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Γ is the stack alphabet. In this case, Γ = {$, X}
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Non-Deterministic Push Down Automata

Let’s give our automata memory access! (For now, just a stack.)

Γ is the stack alphabet. In this case, Γ = {$, X}
For transition labeled a,X/XX:

I You can take that transition only if the next input character is a, AND the top of
the stack holds X.

I You remove the X and replace it with XX.

What is the language of this NPDA?
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Let’s give our automata memory access! (For now, just a stack.)

Γ is the stack alphabet. In this case, Γ = {$, X}
For transition labeled a,Λ/XX:

I You can take that transition if the next input character is a, regardless of what’s
on the stack (it does not have to be empty).

I You remove nothing from the stack and push XX.
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Let’s give our automata memory access! (For now, just a stack.)

Γ is the stack alphabet. In this case, Γ = {$, X}
For transition labeled b,X/Λ:

I You can take that transition if the next input character is b, AND the top of the
stack holds X.
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Separating DPDAs and NPDAs

Theorem

There exists a context free language that is not recognizable by any deterministic
push-down automata.

L = {aibi | i > 0} ∪ {aib2i | i > 0} Examples: aabb, aabbbb, aaabbb, aaabbbbbb ∈ L
Exercise: prove that this a CFL.
Suppose some DPDA, M , recognizes L.
We will show how to use M to construct DPDA M ′ that recognizes {aibici | i > 0}.
Since we know that this language is not a CFL, we’ve arrived at a contradiction.
Therefore, M must not exist.
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L = {aibi | i > 0} ∪ {aib2i | i > 0} Examples: aabb, aabbbb, aaabbb, aaabbbbbb ∈ L
Suppose some DPDA, M , recognizes L. Take 2 copies of M : M1,M2

We construct M ′ by combining the 2 copies in a particular way.
We claim M ′ recognizes {aibici | i > 0}
1. The start state of M ′ is the start state of M1.

2. The accepting states in M ′ are the accepting states of M2 (and not M1).

3. If M1 has a transition from some accepting state p to (any) state q on input
character b, regardless of the stack instruction, create an additional transition
from p in M1 to q in M2 and label it c.

4. In M2, replace all b’s to c’s.
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