Non-Deterministic Push Down Automata

Let's give our automata memory access! (For now, just a stack.)

Non-Deterministic Push Down Automata

Let's give our automata memory access! (For now, just a stack.)

IO,X//L
G, JL/X Z

O/'O,J/Xd%

\ /b 3/4

o~ _/L/$

e,

Non-Deterministic Push Down Automata

Let's give our automata memory access! (For now, just a stack.)

FU(A

'mgau* char V
b X//L

&JL/X
O /’o,,/xda

\ /b 3/4

o~ _/L/$

e,

Non-Deterministic Push Down Automata

Let's give our automata memory access! (For now, just a stack.)

FU(A

'mgau#’ char V
b X/\/L

T is the stack alphabet. In this case, T' = {$, X'}

Non-Deterministic Push Down Automata

Let's give our automata memory access! (For now, just a stack.)

FU(A

'mgau%’ C%WF/V
. ¢ b, X/g

6, N/X Z

YR/}
— () —

T is the stack alphabet. In this case, T' = {$, X'}
For transition labeled a, X/ X X:

> You can take that transition only if the next input character is a, AND the top of
the stack holds X.

> You remove the X and replace it with X X.

Non-Deterministic Push Down Automata

Let's give our automata memory access! (For now, just a stack.)

ﬁu(A

'mgau%’ C%WF/V
. ¢ b, X/g

6, /X Z

YR/}
— () —

T is the stack alphabet. In this case, T' = {$, X'}
For transition labeled a, A/ X X:

> You can take that transition if the next input character is a, regardless of what's
on the stack (it does not have to be empty).

> You remove nothing from the stack and push X X.

Non-Deterministic Push Down Automata

Let's give our automata memory access! (For now, just a stack.)

PP
c 5)(/%

FU(A
'mggu‘?’

& JL/X
o~ _/L/$

— () Oiﬂ’%/bw

T is the stack alphabet. In this case, T' = {$, X'}
For transition labeled b, X /A:

> You can take that transition if the next input character is b, AND the top of the
stack holds X.

> You pop the X and push nothing.

Non-Deterministic Push Down Automata

Let's give our automata memory access! (For now, just a stack.)

per
c 5)(/%

FU(A

'mg)ﬂ' C%A

zm JL/X
o~ _/L/$

O/&/de%

\ /b 3/4

T is the stack alphabet. In this case, T' = {$, X'}
What is the language of this NPDA?

e,

NPDA: Palindromes

010

NPDA: Palindromes

NPDA: Palindromes

NPDA: Palindromes

NPDA: Palindromes

NPDA: Palindromes

Separating DPDAs and NPDAs

Theorem

There exists a context free language that is not recognizable by any deterministic
push-down automata.

Separating DPDAs and NPDAs

Theorem

There exists a context free language that is not recognizable by any deterministic
push-down automata.

L= {a'b’ |i> 0} U {a’b? |i> 0}

Separating DPDAs and NPDAs

Theorem

There exists a context free language that is not recognizable by any deterministic
push-down automata.

L ={a’d |i>0}U{a’? | i > 0} Examples: aabb, aabbbb, aaabbb, aaabbbbbb € L

Separating DPDAs and NPDAs

Theorem

There exists a context free language that is not recognizable by any deterministic
push-down automata.

L ={a’d |i>0}U{a’? | i > 0} Examples: aabb, aabbbb, aaabbb, aaabbbbbb € L
Exercise: prove that this a CFL.

Separating DPDAs and NPDAs

Theorem

There exists a context free language that is not recognizable by any deterministic
push-down automata.

L ={a’d |i>0}U{a’? | i > 0} Examples: aabb, aabbbb, aaabbb, aaabbbbbb € L
Exercise: prove that this a CFL.
Suppose some DPDA, M, recognizes L.

Separating DPDAs and NPDAs

Theorem

There exists a context free language that is not recognizable by any deterministic
push-down automata.

L ={a’d |i>0}U{a’? | i > 0} Examples: aabb, aabbbb, aaabbb, aaabbbbbb € L
Exercise: prove that this a CFL.

Suppose some DPDA, M, recognizes L.

We will show how to use M to construct DPDA M’ that recognizes {a’bic’ | i > 0}.

Separating DPDAs and NPDAs

Theorem

There exists a context free language that is not recognizable by any deterministic
push-down automata.

L ={a’d |i>0}U{a’? | i > 0} Examples: aabb, aabbbb, aaabbb, aaabbbbbb € L
Exercise: prove that this a CFL.

Suppose some DPDA, M, recognizes L.

We will show how to use M to construct DPDA M’ that recognizes {a’bic’ | i > 0}.
Since we know that this language is not a CFL, we've arrived at a contradiction.
Therefore, M must not exist.

Separating DPDAs and NPDAs

Theorem

There exists a context free language that is not recognizable by any deterministic
push-down automata.

L ={a’d |i>0}U{a’b? | i > 0} Examples: aabb, aabbbb, aaabbb, aaabbbbbb € L
Exercise: prove that this a CFL.
Suppose some DPDA, M, recognizes L. Take 2 copies of M: M, Mo

Separating DPDAs and NPDAs

Theorem

There exists a context free language that is not recognizable by any deterministic
push-down automata.

L ={a’d |i>0}U{a’b? | i > 0} Examples: aabb, aabbbb, aaabbb, aaabbbbbb € L
Exercise: prove that this a CFL.
Suppose some DPDA, M, recognizes L. Take 2 copies of M: M, Mo

We construct M’ by combining the 2 copies in a particular way.
We claim M’ recognizes {a*b'c® | i > 0}

Separating DPDAs and NPDAs

L = {a’d |i> 0} U{a’b? | i > 0} Examples: aabb, aabbbb, aaabbb, aaabbbbbb € L
Suppose some DPDA, M, recognizes L. Take 2 copies of M: Mj, M2

We construct M’ by combining the 2 copies in a particular way.
We claim M’ recognizes {a*b’c’ | i > 0}
1. The start state of M’ is the start state of Mj.

Separating DPDAs and NPDAs

L = {a’d |i> 0} U{a’b? | i > 0} Examples: aabb, aabbbb, aaabbb, aaabbbbbb € L
Suppose some DPDA, M, recognizes L. Take 2 copies of M: Mj, M2

We construct M’ by combining the 2 copies in a particular way.
We claim M’ recognizes {a*b’c’ | i > 0}
1. The start state of M’ is the start state of Mj.
2. The accepting states in M’ are the accepting states of Ms (and not M7).

Separating DPDAs and NPDAs

L = {a’d |i> 0} U{a’b? | i > 0} Examples: aabb, aabbbb, aaabbb, aaabbbbbb € L
Suppose some DPDA, M, recognizes L. Take 2 copies of M: Mj, M2

We construct M’ by combining the 2 copies in a particular way.
We claim M’ recognizes {a*b’c’ | i > 0}
1. The start state of M’ is the start state of Mj.
2. The accepting states in M’ are the accepting states of Ms (and not M7).

3. If M; has a transition from some accepting state p to (any) state ¢ on input
character b, regardless of the stack instruction, create an additional transition
from p in Mj to q in M2 and label it c.

Separating DPDAs and NPDAs

L = {a’d |i> 0} U{a’b? | i > 0} Examples: aabb, aabbbb, aaabbb, aaabbbbbb € L
Suppose some DPDA, M, recognizes L. Take 2 copies of M: Mj, M2

We construct M’ by combining the 2 copies in a particular way.
We claim M’ recognizes {a*b’c’ | i > 0}

1. The start state of M’ is the start state of Mj.
2. The accepting states in M’ are the accepting states of Ms (and not M7).

3. If M; has a transition from some accepting state p to (any) state ¢ on input
character b, regardless of the stack instruction, create an additional transition
from p in Mj to q in M2 and label it c.

4. In Mo, replace all b's to c's.

Separating DPDAs and NPDAs

"0 707 70
W\/

A b’

Separating DPDAs and NPDAs

Q¢ e O
/! - .
f—’7OM)Oy\ @

lo

Separating DPDAs and NPDAs

bL

m
@i““(f—OQﬁb

/\/\ J— ,—?qno_?
f—’7OM)Oy\ @

lo

Separating DPDAs and NPDAs

Q& . TEpE <*O<
7@”0 @

Separating DPDAs and NPDAs

S (e
"50707 70

Separating DPDAs and NPDAs

S (e
"50707 70

Separating DPDAs and NPDAs

