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Let's give our automata memory access! (For now, just a stack.)
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T is the stack alphabet. In this case, T' = {$, X'}
For transition labeled a, X/ X X:

> You can take that transition only if the next input character is a, AND the top of
the stack holds X.

> You remove the X and replace it with X X.
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Let's give our automata memory access! (For now, just a stack.)
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T is the stack alphabet. In this case, T' = {$, X'}
For transition labeled a, A/ X X:

> You can take that transition if the next input character is a, regardless of what's
on the stack (it does not have to be empty).

> You remove nothing from the stack and push X X.
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Let's give our automata memory access! (For now, just a stack.)
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T is the stack alphabet. In this case, T' = {$, X'}
For transition labeled b, X /A:

> You can take that transition if the next input character is b, AND the top of the
stack holds X.

> You pop the X and push nothing.
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Let's give our automata memory access! (For now, just a stack.)
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T is the stack alphabet. In this case, T' = {$, X'}
What is the language of this NPDA?
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Theorem

There exists a context free language that is not recognizable by any deterministic
push-down automata.

L ={a’d |i>0}U{a’? | i > 0} Examples: aabb, aabbbb, aaabbb, aaabbbbbb € L
Exercise: prove that this a CFL.

Suppose some DPDA, M, recognizes L.

We will show how to use M to construct DPDA M’ that recognizes {a’bic’ | i > 0}.
Since we know that this language is not a CFL, we've arrived at a contradiction.
Therefore, M must not exist.
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L = {a’d |i> 0} U{a’b? | i > 0} Examples: aabb, aabbbb, aaabbb, aaabbbbbb € L
Suppose some DPDA, M, recognizes L. Take 2 copies of M: Mj, M2

We construct M’ by combining the 2 copies in a particular way.
We claim M’ recognizes {a*b’c’ | i > 0}

1. The start state of M’ is the start state of Mj.
2. The accepting states in M’ are the accepting states of Ms (and not M7).

3. If M; has a transition from some accepting state p to (any) state ¢ on input
character b, regardless of the stack instruction, create an additional transition
from p in Mj to q in M2 and label it c.

4. In Mo, replace all b's to c's.
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