Non-Deterministic Push Down Automata

Let’s give our automata memory access! (For now, just a stack.)
Non-Deterministic Push Down Automata

Let's give our automata memory access! (For now, just a stack.)
Non-Deterministic Push Down Automata

Let’s give our automata memory access! (For now, just a stack.)
Non-Deterministic Push Down Automata

Let’s give our automata memory access! (For now, just a stack.)

\[\Gamma \] is the stack alphabet. In this case, \(\Gamma = \{ \$, X \} \)
Non-Deterministic Push Down Automata

Let’s give our automata memory access! (For now, just a stack.)

Γ is the stack alphabet. In this case, $\Gamma = \{\$, X\}$

For transition labeled a, X/XX:

- You can take that transition only if the next input character is a, AND the top of the stack holds X.
- You remove the X and replace it with XX.
Non-Deterministic Push Down Automata

Let’s give our automata memory access! (For now, just a stack.)

Γ is the stack alphabet. In this case, \(\Gamma = \{\$, X\} \)

For transition labeled \(a, \Lambda/XX \):

- You can take that transition if the next input character is \(a \), *regardless* of what’s on the stack (it does not have to be empty).
- You remove nothing from the stack and push \(XX \).
Non-Deterministic Push Down Automata

Let’s give our automata memory access! (For now, just a stack.)

\[\Gamma \] is the stack alphabet. In this case, \(\Gamma = \{\$, X\} \)

For transition labeled \(b, X/\Lambda \):

- You can take that transition if the next input character is \(b \), AND the top of the stack holds \(X \).
- You pop the \(X \) and push nothing.

\(\Gamma \) is the stack alphabet. In this case, \(\Gamma = \{\$, X\} \)

For transition labeled \(b, X/\Lambda \):
Non-Deterministic Push Down Automata

Let's give our automata memory access! (For now, just a stack.)

Γ is the stack alphabet. In this case, $\Gamma = \{\$, X\}$

What is the language of this NPDA?
NPDA: Palindromes
NPDA: Palindromes

\[
\rightarrow \quad a, \lambda / A \\
\frac{b, \lambda / B}{a, \lambda / a} \\
b, \lambda / b
\]
NPDA: Palindromes
NPDA: Palindromes

\[
\begin{align*}
\rightarrow & \quad \overset{a, \varepsilon/A}{\overset{b, \varepsilon/B}{\overset{a, \varepsilon/a}{\overset{b, \varepsilon/b}{\overset{a, a/\varepsilon}{\overset{b, b/\varepsilon}{\text{accept}}}}}}}
\end{align*}
\]
NPDA: Palindromes

\[
\begin{align*}
\rightarrow & a, \lambda / A \\
\quad & b, \lambda / B \\
\rightarrow & a, a / \lambda \\
\quad & b, b / \lambda \\
\rightarrow & a, A / \lambda \\
\quad & b, B / \lambda
\end{align*}
\]
NPDA: Palindromes
Separating DPDAs and NPDAs

Theorem
There exists a context free language that is not recognizable by any deterministic push-down automata.

$L = \{ a^i b^i | i > 0 \} \cup \{ a^i b^{2i} | i > 0 \}$

Examples: $aabb, aabbbb, aaabbb, aaabbbbbb \in L$

Exercise: prove that this a CFL.
Separating DPDAs and NPDAs

Theorem

There exists a context free language that is not recognizable by any deterministic push-down automata.

\[L = \{ a^i b^i \mid i > 0 \} \cup \{ a^i b^{2i} \mid i > 0 \} \]
Theorem

There exists a context free language that is not recognizable by any deterministic push-down automata.

\[L = \{a^ib^i \mid i > 0\} \cup \{a^ib^{2i} \mid i > 0\} \]

Examples: \(aabb, aabbbb, aaabbb, aaabbbbb \in L\)

Exercise: prove that this a CFL.

Suppose some DPDA, \(M\), recognizes \(L\).

We will show how to use \(M\) to construct DPDA \(M'\) that recognizes \(\{a^ib^ic^i \mid i > 0\}\).

Since we know that this language is not a CFL, we've arrived at a contradiction.

Therefore, \(M\) must not exist.
Separating DPDAs and NPDAs

Theorem

There exists a context free language that is not recognizable by any deterministic push-down automata.

\[L = \{ a^i b^i \mid i > 0 \} \cup \{ a^i b^{2i} \mid i > 0 \} \]

Examples: \(aabb, aabbbb, aaabbb, aaabbbbb \in L \)

Exercise: prove that this a CFL.
Separating DPDAs and NPDAs

Theorem

There exists a context free language that is not recognizable by any deterministic push-down automata.

\[L = \{a^i b^i | i > 0\} \cup \{a^i b^{2i} | i > 0\}\]

Examples: \(aabb, aabbbb, aaabbb, aaabbbbb \in L\)

Exercise: prove that this a CFL.

Suppose some DPDA, \(M\), recognizes \(L\).
Separating DPDAs and NPDAs

Theorem

There exists a context free language that is not recognizable by any deterministic push-down automata.

$L = \{a^i b^i \mid i > 0\} \cup \{a^i b^{2i} \mid i > 0\}$ Examples: $aabb, aabbbb, aaabbb, aaabbbbbb \in L$

Exercise: prove that this a CFL.

Suppose some DPDA, M, recognizes L.

We will show how to use M to construct DPDA M' that recognizes $\{a^i b^i c^i \mid i > 0\}$.
Separating DPDAs and NPDAs

Theorem

There exists a context free language that is not recognizable by any deterministic push-down automata.

$L = \{a^i b^i \mid i > 0\} \cup \{a^i b^{2i} \mid i > 0\}$

Examples: $aabb, aabbbb, aaabbb, aaabbbbbbb \in L$

Exercise: prove that this a CFL.

Suppose some DPDA, M, recognizes L.

We will show how to use M to construct DPDA M' that recognizes $\{a^i b^i c^i \mid i > 0\}$.

Since we know that this language is not a CFL, we’ve arrived at a contradiction.

Therefore, M must not exist.
Separating DPDAs and NPDAs

Theorem

There exists a context free language that is not recognizable by any *deterministic* push-down automata.

$L = \{a^i b^i \mid i > 0\} \cup \{a^i b^{2i} \mid i > 0\}$

Examples: $aabb, aabbbb, aaabbb, aaabbbbb$ \(\in L \)

Exercise: prove that this a CFL.

Suppose some DPDA, M, recognizes L. Take 2 copies of M: M_1, M_2
Separating DPDAs and NPDAs

Theorem

There exists a context free language that is not recognizable by any deterministic push-down automata.

\[L = \{a^i b^i \mid i > 0\} \cup \{a^i b^{2i} \mid i > 0\} \]

Examples: \(aabb, aabbbb, aaabbb, aaabbbb \in L\)

Exercise: prove that this a CFL.

Suppose some DPDA, \(M\), recognizes \(L\). Take 2 copies of \(M\): \(M_1, M_2\)

We construct \(M'\) by combining the 2 copies in a particular way.
We claim \(M'\) recognizes \(\{a^i b^i c^i \mid i > 0\}\)
Separating DPDAs and NPDAs

\[L = \{a^i b^i \mid i > 0\} \cup \{a^i b^{2i} \mid i > 0\} \]

Examples: \(aabb, aabbbb, aaabbb, aaabbbbb\in L\)

Suppose some DPDA, \(M\), recognizes \(L\). Take 2 copies of \(M\): \(M_1, M_2\)

We construct \(M'\) by combining the 2 copies in a particular way.

We claim \(M'\) recognizes \(\{a^i b^i c^i \mid i > 0\}\)

1. The start state of \(M'\) is the start state of \(M_1\).
Separating DPDAs and NPDAs

$L = \{a^i b^i \mid i > 0\} \cup \{a^i b^{2i} \mid i > 0\}$ Examples: $aabb, aabbbb, aaabbb, aaabbbbbbb \in L$

Suppose some DPDA, M, recognizes L. Take 2 copies of M: M_1, M_2

We construct M' by combining the 2 copies in a particular way. We claim M' recognizes $\{a^i b^i c^i \mid i > 0\}$

1. The start state of M' is the start state of M_1.
2. The accepting states in M' are the accepting states of M_2 (and not M_1).
Separating DPDAs and NPDAs

\[L = \{a^i b^i \mid i > 0\} \cup \{a^i b^{2i} \mid i > 0\} \]

Examples: \(aabb, aabbbb, aaabbb, aaabbbbbb \in L\)

Suppose some DPDA, \(M\), recognizes \(L\). Take 2 copies of \(M\): \(M_1, M_2\)

We construct \(M'\) by combining the 2 copies in a particular way. We claim \(M'\) recognizes \(\{a^i b^i c^i \mid i > 0\}\)

1. The start state of \(M'\) is the start state of \(M_1\).
2. The accepting states in \(M'\) are the accepting states of \(M_2\) (and not \(M_1\)).
3. If \(M_1\) has a transition from some accepting state \(p\) to (any) state \(q\) on input character \(b\), regardless of the stack instruction, create an additional transition from \(p\) in \(M_1\) to \(q\) in \(M_2\) and label it \(c\).
Separating DPDAs and NPDAs

\[L = \{ a^i b^i \mid i > 0 \} \cup \{ a^i b^{2i} \mid i > 0 \} \]

Examples: \(aabb, aabbbb, aaabbb, aaabbbbbbb \in L \)

Suppose some DPDA, \(M \), recognizes \(L \). Take 2 copies of \(M \): \(M_1, M_2 \)

We construct \(M' \) by combining the 2 copies in a particular way.
We claim \(M' \) recognizes \(\{ a^i b^i c^i \mid i > 0 \} \)

1. The start state of \(M' \) is the start state of \(M_1 \).
2. The accepting states in \(M' \) are the accepting states of \(M_2 \) (and not \(M_1 \)).
3. If \(M_1 \) has a transition from some accepting state \(p \) to (any) state \(q \) on input character \(b \), regardless of the stack instruction, create an additional transition from \(p \) in \(M_1 \) to \(q \) in \(M_2 \) and label it \(c \).
4. In \(M_2 \), replace all \(b \)'s to \(c \)'s.
Separating DPDAs and NPDAs
Separating DPDAs and NPDAs
Separating DPDAs and NPDAs
Separating DPDAs and NPDAs
Separating DPDAs and NPDA
Separating DPDA\s and NPDA\s
Separating DPDAs and NPDAs