{i+1} \in \delta(q_i, w_i)$. Choose any such q_i , and repeat.

NFA to DFA: Formalization

Theorem

For any NFA $M = (\Sigma, Q, q_0, A, \delta)$, there exists a DFA, $M' = (\Sigma, Q', S', A', \delta')$, such that $\mathcal{L}(M') = \mathcal{L}(M)$.

We prove it by demonstrating an algorithm that constructs M' from M. $M' = (\Sigma, Q', \{q_0\}, A', \delta'), \text{ where:} \\ Q' = 2^Q, A' = \{T \in Q' \mid \exists t \in T \text{ s.t. } t \in A\}, \text{ and} \\ \delta'(T, x) = \bigcup_{q \in T} \delta(q, x)$

Claim: If $w = w_0 \cdots w_{k-1} \in \mathcal{L}(M')$, then $w \in \mathcal{L}(M)$ Let T_0, \ldots, T_k be the sequence of states such that $T_{i+1} = \delta'(T_i, w_i)$. Claim $\exists (q_0, \ldots, q_k)$, such that $q_i \in Q$, $q_{i+1} \in \delta(q_i, w_i)$, and $q_k \in A$. We start by choosing q_k and work backwards. To choose q_k , note that because $T_k \in A'$, $\exists q_k \in T_k$ s.t. $q_k \in A$. Choose any such q_k . For i < k, assume q_{i+1} has already be chosen. Since $T_{i+1} = \bigcup_{q \in T_i} \delta(q, w_i)$, there exists some $q_i \in T_i$ such that $q_{i+1} \in \delta(q_i, w_i)$. Choose any such q_i , and repeat. Since $T_0 = \{q_0\}$, we can choose q_0 as our start state.