Non-Deterministic Push Down Automata

Let's give our automata memory access! (For now, just a stack.)

Non-Deterministic Push Down Automata
Let's give our automat memory access! (For now, just a stack.)

Non-Deterministic Push Down Automata
Let's give our automat memory access! (For now, just a stack.)

Non-Deterministic Push Down Automata
Let's give our automata memory access! (For now, just a stack.)

Γ is the stack alphabet. In this case, $\Gamma=\{\$, X\}$

Non-Deterministic Push Down Automata
Let's give our automata memory access! (For now, just a stack.)

Γ is the stack alphabet. In this case, $\Gamma=\{\$, X\}$
For transition labeled $a, X / X X$:

- You can take that transition only if the next input character is a, AND the top of the stack holds X.
- You remove the X and replace it with $X X$.

Non-Deterministic Push Down Automata
Let's give our automata memory access! (For now, just a stack.)

Γ is the stack alphabet. In this case, $\Gamma=\{\$, X\}$
For transition labeled $a, \Lambda / X X$:

- You can take that transition if the next input character is a, regardless of what's on the stack (it does not have to be empty).
- You remove nothing from the stack and push $X X$.

Non-Deterministic Push Down Automata
Let's give our automata memory access! (For now, just a stack.)

Γ is the stack alphabet. In this case, $\Gamma=\{\$, X\}$
For transition labeled $b, X / \Lambda$:

- You can take that transition if the next input character is b, AND the top of the stack holds X.
- You pop the X and push nothing.

Non-Deterministic Push Down Automata
Let's give our automata memory access! (For now, just a stack.)

Γ is the stack alphabet. In this case, $\Gamma=\{\$, X\}$
What is the language of this NPDA?

NPDA: Palindromes

NPDA: Palindromes

NPDA: Palindromes

NPDA: Palindromes

NPDA: Palindromes

NPDA: Palindromes

Separating DPDAs and NPDAs

Theorem

There exists a context free language that is not recognizable by any deterministic push-down automata.

Separating DPDAs and NPDAs

Theorem

There exists a context free language that is not recognizable by any deterministic push-down automata.
$L=\left\{a^{i} b^{i} \mid i>0\right\} \cup\left\{a^{i} b^{2 i} \mid i>0\right\}$

Separating DPDAs and NPDAs

Theorem

There exists a context free language that is not recognizable by any deterministic push-down automata.
$L=\left\{a^{i} b^{i} \mid i>0\right\} \cup\left\{a^{i} b^{2 i} \mid i>0\right\}$ Examples: $a a b b, a a b b b b, a a a b b b, a a a b b b b b b \in L$

Separating DPDAs and NPDAs

Theorem

There exists a context free language that is not recognizable by any deterministic push-down automata.
$L=\left\{a^{i} b^{i} \mid i>0\right\} \cup\left\{a^{i} b^{2 i} \mid i>0\right\}$ Examples: $a a b b, a a b b b b, a a a b b b, a a a b b b b b b \in L$ Exercise: prove that this a CFL.

Separating DPDAs and NPDAs

Theorem

There exists a context free language that is not recognizable by any deterministic push-down automata.
$L=\left\{a^{i} b^{i} \mid i>0\right\} \cup\left\{a^{i} b^{2 i} \mid i>0\right\}$ Examples: $a a b b, a a b b b b, a a a b b b, a a a b b b b b b \in L$ Exercise: prove that this a CFL. Suppose some DPDA, M, recognizes L.

Separating DPDAs and NPDAs

Theorem

There exists a context free language that is not recognizable by any deterministic push-down automata.
$L=\left\{a^{i} b^{i} \mid i>0\right\} \cup\left\{a^{i} b^{2 i} \mid i>0\right\}$ Examples: $a a b b, a a b b b b, a a a b b b, a a a b b b b b b \in L$ Exercise: prove that this a CFL.
Suppose some DPDA, M, recognizes L.
We will show how to use M to construct DPDA M^{\prime} that recognizes $\left\{a^{i} b^{i} c^{i} \mid i>0\right\}$.

Separating DPDAs and NPDAs

Theorem

There exists a context free language that is not recognizable by any deterministic push-down automata.
$L=\left\{a^{i} b^{i} \mid i>0\right\} \cup\left\{a^{i} b^{2 i} \mid i>0\right\}$ Examples: $a a b b, a a b b b b, a a a b b b, a a a b b b b b b \in L$ Exercise: prove that this a CFL.
Suppose some DPDA, M, recognizes L.
We will show how to use M to construct DPDA M^{\prime} that recognizes $\left\{a^{i} b^{i} c^{i} \mid i>0\right\}$. Since we know that this language is not a CFL, we've arrived at a contradiction. Therefore, M must not exist.

Separating DPDAs and NPDAs

Theorem

There exists a context free language that is not recognizable by any deterministic push-down automata.
$L=\left\{a^{i} b^{i} \mid i>0\right\} \cup\left\{a^{i} b^{2 i} \mid i>0\right\}$ Examples: $a a b b, a a b b b b, a a a b b b, a a a b b b b b b \in L$ Exercise: prove that this a CFL.
Suppose some DPDA, M, recognizes L. Take 2 copies of $M: M_{1}, M_{2}$

Separating DPDAs and NPDAs

Theorem

There exists a context free language that is not recognizable by any deterministic push-down automata.
$L=\left\{a^{i} b^{i} \mid i>0\right\} \cup\left\{a^{i} b^{2 i} \mid i>0\right\}$ Examples: $a a b b, a a b b b b, a a a b b b, a a a b b b b b b \in L$ Exercise: prove that this a CFL.
Suppose some DPDA, M, recognizes L. Take 2 copies of $M: M_{1}, M_{2}$

We construct M^{\prime} by combining the 2 copies in a particular way.
We claim M^{\prime} recognizes $\left\{a^{i} b^{i} c^{i} \mid i>0\right\}$

Separating DPDAs and NPDAs

$L=\left\{a^{i} b^{i} \mid i>0\right\} \cup\left\{a^{i} b^{2 i} \mid i>0\right\}$ Examples: aabb, aabbbb, aaabbb, aaabbbbbb$\in L$ Suppose some DPDA, M, recognizes L. Take 2 copies of $M: M_{1}, M_{2}$

We construct M^{\prime} by combining the 2 copies in a particular way.
We claim M^{\prime} recognizes $\left\{a^{i} b^{i} c^{i} \mid i>0\right\}$

1. The start state of M^{\prime} is the start state of M_{1}.

Separating DPDAs and NPDAs

$L=\left\{a^{i} b^{i} \mid i>0\right\} \cup\left\{a^{i} b^{2 i} \mid i>0\right\}$ Examples: aabb, aabbbb, aaabbb, aaabbbbbb$\in L$ Suppose some DPDA, M, recognizes L. Take 2 copies of $M: M_{1}, M_{2}$

We construct M^{\prime} by combining the 2 copies in a particular way.
We claim M^{\prime} recognizes $\left\{a^{i} b^{i} c^{i} \mid i>0\right\}$

1. The start state of M^{\prime} is the start state of M_{1}.
2. The accepting states in M^{\prime} are the accepting states of M_{2} (and not M_{1}).

Separating DPDAs and NPDAs

$L=\left\{a^{i} b^{i} \mid i>0\right\} \cup\left\{a^{i} b^{2 i} \mid i>0\right\}$ Examples: aabb, aabbbb, aaabbb, aaabbbbbb$\in L$ Suppose some DPDA, M, recognizes L. Take 2 copies of $M: M_{1}, M_{2}$

We construct M^{\prime} by combining the 2 copies in a particular way.
We claim M^{\prime} recognizes $\left\{a^{i} b^{i} c^{i} \mid i>0\right\}$

1. The start state of M^{\prime} is the start state of M_{1}.
2. The accepting states in M^{\prime} are the accepting states of M_{2} (and not M_{1}).
3. If M_{1} has a transition from some accepting state p to (any) state q on input character b, regardless of the stack instruction, create an additional transition from p in M_{1} to q in M_{2} and label it c.

Separating DPDAs and NPDAs

$L=\left\{a^{i} b^{i} \mid i>0\right\} \cup\left\{a^{i} b^{2 i} \mid i>0\right\}$ Examples: aabb, aabbbb, aaabbb, aaabbbbbb$\in L$ Suppose some DPDA, M, recognizes L. Take 2 copies of $M: M_{1}, M_{2}$

We construct M^{\prime} by combining the 2 copies in a particular way.
We claim M^{\prime} recognizes $\left\{a^{i} b^{i} c^{i} \mid i>0\right\}$

1. The start state of M^{\prime} is the start state of M_{1}.
2. The accepting states in M^{\prime} are the accepting states of M_{2} (and not M_{1}).
3. If M_{1} has a transition from some accepting state p to (any) state q on input character b, regardless of the stack instruction, create an additional transition from p in M_{1} to q in M_{2} and label it c.
4. In M_{2}, replace all b 's to c 's.

Separating DPDAs and NPDAs

