Let's give our automata memory access! (For now, just a stack.)

Let's give our automata memory access! (For now, just a stack.)

(日)、

э

Let's give our automata memory access! (For now, just a stack.)

イロト 不得 トイヨト イヨト

э

Let's give our automata memory access! (For now, just a stack.)

イロト 不得 トイヨト イヨト

э

 Γ is the stack alphabet. In this case, $\Gamma = \{\$, X\}$

Let's give our automata memory access! (For now, just a stack.)

 Γ is the stack alphabet. In this case, $\Gamma = \{\$, X\}$ For transition labeled a, X/XX:

- You can take that transition only if the next input character is a, AND the top of the stack holds X.
- ▶ You remove the X and replace it with XX.

Let's give our automata memory access! (For now, just a stack.)

 Γ is the stack alphabet. In this case, $\Gamma = \{\$, X\}$ For transition labeled $a, \Lambda/XX$:

- You can take that transition if the next input character is a, regardless of what's on the stack (it does not have to be empty).
- ▶ You remove nothing from the stack and push XX.

Let's give our automata memory access! (For now, just a stack.)

 Γ is the stack alphabet. In this case, $\Gamma = \{\$, X\}$ For transition labeled $b, X/\Lambda$:

You can take that transition if the next input character is b, AND the top of the stack holds X.

イロト 不得 トイヨト イヨト

-

You pop the X and push nothing.

Let's give our automata memory access! (For now, just a stack.)

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

3

 Γ is the stack alphabet. In this case, $\Gamma = \{\$, X\}$ What is the language of this NPDA?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

a, 1/a 6,1/b $\rightarrow \bigcirc \xrightarrow{a, \Lambda/A} \bigcirc \xrightarrow{f_{\lambda}, \Lambda/A} \bigcirc \xrightarrow{f_{\lambda}, A/\Lambda} \bigcirc$

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト の Q @

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Theorem

There exists a context free language that is not recognizable by any *deterministic* push-down automata.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Theorem

There exists a context free language that is not recognizable by any *deterministic* push-down automata.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

 $L = \{a^i b^i \mid i > 0\} \cup \{a^i b^{2i} \mid i > 0\}$

Theorem

There exists a context free language that is not recognizable by any *deterministic* push-down automata.

 $L = \{a^i b^i \mid i > 0\} \cup \{a^i b^{2i} \mid i > 0\} \text{ Examples: } aabb, aabbbb, aaabbb, aaabbbbbb \in L$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Theorem

There exists a context free language that is not recognizable by any *deterministic* push-down automata.

 $L=\{a^ib^i\mid i>0\}\cup\{a^ib^{2i}\mid i>0\}$ Examples: $aabb,aabbbb,aaabbbbbb \in L$ Exercise: prove that this a CFL.

Theorem

There exists a context free language that is not recognizable by any *deterministic* push-down automata.

 $L = \{a^ib^i \mid i > 0\} \cup \{a^ib^{2i} \mid i > 0\}$ Examples: $aabb, aabbbb, aaabbb, aaabbbbbb \in L$ Exercise: prove that this a CFL. Suppose some DPDA, M, recognizes L.

Theorem

There exists a context free language that is not recognizable by any *deterministic* push-down automata.

 $L=\{a^ib^i\mid i>0\}\cup\{a^ib^{2i}\mid i>0\}$ Examples: $aabb,aaabbb,aaabbb,aaabbbbbb\in L$ Exercise: prove that this a CFL.

Suppose some DPDA, M, recognizes L.

We will show how to use M to construct DPDA M' that recognizes $\{a^i b^i c^i \mid i > 0\}$.

Theorem

There exists a context free language that is not recognizable by any *deterministic* push-down automata.

 $L = \{a^ib^i \mid i>0\} \cup \{a^ib^{2i} \mid i>0\} \text{ Examples: } aabb, aabbbb, aaabbb, aaabbbbbb \in L \text{ Exercise: prove that this a CFL.}$

Suppose some DPDA, M, recognizes L.

We will show how to use M to construct DPDA M' that recognizes $\{a^ib^ic^i\mid i>0\}.$ Since we know that this language is not a CFL, we've arrived at a contradiction. Therefore, M must not exist.

Theorem

There exists a context free language that is not recognizable by any *deterministic* push-down automata.

 $L = \{a^i b^i \mid i > 0\} \cup \{a^i b^{2i} \mid i > 0\}$ Examples: $aabb, aabbbb, aaabbb, aaabbbbbbb \in L$ Exercise: prove that this a CFL. Suppose some DPDA, M, recognizes L. Take 2 copies of M: M_1, M_2

Theorem

There exists a context free language that is not recognizable by any *deterministic* push-down automata.

 $L = \{a^ib^i \mid i>0\} \cup \{a^ib^{2i} \mid i>0\} \text{ Examples: } aabb, aabbbb, aaabbb, aaabbbbbb \in L \text{ Exercise: prove that this a CFL.}$

Suppose some DPDA, M, recognizes L. Take 2 copies of M: M_1, M_2

We construct M' by combining the 2 copies in a particular way. We claim M' recognizes $\{a^ib^ic^i\mid i>0\}$

 $L = \{a^i b^i \mid i > 0\} \cup \{a^i b^{2i} \mid i > 0\}$ Examples: $aabb, aabbbb, aaabbb, aaabbbbbb \in L$ Suppose some DPDA, M, recognizes L. Take 2 copies of M: M_1, M_2

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

We construct M' by combining the 2 copies in a particular way. We claim M' recognizes $\{a^ib^ic^i\mid i>0\}$

1. The start state of M' is the start state of M_1 .

 $L = \{a^i b^i \mid i > 0\} \cup \{a^i b^{2i} \mid i > 0\}$ Examples: $aabb, aabbbb, aaabbb, aaabbbbbb \in L$ Suppose some DPDA, M, recognizes L. Take 2 copies of M: M_1, M_2

We construct M' by combining the 2 copies in a particular way. We claim M' recognizes $\{a^ib^ic^i\mid i>0\}$

- 1. The start state of M' is the start state of M_1 .
- 2. The accepting states in M' are the accepting states of M_2 (and not M_1).

 $L = \{a^i b^i \mid i > 0\} \cup \{a^i b^{2i} \mid i > 0\}$ Examples: $aabb, aabbbb, aaabbb, aaabbbbbb \in L$ Suppose some DPDA, M, recognizes L. Take 2 copies of M: M_1, M_2

We construct M' by combining the 2 copies in a particular way. We claim M' recognizes $\{a^ib^ic^i\mid i>0\}$

- 1. The start state of M' is the start state of M_1 .
- 2. The accepting states in M' are the accepting states of M_2 (and not M_1).
- 3. If M_1 has a transition from some accepting state p to (any) state q on input character b, regardless of the stack instruction, create an additional transition from p in M_1 to q in M_2 and label it c.

 $L = \{a^i b^i \mid i > 0\} \cup \{a^i b^{2i} \mid i > 0\}$ Examples: $aabb, aabbbb, aaabbb, aaabbbbbb \in L$ Suppose some DPDA, M, recognizes L. Take 2 copies of M: M_1, M_2

We construct M' by combining the 2 copies in a particular way. We claim M' recognizes $\{a^ib^ic^i\mid i>0\}$

- 1. The start state of M' is the start state of M_1 .
- 2. The accepting states in M' are the accepting states of M_2 (and not M_1).
- 3. If M_1 has a transition from some accepting state p to (any) state q on input character b, regardless of the stack instruction, create an additional transition from p in M_1 to q in M_2 and label it c.
- 4. In M_2 , replace all b's to c's.

ヘロト ヘ週ト ヘヨト ヘヨト

æ

▲□▶▲圖▶▲臣▶▲臣▶ 臣 のQ@

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

◆□ > ◆□ > ◆臣 > ◆臣 > ○ = ○ ○ ○ ○

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─ の々⊙