Non-deterministic Finite Automata

Consider the following machine. What is different about it?

Non-deterministic Finite Automata

Consider the following machine. What is different about it?

We call this a non-deterministic finite automata (NFA).

Non-deterministic Finite Automata

Consider the following machine. What is different about it?

We call this a non-deterministic finite automata (NFA).
We say it accepts input = if and only if there exists a path that accepts .

Non-deterministic Finite Automata

Consider the following machine. What is different about it?

We call this a non-deterministic finite automata (NFA).
We say it accepts input = if and only if there exists a path that accepts .
What is the language of the above machine?

Non-deterministic Finite Automata

Consider the following machine. What is different about it?

We call this a non-deterministic finite automata (NFA).
We say it accepts input = if and only if there exists a path that accepts .
What is the language of the above machine?

5 @ L?O ié)@

NFA Example

Write a DFA that recognizes the language L = {z | z € {a,b}* and x ends with ab}.

NFA Example

Write a DFA that recognizes the language L = {z | z € {a,b}* and x ends with ab}.

b a
a
start 4.6 & Q
b

NFA Example

Write a DFA that recognizes the language L = {z | z € {a,b}* and x ends with ab}.
b

a
: 6 —(
start —
a
b

D

Write an NFA that recognizes the language L.

NFA Example

Write a DFA that recognizes the language L = {z | z € {a,b}* and x ends with ab}.

b a
a
start 4.6 & Q
b

Write an NFA that recognizes the language L.

a,b

start —(4o a @ b @

Equivalence between RG and NFA

Lemma 9.4

If L = L(G) for some regular grammar G, then there exists an NFA M such that
L =L(M).

Lemma 9.5

If L = L(M) for some NFA M, then there exists a regular grammar G such that
L = L(G).

Theorem 9.2
L is regular if and only if there exists an NFA M such that L = L(M).

Example: RG from NFA

a,b

start *é

Example: RG from NFA

a,b

start —»é a @ b @

G = ({Qo,Q1,Q2},{a, b}, qo, P), where:
P ={Qo — aQo,Qo — bQo, Qo — aQ1,Q1 — bQ2,Q2 — A}

Formalizing NFA

Given a set of elements, Q, we denote the set of all subsets of @, which we call the
power set of Q, by 29.

Formalizing NFA

Given a set of elements, Q, we denote the set of all subsets of @, which we call the
power set of Q, by 29.

Example: Q = {A, B,C},

29 = {0,{A},{B},{C},{A, B},{A,C},{B,C},{A,B,C}}

Formalizing NFA

Given a set of elements, Q, we denote the set of all subsets of @, which we call the
power set of Q, by 29.

Example: Q = {A, B,C},

29 = {0,{A}.{B},{C}.{4,B}.{A,C},{B,C}.{A,B,C}}

NFAs

An NFA, M, is a quintuple, (@, X, o, d, A), where Q, %, go and A are defined as in
DFAs, and §: Q x & — 29

Formalizing NFA

Given a set of elements, Q, we denote the set of all subsets of @, which we call the
power set of Q, by 29.

Example: Q = {A, B,C},

29 = {0,{A},{B},{C},{A, B},{A,C},{B,C},{A, B,C}}

NFAs

An NFA, M, is a quintuple, (@, X, o, d, A), where Q, %, go and A are defined as in
DFAs, and §: Q x & — 29

§ maps to a set of states, rather than a single state!

Formalizing NFA

Given a set of elements, Q, we denote the set of all subsets of @, which we call the
power set of Q, by 29.

Example: Q = {A, B,C},

29 = {0,{A},{B},{C},{A, B},{A,C},{B,C},{A,B,C}}

NFAs

An NFA, M, is a quintuple, (@, X, o, d, A), where Q, %, go and A are defined as in
DFAs, and §: Q x & — 29

0 maps to a set of states, rather than a single state!

6*
For NFA M = (Q, %, qo, 9, A), §* is a function that takes a state and a string as input
and produces a resulting set of states. That is §* : Q x ©* — 29, such that:

> for any g € Q, 8*(, A) = {q}, and
» for any ¢ € Q, any o € %, and any z € ©*,

§*(q,z0) = U d(p, o).

PES* (q,x)

NFA to DFA: Example 1

a,b

start *é

NFA to DFA: Example 1

a,b

start *é

~)

NFA to DFA: Example 1

a,b

start *é

NFA to DFA: Example 1

a,b

NFA to DFA: Example 1

a,b

NFA to DFA: Example 1

a,b

NFA to DFA: Example 1

a,b

start —{ 4o a @ b @

NFA to DFA: Example 1

a,b

NFA to DFA: Example 1

a,b

NFA to DFA: Example 1

a,b

()6 06

NFA to DFA: Example 1

a,b

()6 06

of) ()

NFA to DFA: Example 2

>. 9

NFA to DFA: Example 2
— (%) . 9

(A+M+as)(bm YA *éjﬂéyk

NFA to DFA: Example 2
— (%) . 9

(A+M+as)<bm YA *éjﬂéyg

-4

NFA to DFA: Example 2
— (%) . 9

(A+M+as)<bm YA *éjﬂéyg

O
@

NFA to DFA: Example 2
— (%) . 5

(A+M+as)<bm YA *éjﬂéyg

@)y)

NFA to DFA: Example 2
— (%) . 5

(A+M+as)<bm YA *éjﬂéyg

= >5M;’\\J
KC(Cr

NFA to DFA: Example 2
— (%) . 5

(A+M+as)<bm YA *éjﬂéyg

- ‘kﬁ‘?@}‘\)@

NFA to DFA: Example 2
— (%) . 5

(A+M+as)<bm YA *éjﬂéyg

NFA to DFA: Example 2
— (%) . 5

(A+M+as)<bm YA *éjﬂéyg
5

/\
— 47;& (41

b

NFA to DFA: Example 2
— (%) . 5

(A+M+as)<bm YA *éjﬂéyg

NFA to DFA: Example 3
>,

()
— () =

~ b
|z

@Lv@ﬁpﬂ

<

NFA to DFA: Example 3
0 ,lD O‘ﬂL

)
S@E DO

SHom (Jof\immvs o

NFA to DFA: Example 3
u L Mj

7@/*@ ()

§rm3e (o mwvs Yol

=

NFA to DFA: Example 3
>, b

()
S®m D" > (0) =

SHom Contut mwvs “ hoio

\/
-5

—

@3

1

NFA to DFA: Example 3
0 ,lD O‘ﬂL

)
S@E DO

SHom (Jof\immvs o

)
> i_j

NFA to DFA: Example 3
0 ,lD O‘ﬂL

)
S@E DO

SHom (Jof\immvs o

L
/0

= () ()
N~

NFA to DFA: Example 3
u L MJ

7@/‘@ ()

§rm3e (o M\% Yol

&o
\/ 0~
> Lw /\>
~—

NFA to DFA: Example 3
u L MJ

7@/‘@ ()

§rm3e (o M\% Yol

NFA to DFA: Example 3
u L MJ

7@/‘@ ()

§rm3e (o M\% Yol

&o
\/
o 2 P
_,> i 4 q
K_/b o

NFA to DFA: Example 3
u L MJ

7@/‘@ ()

< ng@ Contut M\% “hoe”

JUA>.

NFA to DFA: Example 3
u L MJ

7@/‘@ > (0) &=
§r(n3e LMJMM% Yol
~>L /\>A>.
L

NFA to DFA: Example 3
u L MJ

7@/‘@ ()

SHom Contut M\% “hoe”

\<,

7 R N 72

oSty
&/b >

T

no

NFA to DFA: Example 3
u L MJ

7@/‘@ ()

SHom Contut M\% “hoe”

\<,

7 R N 72

MOSICEN T
&/b >

&

\"67 T>@

NFA to DFA: Example 3
u L MJ

7@/‘@ ()

SHom Contut M\% “hoe”

va) m X o
ST Tl ™
=

&
Re@ =Y

NFA to DFA: Example 3
u L MJ

7@/‘@ ()

SHom Contut M\% “hoe”

NFA to DFA: Example 3
u L Mj

>@/‘O > () =
swmge w\Jrvas S b
S

/'\w

NFA to DFA: Formalization

Theorem

For any NFA M = (2, Q, q0, A, §), there exists a DFA, M’ = (%,Q’,S’, A’, '), such
that L(M') = L(M).

NFA to DFA: Formalization

Theorem

For any NFA M = (2, Q, q0, A, §), there exists a DFA, M’ = (%,Q’,S’, A’, '), such
that £L(M') = L(M).

We prove it by demonstrating an algorithm that constructs M’ from M.

NFA to DFA: Formalization

Theorem

For any NFA M = (2, Q, q0, A, §), there exists a DFA, M’ = (%,Q’,S’, A’, '), such
that L(M') = L(M).

We prove it by demonstrating an algorithm that constructs M’ from M.
M =(2,Q",{q},A’,d"), where:
Q =29 A ={TcQ'|3tcTst. tc A}, and

NFA to DFA: Formalization

Theorem

For any NFA M = (2, Q, q0, A, §), there exists a DFA, M’ = (%,Q’,S’, A’, '), such
that L(M') = L(M).

We prove it by demonstrating an algorithm that constructs M’ from M.
M =(2,Q",{q},A’,d"), where:

Q =29 A ={TcQ'|3tcTst. tc A}, and

§'(T,x) = Uger 6(a, @)

NFA to DFA: Formalization

Theorem

For any NFA M = (2, Q, q0, A, §), there exists a DFA, M’ = (%,Q’,S’, A’, '), such
that L(M') = L(M).

We prove it by demonstrating an algorithm that constructs M’ from M.
M =(2,Q",{q},A’,d"), where:

Q =29 A ={TcQ'|3tcTst. tc A}, and

§'(T,) = Uger (g;)

Claim: If w =wqg - wk_1 € L(M), then w € L(M')

NFA to DFA: Formalization

Theorem

For any NFA M = (2, Q, q0, A, §), there exists a DFA, M’ = (%,Q’,S’, A’, '), such
that L(M') = L(M).

We prove it by demonstrating an algorithm that constructs M’ from M.
M =(2,Q",{q},A’,d"), where:

Q =29 A ={TcQ'|3tcTst. tc A}, and

§'(T,) = Uger (g;)

Claim: If w =wqg - wk_1 € L(M), then w € L(M')
Because M is an NFA, 3(qo, q1,---,qk), s-t. ¢i+1 € 0(gs, w;), and g, € A.

NFA to DFA: Formalization

Theorem

For any NFA M = (2, Q, q0, A, §), there exists a DFA, M’ = (%,Q’,S’, A’, '), such
that L(M') = L(M).

We prove it by demonstrating an algorithm that constructs M’ from M.
M =(2,Q",{q},A’,d"), where:

Q =29 A ={TcQ'|3tcTst. tc A}, and

§'(T,) = Uger (g;)

Claim: If w =wqg - wk_1 € L(M), then w € L(M')

Because M is an NFA, 3(qo, q1,---,qk), s-t. ¢i+1 € 0(gs, w;), and g, € A.
Let To,Th,. .., Ty, be the states in M’ such that T; 41 = §' (T}, w;).

We claim that T}, € A’.

NFA to DFA: Formalization

Theorem

For any NFA M = (2, Q, q0, A, §), there exists a DFA, M’ = (%,Q’,S’, A’, '), such
that L(M') = L(M).

We prove it by demonstrating an algorithm that constructs M’ from M.
M =(2,Q",{q},A’,d"), where:

Q =29 A ={TcQ'|3tcTst. tc A}, and

§'(T,) = Uger (g;)

Claim: If w =wqg - wk_1 € L(M), then w € L(M')

Because M is an NFA, 3(qo, q1,---,qk), s-t. ¢i+1 € 0(gs, w;), and g, € A.
Let To,Th,. .., Ty, be the states in M’ such that T; 41 = §' (T}, w;).

We claim that T}, € A’.

First, we show that ¢; € T;.

NFA to DFA: Formalization

Theorem

For any NFA M = (2, Q, q0, A, §), there exists a DFA, M’ = (%,Q’,S’, A’, '), such
that L(M') = L(M).

We prove it by demonstrating an algorithm that constructs M’ from M.
M =(2,Q",{q},A’,d"), where:

Q =29 A ={TcQ'|3tcTst. tc A}, and

§'(T,) = Uger (g;)

Claim: If w =wqg - wk_1 € L(M), then w € L(M')

Because M is an NFA, 3(qo, q1,---,qk), s-t. ¢i+1 € 0(gs, w;), and g, € A.
Let To,Th,. .., Ty, be the states in M’ such that T; 41 = §' (T}, w;).

We claim that T}, € A’.

First, we show that ¢; € T;.

Proof by induction: clearly this holds for go, since Tp = {qo}

NFA to DFA: Formalization

Theorem

For any NFA M = (2, Q, q0, A, §), there exists a DFA, M’ = (%,Q’,S’, A’, '), such
that L(M') = L(M).

We prove it by demonstrating an algorithm that constructs M’ from M.
M =(2,Q",{q},A’,d"), where:

Q =29 A ={TcQ'|3tcTst. tc A}, and

§'(T,) = Uger (g;)

Claim: If w =wqg - wk_1 € L(M), then w € L(M')

Because M is an NFA, 3(qo, q1,---,qk), s-t. ¢i+1 € 0(gs, w;), and g, € A.
Let To,Th,. .., Ty, be the states in M’ such that T; 41 = §' (T}, w;).

We claim that T}, € A’.

First, we show that ¢; € T;.

Proof by induction: clearly this holds for go, since Tp = {qo}

Assume it holds for g;. Recall: 511 = Uger, 6(q, wi).

NFA to DFA: Formalization

Theorem

For any NFA M = (2, Q, q0, A, §), there exists a DFA, M’ = (%,Q’,S’, A’, '), such
that L(M') = L(M).

We prove it by demonstrating an algorithm that constructs M’ from M.
M =(2,Q",{q},A’,d"), where:

Q =29 A ={TcQ'|3tcTst. tc A}, and

5'(T,x) = U, er 0(q @)

Claim: If w =wqg - wk_1 € L(M), then w € L(M')

Because M is an NFA, 3(qo, q1,---,qk), s-t. ¢i+1 € 0(gs, w;), and g, € A.
Let To,Th,. .., Ty, be the states in M’ such that T; 41 = §' (T}, w;).

We claim that T}, € A’.

First, we show that ¢; € T;.

Proof by induction: clearly this holds for go, since Tp = {qo}

Assume it holds for g;. Recall: 511 = Uger, 6(q, wi).

Since qi+1 € 6(qi,wi), and q; € T;, it follows that qi+1 € Tiq1.

NFA to DFA: Formalization

Theorem

For any NFA M = (2, Q, q0, A, §), there exists a DFA, M’ = (%,Q’,S’, A’, '), such
that L(M') = L(M).

We prove it by demonstrating an algorithm that constructs M’ from M.
M =(2,Q",{q},A’,d"), where:

Q =29 A ={TcQ'|3tcTst. tc A}, and

5'(T,x) = U, er 0(q @)

Claim: If w =wqg - wk_1 € L(M), then w € L(M')

Because M is an NFA, 3(qo, q1,---,qk), s-t. ¢i+1 € 0(gs, w;), and g, € A.
Let To,Th,. .., Ty, be the states in M’ such that T; 41 = §' (T}, w;).

We claim that T}, € A’.

First, we show that ¢; € T;.

Proof by induction: clearly this holds for go, since Tp = {qo}

Assume it holds for g;. Recall: 511 = Uger, 6(q, wi).

Since qi+1 € 6(qi,wi), and q; € T;, it follows that qi+1 € Tiq1.

Finally, since q;, € T, and q € A, it follows that T}, € A’.

NFA to DFA: Formalization

Theorem

For any NFA M = (2, Q, q0, A, §), there exists a DFA, M’ = (%,Q’,S’, A’, '), such
that L(M') = L(M).

We prove it by demonstrating an algorithm that constructs M’ from M.
M =(2,Q",{q},A’,d"), where:

Q =29 A ={TcQ'|3tcTst. tc A}, and

§'(T,x) = Uger 6(a, @)

NFA to DFA: Formalization

Theorem

For any NFA M = (2, Q, q0, A, §), there exists a DFA, M’ = (%,Q’,S’, A’, '), such
that L(M') = L(M).

We prove it by demonstrating an algorithm that constructs M’ from M.
M =(2,Q",{q},A’,d"), where:

Q =29 A ={TcQ'|3tcTst. tc A}, and

§'(T,) = Uger (g;)

Claim: If w =wqg - wk_1 € L(M'), then w € L(M)

NFA to DFA: Formalization

Theorem

For any NFA M = (2, Q, q0, A, §), there exists a DFA, M’ = (%,Q’,S’, A’, '), such
that L(M') = L(M).

We prove it by demonstrating an algorithm that constructs M’ from M.
M =(2,Q",{q},A’,d"), where:

Q =29 A ={TcQ'|3tcTst. tc A}, and

§'(T,) = Uger (g;)

Claim: If w =wqg - wk_1 € L(M'), then w € L(M)
Let Ty, ..., Ty be the sequence of states such that T; 1 = &' (T}, w;).

NFA to DFA: Formalization

Theorem

For any NFA M = (2, Q, q0, A, §), there exists a DFA, M’ = (%,Q’,S’, A’, '), such
that L(M') = L(M).

We prove it by demonstrating an algorithm that constructs M’ from M.
M =(2,Q",{q},A’,d"), where:

Q =29 A ={TcQ'|3tcTst. tc A}, and

§'(T,) = Uger (g;)

Claim: If w =wqg - wk_1 € L(M'), then w € L(M)
Let Ty, ..., Ty be the sequence of states such that T; 1 = &' (T}, w;).
Claim 3(qo, . .., qk), such that ¢; € Q, ¢i+1 € 6(gi, w;), and g € A.

NFA to DFA: Formalization

Theorem

For any NFA M = (2, Q, q0, A, §), there exists a DFA, M’ = (%,Q’,S’, A’, '), such
that L(M') = L(M).

We prove it by demonstrating an algorithm that constructs M’ from M.
M =(2,Q",{q},A’,d"), where:

Q =29 A ={TcQ'|3tcTst. tc A}, and

§'(T,) = Uger (g;)

Claim: If w =wqg - wk_1 € L(M'), then w € L(M)

Let Ty, ..., Ty be the sequence of states such that T; 1 = &' (T}, w;).

Claim 3(qo, . .., qk), such that ¢; € Q, ¢i+1 € 6(gi, w;), and g € A.

We start by choosing g and work backwards.

To choose qy, note that because Ty, € A’, 3q; € Ty, s.t. qr € A. Choose any such g.

NFA to DFA: Formalization

Theorem

For any NFA M = (2, Q, q0, A, §), there exists a DFA, M’ = (%,Q’,S’, A’, '), such
that L(M') = L(M).

We prove it by demonstrating an algorithm that constructs M’ from M.
M =(2,Q",{q},A’,d"), where:

Q =29 A ={TcQ'|3tcTst. tc A}, and

§'(T,) = Uger (g;)

Claim: If w =wqg - wk_1 € L(M'), then w € L(M)

Let Ty, ..., Ty be the sequence of states such that T; 1 = &' (T}, w;).

Claim 3(qo, ..., qx), such that q; € Q, ¢i+1 € §(qi,w;), and ¢ € A.

We start by choosing g and work backwards.

To choose qy, note that because Ty, € A’, 3q; € Ty, s.t. qr € A. Choose any such g.
For i < k, assume g;41 has already be chosen.

NFA to DFA: Formalization

Theorem

For any NFA M = (2, Q, q0, A, §), there exists a DFA, M’ = (%,Q’,S’, A’, '), such
that L(M') = L(M).

We prove it by demonstrating an algorithm that constructs M’ from M.
M =(2,Q",{q},A’,d"), where:

Q =29 A ={TcQ'|3tcTst. tc A}, and

5'(T,x) = U, er 0(q @)

Claim: If w =wqg - wk_1 € L(M'), then w € L(M)

Let Ty, ..., Ty be the sequence of states such that T; 1 = &' (T}, w;).

Claim 3(qo, ..., qx), such that q; € Q, ¢i+1 € §(qi,w;), and ¢ € A.

We start by choosing g and work backwards.

To choose qy, note that because Ty, € A’, 3q; € Ty, s.t. qr € A. Choose any such g.
For i < k, assume g;41 has already be chosen.

Since Tj41 = quTi d(g,w;), there exists some ¢; € T; such that g;+1 € 6(q;, w;).

NFA to DFA: Formalization

Theorem

For any NFA M = (2, Q, q0, A, §), there exists a DFA, M’ = (%,Q’,S’, A’, '), such
that L(M') = L(M).

We prove it by demonstrating an algorithm that constructs M’ from M.
M =(2,Q",{q},A’,d"), where:

Q =29 A ={TcQ'|3tcTst. tc A}, and

5'(T,x) = U, er 0(q @)

Claim: If w =wqg - wk_1 € L(M'), then w € L(M)

Let Ty, ..., Ty be the sequence of states such that T; 1 = &' (T}, w;).

Claim 3(qo, ..., qx), such that q; € Q, ¢i+1 € §(qi,w;), and ¢ € A.

We start by choosing g and work backwards.

To choose qy, note that because Ty, € A’, 3q; € Ty, s.t. qr € A. Choose any such g.
For i < k, assume g;41 has already be chosen.

Since Tj41 = quTi d(g,w;), there exists some ¢; € T; such that g;+1 € 6(q;, w;).
Choose any such g;, and repeat.

NFA to DFA: Formalization

Theorem

For any NFA M = (2, Q, q0, A, §), there exists a DFA, M’ = (%,Q’,S’, A’, '), such
that L(M') = L(M).

We prove it by demonstrating an algorithm that constructs M’ from M.
M =(2,Q",{q},A’,d"), where:

Q =29 A ={TcQ'|3tcTst. tc A}, and

5'(T,x) = U, er 0(q @)

Claim: If w =wqg - wk_1 € L(M'), then w € L(M)

Let Ty, ..., Ty be the sequence of states such that T; 1 = &' (T}, w;).

Claim 3(qo, ..., qx), such that q; € Q, ¢i+1 € §(qi,w;), and ¢ € A.

We start by choosing g and work backwards.

To choose qy, note that because Ty, € A’, 3q; € Ty, s.t. qr € A. Choose any such g.
For i < k, assume g;41 has already be chosen.

Since Tj41 = UqETi d(g,w;), there exists some ¢; € T; such that g;+1 € 6(q;, w;).
Choose any such g;, and repeat.

Since Ty = {qo}, we can choose go as our start state.

