
Non-deterministic Finite Automata

Consider the following machine. What is different about it?

We call this a non-deterministic finite automata (NFA).
We say it accepts input x if and only if there exists a path that accepts x.
What is the language of the above machine?
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NFA Example

Write a DFA that recognizes the language L = {x | x ∈ {a, b}∗ and x ends with ab}.

Write an NFA that recognizes the language L.
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Equivalence between RG and NFA

Lemma 9.4

If L = L(G) for some regular grammar G, then there exists an NFA M such that
L = L(M).

Lemma 9.5

If L = L(M) for some NFA M , then there exists a regular grammar G such that
L = L(G).

Theorem 9.2

L is regular if and only if there exists an NFA M such that L = L(M).



Example: RG from NFA

G = ({Q0, Q1, Q2}, {a, b}, q0, P ), where:
P = {Q0 → aQ0, Q0 → bQ0, Q0 → aQ1, Q1 → bQ2, Q2 → Λ}
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Formalizing NFA

Given a set of elements, Q, we denote the set of all subsets of Q, which we call the
power set of Q, by 2Q.

Example: Q = {A,B,C},
2Q =

{
∅, {A}, {B}, {C}, {A,B}, {A,C}, {B,C}, {A,B,C}

}
NFAs

An NFA, M , is a quintuple, (Q,Σ, q0, δ, A), where Q,Σ, q0 and A are defined as in
DFAs, and δ : Q× Σ→ 2Q

δ maps to a set of states, rather than a single state!

δ∗

For NFA M = (Q,Σ, q0, δ, A), δ∗ is a function that takes a state and a string as input
and produces a resulting set of states. That is δ∗ : Q× Σ∗ → 2Q, such that:

I for any q ∈ Q, δ∗(q,Λ) = {q}, and

I for any q ∈ Q, any σ ∈ Σ, and any x ∈ Σ∗,

δ∗(q, xσ) =
⋃

p∈δ∗(q,x)
δ(p, σ).
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NFA to DFA: Formalization

Theorem

For any NFA M = (Σ, Q, q0, A, δ), there exists a DFA, M ′ = (Σ, Q′, S′, A′, δ′), such
that L(M ′) = L(M).

We prove it by demonstrating an algorithm that constructs M ′ from M .
M ′ = (Σ, Q′, {q0}, A′, δ′), where:
Q′ = 2Q, A′ = {T ∈ Q′ | ∃t ∈ T s.t. t ∈ A}, and
δ′(T, x) =

⋃
q∈T δ(q, x)

Claim: If w = w0 · · ·wk−1 ∈ L(M), then w ∈ L(M ′)
Because M is an NFA, ∃(q0, q1, . . . , qk), s.t. qi+1 ∈ δ(qi, wi), and qk ∈ A.
Let T0, T1, . . . , Tk, be the states in M ′ such that Ti+1 = δ′(Ti, wi).
We claim that Tk ∈ A′.
First, we show that qi ∈ Ti.
Proof by induction: clearly this holds for q0, since T0 = {q0}
Assume it holds for qi. Recall: Ti+1 =

⋃
q∈Ti

δ(q, wi).

Since qi+1 ∈ δ(qi, wi), and qi ∈ Ti, it follows that qi+1 ∈ Ti+1.
Finally, since qk ∈ Tk, and qk ∈ A, it follows that Tk ∈ A′.
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