Non-deterministic Finite Automata
Consider the following machine. What is different about it?

Non-deterministic Finite Automata

Consider the following machine. What is different about it?

We call this a non-deterministic finite automata (NFA).

Non-deterministic Finite Automata

Consider the following machine. What is different about it?

We call this a non-deterministic finite automata (NFA).
We say it accepts input x if and only if there exists a path that accepts x.

Non-deterministic Finite Automata

Consider the following machine. What is different about it?

We call this a non-deterministic finite automata (NFA).
We say it accepts input x if and only if there exists a path that accepts x. What is the language of the above machine?

Non-deterministic Finite Automata
Consider the following machine. What is different about it?

We call this a non-deterministic finite automata (NFA).
We say it accepts input x if and only if there exists a path that accepts x. What is the language of the above machine?
\qquad

NFA Example

Write a DFA that recognizes the language $L=\left\{x \mid x \in\{a, b\}^{*}\right.$ and x ends with $\left.a b\right\}$.

NFA Example

Write a DFA that recognizes the language $L=\left\{x \mid x \in\{a, b\}^{*}\right.$ and x ends with $\left.a b\right\}$.

NFA Example

Write a DFA that recognizes the language $L=\left\{x \mid x \in\{a, b\}^{*}\right.$ and x ends with $\left.a b\right\}$.

Write an NFA that recognizes the language L.

NFA Example

Write a DFA that recognizes the language $L=\left\{x \mid x \in\{a, b\}^{*}\right.$ and x ends with $\left.a b\right\}$.

Write an NFA that recognizes the language L.

Equivalence between RG and NFA

Lemma 9.4

If $L=\mathcal{L}(G)$ for some regular grammar G, then there exists an NFA M such that $L=\mathcal{L}(M)$.

Lemma 9.5

If $L=\mathcal{L}(M)$ for some NFA M, then there exists a regular grammar G such that $L=\mathcal{L}(G)$.

Theorem 9.2
L is regular if and only if there exists an NFA M such that $L=\mathcal{L}(M)$.

Example: RG from NFA

Example: RG from NFA

$$
\begin{aligned}
& G=\left(\left\{Q_{0}, Q_{1}, Q_{2}\right\},\{a, b\}, q_{0}, P\right), \text { where: } \\
& P=\left\{Q_{0} \rightarrow a Q_{0}, Q_{0} \rightarrow b Q_{0}, Q_{0} \rightarrow a Q_{1}, Q_{1} \rightarrow b Q_{2}, Q_{2} \rightarrow \Lambda\right\}
\end{aligned}
$$

Formalizing NFA

Given a set of elements, Q, we denote the set of all subsets of Q, which we call the power set of Q, by 2^{Q}.

Formalizing NFA

Given a set of elements, Q, we denote the set of all subsets of Q, which we call the power set of Q, by 2^{Q}.
Example: $Q=\{A, B, C\}$,
$2^{Q}=\{\emptyset,\{A\},\{B\},\{C\},\{A, B\},\{A, C\},\{B, C\},\{A, B, C\}\}$

Formalizing NFA

Given a set of elements, Q, we denote the set of all subsets of Q, which we call the power set of Q, by 2^{Q}.
Example: $Q=\{A, B, C\}$,
$2^{Q}=\{\emptyset,\{A\},\{B\},\{C\},\{A, B\},\{A, C\},\{B, C\},\{A, B, C\}\}$

NFAs

An NFA, M, is a quintuple, $\left(Q, \Sigma, q_{0}, \delta, A\right)$, where Q, Σ, q_{0} and A are defined as in DFAs, and $\delta: Q \times \Sigma \rightarrow 2^{Q}$

Formalizing NFA

Given a set of elements, Q, we denote the set of all subsets of Q, which we call the power set of Q, by 2^{Q}.
Example: $Q=\{A, B, C\}$,
$2^{Q}=\{\emptyset,\{A\},\{B\},\{C\},\{A, B\},\{A, C\},\{B, C\},\{A, B, C\}\}$

NFAs

An NFA, M, is a quintuple, $\left(Q, \Sigma, q_{0}, \delta, A\right)$, where Q, Σ, q_{0} and A are defined as in DFAs, and $\delta: Q \times \Sigma \rightarrow 2^{Q}$
δ maps to a set of states, rather than a single state!

Formalizing NFA

Given a set of elements, Q, we denote the set of all subsets of Q, which we call the power set of Q, by 2^{Q}.
Example: $Q=\{A, B, C\}$,
$2^{Q}=\{\emptyset,\{A\},\{B\},\{C\},\{A, B\},\{A, C\},\{B, C\},\{A, B, C\}\}$

NFAs

An NFA, M, is a quintuple, $\left(Q, \Sigma, q_{0}, \delta, A\right)$, where Q, Σ, q_{0} and A are defined as in DFAs, and $\delta: Q \times \Sigma \rightarrow 2^{Q}$
δ maps to a set of states, rather than a single state!

δ^{*}

For NFA $M=\left(Q, \Sigma, q_{0}, \delta, A\right), \delta^{*}$ is a function that takes a state and a string as input and produces a resulting set of states. That is $\delta^{*}: Q \times \Sigma^{*} \rightarrow 2^{Q}$, such that:

- for any $q \in Q, \delta^{*}(q, \Lambda)=\{q\}$, and
- for any $q \in Q$, any $\sigma \in \Sigma$, and any $x \in \Sigma^{*}$,

$$
\delta^{*}(q, x \sigma)=\bigcup_{p \in \delta^{*}(q, x)} \delta(p, \sigma) .
$$

NFA to DFA: Example 1

NFA to DFA: Example 1

$\left\{\left\{0, q_{1}, q_{2}\right\} \quad\left\{4, q_{2}\right\} \quad\{4\} \quad,\{q, 2\}\right.$

NFA to DFA: Example 2

NFA to DFA: Example 2

NFA to DFA: Example 2

$$
(a+a a+a b)(b a+b a a+b a b)^{*}
$$

$$
\rightarrow\{93
$$

NFA to DFA: Example 2

$$
(a+a a+a b)(b a+b a a+b a b)^{*}
$$

NFA to DFA: Example 2

$$
(a+a a+a b)(b a+b a a+b a b)^{*}
$$

NFA to DFA: Example 2

$$
(a+a a+a b)(b a+b a a+b a b)^{*}
$$

NFA to DFA: Example 2

$$
(a+a a+a b)(b a+b a a+b a b)^{*}
$$

NFA to DFA: Example 2

$$
(a+a a+a b)(b a+b a a+b a b)^{*}
$$

NFA to DFA: Example 2

$$
(a+a a+a b)(b a+b a a+b a b)^{*}
$$

NFA to DFA: Example 2

$$
(a+a a+a b)(b a+b a a+b a b)^{*}
$$

NFA to DFA: Example 3

$$
\rightarrow(B \xrightarrow{a, b}
$$

NFA to DFA: Example 3

$$
\begin{aligned}
& \text { strings containing "aaa" }
\end{aligned}
$$

NFA to DFA: Example 3

$$
\begin{aligned}
& \text { strings containing "aaa" }
\end{aligned}
$$

$\rightarrow\{A\}$

NFA to DFA: Example 3

$$
\begin{aligned}
& \text { strings containing "aaa" } \\
& \rightarrow\{A\}
\end{aligned}
$$

NFA to DFA: Example 3

$$
\begin{aligned}
& \text { strings containing "aaa" }
\end{aligned}
$$

NFA to DFA: Example 3

$$
\begin{aligned}
& \text { strings containing "aaa" } \\
& \rightarrow \underbrace{a}_{a}(\{A, B\}
\end{aligned}
$$

NFA to DFA: Example 3

strings containing "aaa"

NFA to DFA: Formalization

Theorem

For any NFA $M=\left(\Sigma, Q, q_{0}, A, \delta\right)$, there exists a DFA, $M^{\prime}=\left(\Sigma, Q^{\prime}, S^{\prime}, A^{\prime}, \delta^{\prime}\right)$, such that $\mathcal{L}\left(M^{\prime}\right)=\mathcal{L}(M)$.

NFA to DFA: Formalization

Theorem

For any NFA $M=\left(\Sigma, Q, q_{0}, A, \delta\right)$, there exists a DFA, $M^{\prime}=\left(\Sigma, Q^{\prime}, S^{\prime}, A^{\prime}, \delta^{\prime}\right)$, such that $\mathcal{L}\left(M^{\prime}\right)=\mathcal{L}(M)$.

We prove it by demonstrating an algorithm that constructs M^{\prime} from M.

NFA to DFA: Formalization

Theorem

For any NFA $M=\left(\Sigma, Q, q_{0}, A, \delta\right)$, there exists a DFA, $M^{\prime}=\left(\Sigma, Q^{\prime}, S^{\prime}, A^{\prime}, \delta^{\prime}\right)$, such that $\mathcal{L}\left(M^{\prime}\right)=\mathcal{L}(M)$.

We prove it by demonstrating an algorithm that constructs M^{\prime} from M. $M^{\prime}=\left(\Sigma, Q^{\prime},\left\{q_{0}\right\}, A^{\prime}, \delta^{\prime}\right)$, where: $Q^{\prime}=2^{Q}, A^{\prime}=\left\{T \in Q^{\prime} \mid \exists t \in T\right.$ s.t. $\left.t \in A\right\}$, and

NFA to DFA: Formalization

Theorem

For any NFA $M=\left(\Sigma, Q, q_{0}, A, \delta\right)$, there exists a DFA, $M^{\prime}=\left(\Sigma, Q^{\prime}, S^{\prime}, A^{\prime}, \delta^{\prime}\right)$, such that $\mathcal{L}\left(M^{\prime}\right)=\mathcal{L}(M)$.

We prove it by demonstrating an algorithm that constructs M^{\prime} from M.
$M^{\prime}=\left(\Sigma, Q^{\prime},\left\{q_{0}\right\}, A^{\prime}, \delta^{\prime}\right)$, where:
$Q^{\prime}=2^{Q}, A^{\prime}=\left\{T \in Q^{\prime} \mid \exists t \in T\right.$ s.t. $\left.t \in A\right\}$, and $\delta^{\prime}(T, x)=\bigcup_{q \in T} \delta(q, x)$

NFA to DFA: Formalization

Theorem

For any NFA $M=\left(\Sigma, Q, q_{0}, A, \delta\right)$, there exists a DFA, $M^{\prime}=\left(\Sigma, Q^{\prime}, S^{\prime}, A^{\prime}, \delta^{\prime}\right)$, such that $\mathcal{L}\left(M^{\prime}\right)=\mathcal{L}(M)$.

We prove it by demonstrating an algorithm that constructs M^{\prime} from M.
$M^{\prime}=\left(\Sigma, Q^{\prime},\left\{q_{0}\right\}, A^{\prime}, \delta^{\prime}\right)$, where:
$Q^{\prime}=2^{Q}, A^{\prime}=\left\{T \in Q^{\prime} \mid \exists t \in T\right.$ s.t. $\left.t \in A\right\}$, and $\delta^{\prime}(T, x)=\bigcup_{q \in T} \delta(q, x)$
Claim: If $w=w_{0} \cdots w_{k-1} \in \mathcal{L}(M)$, then $w \in \mathcal{L}\left(M^{\prime}\right)$

NFA to DFA: Formalization

Theorem

For any NFA $M=\left(\Sigma, Q, q_{0}, A, \delta\right)$, there exists a DFA, $M^{\prime}=\left(\Sigma, Q^{\prime}, S^{\prime}, A^{\prime}, \delta^{\prime}\right)$, such that $\mathcal{L}\left(M^{\prime}\right)=\mathcal{L}(M)$.

We prove it by demonstrating an algorithm that constructs M^{\prime} from M. $M^{\prime}=\left(\Sigma, Q^{\prime},\left\{q_{0}\right\}, A^{\prime}, \delta^{\prime}\right)$, where: $Q^{\prime}=2^{Q}, A^{\prime}=\left\{T \in Q^{\prime} \mid \exists t \in T\right.$ s.t. $\left.t \in A\right\}$, and $\delta^{\prime}(T, x)=\bigcup_{q \in T} \delta(q, x)$
Claim: If $w=w_{0} \cdots w_{k-1} \in \mathcal{L}(M)$, then $w \in \mathcal{L}\left(M^{\prime}\right)$
Because M is an NFA, $\exists\left(q_{0}, q_{1}, \ldots, q_{k}\right)$, s.t. $q_{i+1} \in \delta\left(q_{i}, w_{i}\right)$, and $q_{k} \in A$.

NFA to DFA: Formalization

Theorem

For any NFA $M=\left(\Sigma, Q, q_{0}, A, \delta\right)$, there exists a DFA, $M^{\prime}=\left(\Sigma, Q^{\prime}, S^{\prime}, A^{\prime}, \delta^{\prime}\right)$, such that $\mathcal{L}\left(M^{\prime}\right)=\mathcal{L}(M)$.

We prove it by demonstrating an algorithm that constructs M^{\prime} from M.
$M^{\prime}=\left(\Sigma, Q^{\prime},\left\{q_{0}\right\}, A^{\prime}, \delta^{\prime}\right)$, where:
$Q^{\prime}=2^{Q}, A^{\prime}=\left\{T \in Q^{\prime} \mid \exists t \in T\right.$ s.t. $\left.t \in A\right\}$, and $\delta^{\prime}(T, x)=\bigcup_{q \in T} \delta(q, x)$

Claim: If $w=w_{0} \cdots w_{k-1} \in \mathcal{L}(M)$, then $w \in \mathcal{L}\left(M^{\prime}\right)$
Because M is an NFA, $\exists\left(q_{0}, q_{1}, \ldots, q_{k}\right)$, s.t. $q_{i+1} \in \delta\left(q_{i}, w_{i}\right)$, and $q_{k} \in A$.
Let $T_{0}, T_{1}, \ldots, T_{k}$, be the states in M^{\prime} such that $T_{i+1}=\delta^{\prime}\left(T_{i}, w_{i}\right)$.
We claim that $T_{k} \in A^{\prime}$.

NFA to DFA: Formalization

Theorem

For any NFA $M=\left(\Sigma, Q, q_{0}, A, \delta\right)$, there exists a DFA, $M^{\prime}=\left(\Sigma, Q^{\prime}, S^{\prime}, A^{\prime}, \delta^{\prime}\right)$, such that $\mathcal{L}\left(M^{\prime}\right)=\mathcal{L}(M)$.

We prove it by demonstrating an algorithm that constructs M^{\prime} from M.
$M^{\prime}=\left(\Sigma, Q^{\prime},\left\{q_{0}\right\}, A^{\prime}, \delta^{\prime}\right)$, where:
$Q^{\prime}=2^{Q}, A^{\prime}=\left\{T \in Q^{\prime} \mid \exists t \in T\right.$ s.t. $\left.t \in A\right\}$, and $\delta^{\prime}(T, x)=\bigcup_{q \in T} \delta(q, x)$

Claim: If $w=w_{0} \cdots w_{k-1} \in \mathcal{L}(M)$, then $w \in \mathcal{L}\left(M^{\prime}\right)$
Because M is an NFA, $\exists\left(q_{0}, q_{1}, \ldots, q_{k}\right)$, s.t. $q_{i+1} \in \delta\left(q_{i}, w_{i}\right)$, and $q_{k} \in A$.
Let $T_{0}, T_{1}, \ldots, T_{k}$, be the states in M^{\prime} such that $T_{i+1}=\delta^{\prime}\left(T_{i}, w_{i}\right)$.
We claim that $T_{k} \in A^{\prime}$.
First, we show that $q_{i} \in T_{i}$.

NFA to DFA: Formalization

Theorem

For any NFA $M=\left(\Sigma, Q, q_{0}, A, \delta\right)$, there exists a DFA, $M^{\prime}=\left(\Sigma, Q^{\prime}, S^{\prime}, A^{\prime}, \delta^{\prime}\right)$, such that $\mathcal{L}\left(M^{\prime}\right)=\mathcal{L}(M)$.

We prove it by demonstrating an algorithm that constructs M^{\prime} from M.
$M^{\prime}=\left(\Sigma, Q^{\prime},\left\{q_{0}\right\}, A^{\prime}, \delta^{\prime}\right)$, where:
$Q^{\prime}=2^{Q}, A^{\prime}=\left\{T \in Q^{\prime} \mid \exists t \in T\right.$ s.t. $\left.t \in A\right\}$, and $\delta^{\prime}(T, x)=\bigcup_{q \in T} \delta(q, x)$

Claim: If $w=w_{0} \cdots w_{k-1} \in \mathcal{L}(M)$, then $w \in \mathcal{L}\left(M^{\prime}\right)$
Because M is an NFA, $\exists\left(q_{0}, q_{1}, \ldots, q_{k}\right)$, s.t. $q_{i+1} \in \delta\left(q_{i}, w_{i}\right)$, and $q_{k} \in A$.
Let $T_{0}, T_{1}, \ldots, T_{k}$, be the states in M^{\prime} such that $T_{i+1}=\delta^{\prime}\left(T_{i}, w_{i}\right)$.
We claim that $T_{k} \in A^{\prime}$.
First, we show that $q_{i} \in T_{i}$.
Proof by induction: clearly this holds for q_{0}, since $T_{0}=\left\{q_{0}\right\}$

NFA to DFA: Formalization

Theorem

For any NFA $M=\left(\Sigma, Q, q_{0}, A, \delta\right)$, there exists a DFA, $M^{\prime}=\left(\Sigma, Q^{\prime}, S^{\prime}, A^{\prime}, \delta^{\prime}\right)$, such that $\mathcal{L}\left(M^{\prime}\right)=\mathcal{L}(M)$.

We prove it by demonstrating an algorithm that constructs M^{\prime} from M.
$M^{\prime}=\left(\Sigma, Q^{\prime},\left\{q_{0}\right\}, A^{\prime}, \delta^{\prime}\right)$, where:
$Q^{\prime}=2^{Q}, A^{\prime}=\left\{T \in Q^{\prime} \mid \exists t \in T\right.$ s.t. $\left.t \in A\right\}$, and $\delta^{\prime}(T, x)=\bigcup_{q \in T} \delta(q, x)$

Claim: If $w=w_{0} \cdots w_{k-1} \in \mathcal{L}(M)$, then $w \in \mathcal{L}\left(M^{\prime}\right)$
Because M is an NFA, $\exists\left(q_{0}, q_{1}, \ldots, q_{k}\right)$, s.t. $q_{i+1} \in \delta\left(q_{i}, w_{i}\right)$, and $q_{k} \in A$.
Let $T_{0}, T_{1}, \ldots, T_{k}$, be the states in M^{\prime} such that $T_{i+1}=\delta^{\prime}\left(T_{i}, w_{i}\right)$.
We claim that $T_{k} \in A^{\prime}$.
First, we show that $q_{i} \in T_{i}$.
Proof by induction: clearly this holds for q_{0}, since $T_{0}=\left\{q_{0}\right\}$
Assume it holds for q_{i}. Recall: $T_{i+1}=\bigcup_{q \in T_{i}} \delta\left(q, w_{i}\right)$.

NFA to DFA: Formalization

Theorem

For any NFA $M=\left(\Sigma, Q, q_{0}, A, \delta\right)$, there exists a DFA, $M^{\prime}=\left(\Sigma, Q^{\prime}, S^{\prime}, A^{\prime}, \delta^{\prime}\right)$, such that $\mathcal{L}\left(M^{\prime}\right)=\mathcal{L}(M)$.

We prove it by demonstrating an algorithm that constructs M^{\prime} from M.
$M^{\prime}=\left(\Sigma, Q^{\prime},\left\{q_{0}\right\}, A^{\prime}, \delta^{\prime}\right)$, where:
$Q^{\prime}=2^{Q}, A^{\prime}=\left\{T \in Q^{\prime} \mid \exists t \in T\right.$ s.t. $\left.t \in A\right\}$, and $\delta^{\prime}(T, x)=\bigcup_{q \in T} \delta(q, x)$

Claim: If $w=w_{0} \cdots w_{k-1} \in \mathcal{L}(M)$, then $w \in \mathcal{L}\left(M^{\prime}\right)$
Because M is an NFA, $\exists\left(q_{0}, q_{1}, \ldots, q_{k}\right)$, s.t. $q_{i+1} \in \delta\left(q_{i}, w_{i}\right)$, and $q_{k} \in A$.
Let $T_{0}, T_{1}, \ldots, T_{k}$, be the states in M^{\prime} such that $T_{i+1}=\delta^{\prime}\left(T_{i}, w_{i}\right)$.
We claim that $T_{k} \in A^{\prime}$.
First, we show that $q_{i} \in T_{i}$.
Proof by induction: clearly this holds for q_{0}, since $T_{0}=\left\{q_{0}\right\}$
Assume it holds for q_{i}. Recall: $T_{i+1}=\bigcup_{q \in T_{i}} \delta\left(q, w_{i}\right)$.
Since $q_{i+1} \in \delta\left(q_{i}, w_{i}\right)$, and $q_{i} \in T_{i}$, it follows that $q_{i+1} \in T_{i+1}$.

NFA to DFA: Formalization

Theorem

For any NFA $M=\left(\Sigma, Q, q_{0}, A, \delta\right)$, there exists a DFA, $M^{\prime}=\left(\Sigma, Q^{\prime}, S^{\prime}, A^{\prime}, \delta^{\prime}\right)$, such that $\mathcal{L}\left(M^{\prime}\right)=\mathcal{L}(M)$.

We prove it by demonstrating an algorithm that constructs M^{\prime} from M.
$M^{\prime}=\left(\Sigma, Q^{\prime},\left\{q_{0}\right\}, A^{\prime}, \delta^{\prime}\right)$, where:
$Q^{\prime}=2^{Q}, A^{\prime}=\left\{T \in Q^{\prime} \mid \exists t \in T\right.$ s.t. $\left.t \in A\right\}$, and $\delta^{\prime}(T, x)=\bigcup_{q \in T} \delta(q, x)$

Claim: If $w=w_{0} \cdots w_{k-1} \in \mathcal{L}(M)$, then $w \in \mathcal{L}\left(M^{\prime}\right)$
Because M is an NFA, $\exists\left(q_{0}, q_{1}, \ldots, q_{k}\right)$, s.t. $q_{i+1} \in \delta\left(q_{i}, w_{i}\right)$, and $q_{k} \in A$.
Let $T_{0}, T_{1}, \ldots, T_{k}$, be the states in M^{\prime} such that $T_{i+1}=\delta^{\prime}\left(T_{i}, w_{i}\right)$.
We claim that $T_{k} \in A^{\prime}$.
First, we show that $q_{i} \in T_{i}$.
Proof by induction: clearly this holds for q_{0}, since $T_{0}=\left\{q_{0}\right\}$
Assume it holds for q_{i}. Recall: $T_{i+1}=\bigcup_{q \in T_{i}} \delta\left(q, w_{i}\right)$.
Since $q_{i+1} \in \delta\left(q_{i}, w_{i}\right)$, and $q_{i} \in T_{i}$, it follows that $q_{i+1} \in T_{i+1}$.
Finally, since $q_{k} \in T_{k}$, and $q_{k} \in A$, it follows that $T_{k} \in A^{\prime}$.

NFA to DFA: Formalization

Theorem

For any NFA $M=\left(\Sigma, Q, q_{0}, A, \delta\right)$, there exists a DFA, $M^{\prime}=\left(\Sigma, Q^{\prime}, S^{\prime}, A^{\prime}, \delta^{\prime}\right)$, such that $\mathcal{L}\left(M^{\prime}\right)=\mathcal{L}(M)$.

We prove it by demonstrating an algorithm that constructs M^{\prime} from M.
$M^{\prime}=\left(\Sigma, Q^{\prime},\left\{q_{0}\right\}, A^{\prime}, \delta^{\prime}\right)$, where:
$Q^{\prime}=2^{Q}, A^{\prime}=\left\{T \in Q^{\prime} \mid \exists t \in T\right.$ s.t. $\left.t \in A\right\}$, and $\delta^{\prime}(T, x)=\bigcup_{q \in T} \delta(q, x)$

NFA to DFA: Formalization

Theorem

For any NFA $M=\left(\Sigma, Q, q_{0}, A, \delta\right)$, there exists a DFA, $M^{\prime}=\left(\Sigma, Q^{\prime}, S^{\prime}, A^{\prime}, \delta^{\prime}\right)$, such that $\mathcal{L}\left(M^{\prime}\right)=\mathcal{L}(M)$.

We prove it by demonstrating an algorithm that constructs M^{\prime} from M.
$M^{\prime}=\left(\Sigma, Q^{\prime},\left\{q_{0}\right\}, A^{\prime}, \delta^{\prime}\right)$, where:
$Q^{\prime}=2^{Q}, A^{\prime}=\left\{T \in Q^{\prime} \mid \exists t \in T\right.$ s.t. $\left.t \in A\right\}$, and $\delta^{\prime}(T, x)=\bigcup_{q \in T} \delta(q, x)$
Claim: If $w=w_{0} \cdots w_{k-1} \in \mathcal{L}\left(M^{\prime}\right)$, then $w \in \mathcal{L}(M)$

NFA to DFA: Formalization

Theorem

For any NFA $M=\left(\Sigma, Q, q_{0}, A, \delta\right)$, there exists a DFA, $M^{\prime}=\left(\Sigma, Q^{\prime}, S^{\prime}, A^{\prime}, \delta^{\prime}\right)$, such that $\mathcal{L}\left(M^{\prime}\right)=\mathcal{L}(M)$.

We prove it by demonstrating an algorithm that constructs M^{\prime} from M. $M^{\prime}=\left(\Sigma, Q^{\prime},\left\{q_{0}\right\}, A^{\prime}, \delta^{\prime}\right)$, where: $Q^{\prime}=2^{Q}, A^{\prime}=\left\{T \in Q^{\prime} \mid \exists t \in T\right.$ s.t. $\left.t \in A\right\}$, and $\delta^{\prime}(T, x)=\bigcup_{q \in T} \delta(q, x)$
Claim: If $w=w_{0} \cdots w_{k-1} \in \mathcal{L}\left(M^{\prime}\right)$, then $w \in \mathcal{L}(M)$ Let T_{0}, \ldots, T_{k} be the sequence of states such that $T_{i+1}=\delta^{\prime}\left(T_{i}, w_{i}\right)$.

NFA to DFA: Formalization

Theorem

For any NFA $M=\left(\Sigma, Q, q_{0}, A, \delta\right)$, there exists a DFA, $M^{\prime}=\left(\Sigma, Q^{\prime}, S^{\prime}, A^{\prime}, \delta^{\prime}\right)$, such that $\mathcal{L}\left(M^{\prime}\right)=\mathcal{L}(M)$.

We prove it by demonstrating an algorithm that constructs M^{\prime} from M. $M^{\prime}=\left(\Sigma, Q^{\prime},\left\{q_{0}\right\}, A^{\prime}, \delta^{\prime}\right)$, where: $Q^{\prime}=2^{Q}, A^{\prime}=\left\{T \in Q^{\prime} \mid \exists t \in T\right.$ s.t. $\left.t \in A\right\}$, and $\delta^{\prime}(T, x)=\bigcup_{q \in T} \delta(q, x)$

Claim: If $w=w_{0} \cdots w_{k-1} \in \mathcal{L}\left(M^{\prime}\right)$, then $w \in \mathcal{L}(M)$
Let T_{0}, \ldots, T_{k} be the sequence of states such that $T_{i+1}=\delta^{\prime}\left(T_{i}, w_{i}\right)$. Claim $\exists\left(q_{0}, \ldots, q_{k}\right)$, such that $q_{i} \in Q, q_{i+1} \in \delta\left(q_{i}, w_{i}\right)$, and $q_{k} \in A$.

NFA to DFA: Formalization

Theorem

For any NFA $M=\left(\Sigma, Q, q_{0}, A, \delta\right)$, there exists a DFA, $M^{\prime}=\left(\Sigma, Q^{\prime}, S^{\prime}, A^{\prime}, \delta^{\prime}\right)$, such that $\mathcal{L}\left(M^{\prime}\right)=\mathcal{L}(M)$.

We prove it by demonstrating an algorithm that constructs M^{\prime} from M.
$M^{\prime}=\left(\Sigma, Q^{\prime},\left\{q_{0}\right\}, A^{\prime}, \delta^{\prime}\right)$, where:
$Q^{\prime}=2^{Q}, A^{\prime}=\left\{T \in Q^{\prime} \mid \exists t \in T\right.$ s.t. $\left.t \in A\right\}$, and $\delta^{\prime}(T, x)=\bigcup_{q \in T} \delta(q, x)$

Claim: If $w=w_{0} \cdots w_{k-1} \in \mathcal{L}\left(M^{\prime}\right)$, then $w \in \mathcal{L}(M)$
Let T_{0}, \ldots, T_{k} be the sequence of states such that $T_{i+1}=\delta^{\prime}\left(T_{i}, w_{i}\right)$.
Claim $\exists\left(q_{0}, \ldots, q_{k}\right)$, such that $q_{i} \in Q, q_{i+1} \in \delta\left(q_{i}, w_{i}\right)$, and $q_{k} \in A$.
We start by choosing q_{k} and work backwards.
To choose q_{k}, note that because $T_{k} \in A^{\prime}, \exists q_{k} \in T_{k}$ s.t. $q_{k} \in A$. Choose any such q_{k}.

NFA to DFA: Formalization

Theorem

For any NFA $M=\left(\Sigma, Q, q_{0}, A, \delta\right)$, there exists a DFA, $M^{\prime}=\left(\Sigma, Q^{\prime}, S^{\prime}, A^{\prime}, \delta^{\prime}\right)$, such that $\mathcal{L}\left(M^{\prime}\right)=\mathcal{L}(M)$.

We prove it by demonstrating an algorithm that constructs M^{\prime} from M.
$M^{\prime}=\left(\Sigma, Q^{\prime},\left\{q_{0}\right\}, A^{\prime}, \delta^{\prime}\right)$, where:
$Q^{\prime}=2^{Q}, A^{\prime}=\left\{T \in Q^{\prime} \mid \exists t \in T\right.$ s.t. $\left.t \in A\right\}$, and $\delta^{\prime}(T, x)=\bigcup_{q \in T} \delta(q, x)$

Claim: If $w=w_{0} \cdots w_{k-1} \in \mathcal{L}\left(M^{\prime}\right)$, then $w \in \mathcal{L}(M)$
Let T_{0}, \ldots, T_{k} be the sequence of states such that $T_{i+1}=\delta^{\prime}\left(T_{i}, w_{i}\right)$.
Claim $\exists\left(q_{0}, \ldots, q_{k}\right)$, such that $q_{i} \in Q, q_{i+1} \in \delta\left(q_{i}, w_{i}\right)$, and $q_{k} \in A$.
We start by choosing q_{k} and work backwards.
To choose q_{k}, note that because $T_{k} \in A^{\prime}, \exists q_{k} \in T_{k}$ s.t. $q_{k} \in A$. Choose any such q_{k}. For $i<k$, assume q_{i+1} has already be chosen.

NFA to DFA: Formalization

Theorem

For any NFA $M=\left(\Sigma, Q, q_{0}, A, \delta\right)$, there exists a DFA, $M^{\prime}=\left(\Sigma, Q^{\prime}, S^{\prime}, A^{\prime}, \delta^{\prime}\right)$, such that $\mathcal{L}\left(M^{\prime}\right)=\mathcal{L}(M)$.

We prove it by demonstrating an algorithm that constructs M^{\prime} from M.
$M^{\prime}=\left(\Sigma, Q^{\prime},\left\{q_{0}\right\}, A^{\prime}, \delta^{\prime}\right)$, where:
$Q^{\prime}=2^{Q}, A^{\prime}=\left\{T \in Q^{\prime} \mid \exists t \in T\right.$ s.t. $\left.t \in A\right\}$, and $\delta^{\prime}(T, x)=\bigcup_{q \in T} \delta(q, x)$

Claim: If $w=w_{0} \cdots w_{k-1} \in \mathcal{L}\left(M^{\prime}\right)$, then $w \in \mathcal{L}(M)$
Let T_{0}, \ldots, T_{k} be the sequence of states such that $T_{i+1}=\delta^{\prime}\left(T_{i}, w_{i}\right)$.
Claim $\exists\left(q_{0}, \ldots, q_{k}\right)$, such that $q_{i} \in Q, q_{i+1} \in \delta\left(q_{i}, w_{i}\right)$, and $q_{k} \in A$.
We start by choosing q_{k} and work backwards.
To choose q_{k}, note that because $T_{k} \in A^{\prime}, \exists q_{k} \in T_{k}$ s.t. $q_{k} \in A$. Choose any such q_{k}. For $i<k$, assume q_{i+1} has already be chosen.
Since $T_{i+1}=\bigcup_{q \in T_{i}} \delta\left(q, w_{i}\right)$, there exists some $q_{i} \in T_{i}$ such that $q_{i+1} \in \delta\left(q_{i}, w_{i}\right)$.

NFA to DFA: Formalization

Theorem

For any NFA $M=\left(\Sigma, Q, q_{0}, A, \delta\right)$, there exists a DFA, $M^{\prime}=\left(\Sigma, Q^{\prime}, S^{\prime}, A^{\prime}, \delta^{\prime}\right)$, such that $\mathcal{L}\left(M^{\prime}\right)=\mathcal{L}(M)$.

We prove it by demonstrating an algorithm that constructs M^{\prime} from M.
$M^{\prime}=\left(\Sigma, Q^{\prime},\left\{q_{0}\right\}, A^{\prime}, \delta^{\prime}\right)$, where:
$Q^{\prime}=2^{Q}, A^{\prime}=\left\{T \in Q^{\prime} \mid \exists t \in T\right.$ s.t. $\left.t \in A\right\}$, and $\delta^{\prime}(T, x)=\bigcup_{q \in T} \delta(q, x)$

Claim: If $w=w_{0} \cdots w_{k-1} \in \mathcal{L}\left(M^{\prime}\right)$, then $w \in \mathcal{L}(M)$
Let T_{0}, \ldots, T_{k} be the sequence of states such that $T_{i+1}=\delta^{\prime}\left(T_{i}, w_{i}\right)$.
Claim $\exists\left(q_{0}, \ldots, q_{k}\right)$, such that $q_{i} \in Q, q_{i+1} \in \delta\left(q_{i}, w_{i}\right)$, and $q_{k} \in A$.
We start by choosing q_{k} and work backwards.
To choose q_{k}, note that because $T_{k} \in A^{\prime}, \exists q_{k} \in T_{k}$ s.t. $q_{k} \in A$. Choose any such q_{k}. For $i<k$, assume q_{i+1} has already be chosen.
Since $T_{i+1}=\bigcup_{q \in T_{i}} \delta\left(q, w_{i}\right)$, there exists some $q_{i} \in T_{i}$ such that $q_{i+1} \in \delta\left(q_{i}, w_{i}\right)$. Choose any such q_{i}, and repeat.

NFA to DFA: Formalization

Theorem

For any NFA $M=\left(\Sigma, Q, q_{0}, A, \delta\right)$, there exists a DFA, $M^{\prime}=\left(\Sigma, Q^{\prime}, S^{\prime}, A^{\prime}, \delta^{\prime}\right)$, such that $\mathcal{L}\left(M^{\prime}\right)=\mathcal{L}(M)$.

We prove it by demonstrating an algorithm that constructs M^{\prime} from M.
$M^{\prime}=\left(\Sigma, Q^{\prime},\left\{q_{0}\right\}, A^{\prime}, \delta^{\prime}\right)$, where:
$Q^{\prime}=2^{Q}, A^{\prime}=\left\{T \in Q^{\prime} \mid \exists t \in T\right.$ s.t. $\left.t \in A\right\}$, and $\delta^{\prime}(T, x)=\bigcup_{q \in T} \delta(q, x)$

Claim: If $w=w_{0} \cdots w_{k-1} \in \mathcal{L}\left(M^{\prime}\right)$, then $w \in \mathcal{L}(M)$
Let T_{0}, \ldots, T_{k} be the sequence of states such that $T_{i+1}=\delta^{\prime}\left(T_{i}, w_{i}\right)$.
Claim $\exists\left(q_{0}, \ldots, q_{k}\right)$, such that $q_{i} \in Q, q_{i+1} \in \delta\left(q_{i}, w_{i}\right)$, and $q_{k} \in A$.
We start by choosing q_{k} and work backwards.
To choose q_{k}, note that because $T_{k} \in A^{\prime}, \exists q_{k} \in T_{k}$ s.t. $q_{k} \in A$. Choose any such q_{k}. For $i<k$, assume q_{i+1} has already be chosen.
Since $T_{i+1}=\bigcup_{q \in T_{i}} \delta\left(q, w_{i}\right)$, there exists some $q_{i} \in T_{i}$ such that $q_{i+1} \in \delta\left(q_{i}, w_{i}\right)$.
Choose any such q_{i}, and repeat.
Since $T_{0}=\left\{q_{0}\right\}$, we can choose q_{0} as our start state.

