
Predicates

A predicate is a function whose coDomain is {True,False}

Could be B × B → B, such as with propositional operators
Could be R × R → B, such as >
Nouns: Could be Person × Person→ B, such as the “Mother” predicate

Other examples:
Adjectives: Brown(desk)
Color (desk1, brown)
Big(Ant3, ants)
Big(Elephant1, elephants)
Size(Elephant1, elephants, big)
Size(Jumbo, Elephant, Small) ∧ Size(Jumbo, Mammal, Big)

Verbs:
Borders(Bolivia, Peru)
Plays(Basketball, James)
Plays(Soccer, Messi)



Predicates

A predicate is a function whose coDomain is {True,False}
Could be B × B → B, such as with propositional operators

Could be R × R → B, such as >
Nouns: Could be Person × Person→ B, such as the “Mother” predicate

Other examples:
Adjectives: Brown(desk)
Color (desk1, brown)
Big(Ant3, ants)
Big(Elephant1, elephants)
Size(Elephant1, elephants, big)
Size(Jumbo, Elephant, Small) ∧ Size(Jumbo, Mammal, Big)

Verbs:
Borders(Bolivia, Peru)
Plays(Basketball, James)
Plays(Soccer, Messi)



Predicates

A predicate is a function whose coDomain is {True,False}
Could be B × B → B, such as with propositional operators
Could be R × R → B, such as >

Nouns: Could be Person × Person→ B, such as the “Mother” predicate

Other examples:
Adjectives: Brown(desk)
Color (desk1, brown)
Big(Ant3, ants)
Big(Elephant1, elephants)
Size(Elephant1, elephants, big)
Size(Jumbo, Elephant, Small) ∧ Size(Jumbo, Mammal, Big)

Verbs:
Borders(Bolivia, Peru)
Plays(Basketball, James)
Plays(Soccer, Messi)



Predicates

A predicate is a function whose coDomain is {True,False}
Could be B × B → B, such as with propositional operators
Could be R × R → B, such as >
Nouns: Could be Person × Person→ B, such as the “Mother” predicate

Other examples:
Adjectives: Brown(desk)
Color (desk1, brown)
Big(Ant3, ants)
Big(Elephant1, elephants)
Size(Elephant1, elephants, big)
Size(Jumbo, Elephant, Small) ∧ Size(Jumbo, Mammal, Big)

Verbs:
Borders(Bolivia, Peru)
Plays(Basketball, James)
Plays(Soccer, Messi)



Predicates

A predicate is a function whose coDomain is {True,False}
Could be B × B → B, such as with propositional operators
Could be R × R → B, such as >
Nouns: Could be Person × Person→ B, such as the “Mother” predicate

Other examples:

Adjectives: Brown(desk)
Color (desk1, brown)
Big(Ant3, ants)
Big(Elephant1, elephants)
Size(Elephant1, elephants, big)
Size(Jumbo, Elephant, Small) ∧ Size(Jumbo, Mammal, Big)

Verbs:
Borders(Bolivia, Peru)
Plays(Basketball, James)
Plays(Soccer, Messi)



Predicates

A predicate is a function whose coDomain is {True,False}
Could be B × B → B, such as with propositional operators
Could be R × R → B, such as >
Nouns: Could be Person × Person→ B, such as the “Mother” predicate

Other examples:
Adjectives: Brown(desk)

Color (desk1, brown)
Big(Ant3, ants)
Big(Elephant1, elephants)
Size(Elephant1, elephants, big)
Size(Jumbo, Elephant, Small) ∧ Size(Jumbo, Mammal, Big)

Verbs:
Borders(Bolivia, Peru)
Plays(Basketball, James)
Plays(Soccer, Messi)



Predicates

A predicate is a function whose coDomain is {True,False}
Could be B × B → B, such as with propositional operators
Could be R × R → B, such as >
Nouns: Could be Person × Person→ B, such as the “Mother” predicate

Other examples:
Adjectives: Brown(desk)
Color (desk1, brown)

Big(Ant3, ants)
Big(Elephant1, elephants)
Size(Elephant1, elephants, big)
Size(Jumbo, Elephant, Small) ∧ Size(Jumbo, Mammal, Big)

Verbs:
Borders(Bolivia, Peru)
Plays(Basketball, James)
Plays(Soccer, Messi)



Predicates

A predicate is a function whose coDomain is {True,False}
Could be B × B → B, such as with propositional operators
Could be R × R → B, such as >
Nouns: Could be Person × Person→ B, such as the “Mother” predicate

Other examples:
Adjectives: Brown(desk)
Color (desk1, brown)
Big(Ant3, ants)
Big(Elephant1, elephants)

Size(Elephant1, elephants, big)
Size(Jumbo, Elephant, Small) ∧ Size(Jumbo, Mammal, Big)

Verbs:
Borders(Bolivia, Peru)
Plays(Basketball, James)
Plays(Soccer, Messi)



Predicates

A predicate is a function whose coDomain is {True,False}
Could be B × B → B, such as with propositional operators
Could be R × R → B, such as >
Nouns: Could be Person × Person→ B, such as the “Mother” predicate

Other examples:
Adjectives: Brown(desk)
Color (desk1, brown)
Big(Ant3, ants)
Big(Elephant1, elephants)
Size(Elephant1, elephants, big)

Size(Jumbo, Elephant, Small) ∧ Size(Jumbo, Mammal, Big)

Verbs:
Borders(Bolivia, Peru)
Plays(Basketball, James)
Plays(Soccer, Messi)



Predicates

A predicate is a function whose coDomain is {True,False}
Could be B × B → B, such as with propositional operators
Could be R × R → B, such as >
Nouns: Could be Person × Person→ B, such as the “Mother” predicate

Other examples:
Adjectives: Brown(desk)
Color (desk1, brown)
Big(Ant3, ants)
Big(Elephant1, elephants)
Size(Elephant1, elephants, big)
Size(Jumbo, Elephant, Small) ∧ Size(Jumbo, Mammal, Big)

Verbs:
Borders(Bolivia, Peru)
Plays(Basketball, James)
Plays(Soccer, Messi)



Predicates

A predicate is a function whose coDomain is {True,False}
Could be B × B → B, such as with propositional operators
Could be R × R → B, such as >
Nouns: Could be Person × Person→ B, such as the “Mother” predicate

Other examples:
Adjectives: Brown(desk)
Color (desk1, brown)
Big(Ant3, ants)
Big(Elephant1, elephants)
Size(Elephant1, elephants, big)
Size(Jumbo, Elephant, Small) ∧ Size(Jumbo, Mammal, Big)

Verbs:
Borders(Bolivia, Peru)

Plays(Basketball, James)
Plays(Soccer, Messi)



Predicates

A predicate is a function whose coDomain is {True,False}
Could be B × B → B, such as with propositional operators
Could be R × R → B, such as >
Nouns: Could be Person × Person→ B, such as the “Mother” predicate

Other examples:
Adjectives: Brown(desk)
Color (desk1, brown)
Big(Ant3, ants)
Big(Elephant1, elephants)
Size(Elephant1, elephants, big)
Size(Jumbo, Elephant, Small) ∧ Size(Jumbo, Mammal, Big)

Verbs:
Borders(Bolivia, Peru)
Plays(Basketball, James)
Plays(Soccer, Messi)



Quantifiers

Universal quantifier: ∀ (forall or every).

Every element of some set satisfies some predicate:
Specify the set and the predicate:
∀x ∈ I : (x2 ≥ 0)

Existential quantifier: ∃ (for some, there exists ... such that).
Specify the set and the predicate:
∃x ∈ I : (x > 3) ∧ (x < 7)

U = {x1, x2, x3}
∀x ∈ U : p(x) ≡ (p(x1) ∧ p(x2) ∧ p(x3))

¬(p(x1) ∧ p(x2) ∧ p(x3)) ≡ ¬(∀x ∈ U : p(x))

≡ ¬p(x1) ∨ ¬p(x2) ∨ ¬p(x3)

≡ ∃x ∈ U : ¬p(x)

Placement of the ¬ operator is very important!
¬∃x ∈ P : IsCarOwner(x) It is not the case that someone has a car.
∃x ∈ P : ¬IsCarOwner(x) Someone does not have a car.
¬∃x ∈ P : ¬IsCarOwner(x) No one is without a car.



Quantifiers

Universal quantifier: ∀ (forall or every).
Every element of some set satisfies some predicate:

Specify the set and the predicate:
∀x ∈ I : (x2 ≥ 0)

Existential quantifier: ∃ (for some, there exists ... such that).
Specify the set and the predicate:
∃x ∈ I : (x > 3) ∧ (x < 7)

U = {x1, x2, x3}
∀x ∈ U : p(x) ≡ (p(x1) ∧ p(x2) ∧ p(x3))

¬(p(x1) ∧ p(x2) ∧ p(x3)) ≡ ¬(∀x ∈ U : p(x))

≡ ¬p(x1) ∨ ¬p(x2) ∨ ¬p(x3)

≡ ∃x ∈ U : ¬p(x)

Placement of the ¬ operator is very important!
¬∃x ∈ P : IsCarOwner(x) It is not the case that someone has a car.
∃x ∈ P : ¬IsCarOwner(x) Someone does not have a car.
¬∃x ∈ P : ¬IsCarOwner(x) No one is without a car.



Quantifiers

Universal quantifier: ∀ (forall or every).
Every element of some set satisfies some predicate:
Specify the set and the predicate:
∀x ∈ I : (x2 ≥ 0)

Existential quantifier: ∃ (for some, there exists ... such that).
Specify the set and the predicate:
∃x ∈ I : (x > 3) ∧ (x < 7)

U = {x1, x2, x3}
∀x ∈ U : p(x) ≡ (p(x1) ∧ p(x2) ∧ p(x3))

¬(p(x1) ∧ p(x2) ∧ p(x3)) ≡ ¬(∀x ∈ U : p(x))

≡ ¬p(x1) ∨ ¬p(x2) ∨ ¬p(x3)

≡ ∃x ∈ U : ¬p(x)

Placement of the ¬ operator is very important!
¬∃x ∈ P : IsCarOwner(x) It is not the case that someone has a car.
∃x ∈ P : ¬IsCarOwner(x) Someone does not have a car.
¬∃x ∈ P : ¬IsCarOwner(x) No one is without a car.



Quantifiers

Universal quantifier: ∀ (forall or every).
Every element of some set satisfies some predicate:
Specify the set and the predicate:
∀x ∈ I : (x2 ≥ 0)

Existential quantifier: ∃ (for some, there exists ... such that).

Specify the set and the predicate:
∃x ∈ I : (x > 3) ∧ (x < 7)

U = {x1, x2, x3}
∀x ∈ U : p(x) ≡ (p(x1) ∧ p(x2) ∧ p(x3))

¬(p(x1) ∧ p(x2) ∧ p(x3)) ≡ ¬(∀x ∈ U : p(x))

≡ ¬p(x1) ∨ ¬p(x2) ∨ ¬p(x3)

≡ ∃x ∈ U : ¬p(x)

Placement of the ¬ operator is very important!
¬∃x ∈ P : IsCarOwner(x) It is not the case that someone has a car.
∃x ∈ P : ¬IsCarOwner(x) Someone does not have a car.
¬∃x ∈ P : ¬IsCarOwner(x) No one is without a car.



Quantifiers

Universal quantifier: ∀ (forall or every).
Every element of some set satisfies some predicate:
Specify the set and the predicate:
∀x ∈ I : (x2 ≥ 0)

Existential quantifier: ∃ (for some, there exists ... such that).
Specify the set and the predicate:
∃x ∈ I : (x > 3) ∧ (x < 7)

U = {x1, x2, x3}
∀x ∈ U : p(x) ≡ (p(x1) ∧ p(x2) ∧ p(x3))

¬(p(x1) ∧ p(x2) ∧ p(x3)) ≡ ¬(∀x ∈ U : p(x))

≡ ¬p(x1) ∨ ¬p(x2) ∨ ¬p(x3)

≡ ∃x ∈ U : ¬p(x)

Placement of the ¬ operator is very important!
¬∃x ∈ P : IsCarOwner(x) It is not the case that someone has a car.
∃x ∈ P : ¬IsCarOwner(x) Someone does not have a car.
¬∃x ∈ P : ¬IsCarOwner(x) No one is without a car.



Quantifiers

Universal quantifier: ∀ (forall or every).
Every element of some set satisfies some predicate:
Specify the set and the predicate:
∀x ∈ I : (x2 ≥ 0)

Existential quantifier: ∃ (for some, there exists ... such that).
Specify the set and the predicate:
∃x ∈ I : (x > 3) ∧ (x < 7)

U = {x1, x2, x3}
∀x ∈ U : p(x) ≡ (p(x1) ∧ p(x2) ∧ p(x3))

¬(p(x1) ∧ p(x2) ∧ p(x3)) ≡ ¬(∀x ∈ U : p(x))

≡ ¬p(x1) ∨ ¬p(x2) ∨ ¬p(x3)

≡ ∃x ∈ U : ¬p(x)

Placement of the ¬ operator is very important!
¬∃x ∈ P : IsCarOwner(x) It is not the case that someone has a car.
∃x ∈ P : ¬IsCarOwner(x) Someone does not have a car.
¬∃x ∈ P : ¬IsCarOwner(x) No one is without a car.



Quantifiers

Universal quantifier: ∀ (forall or every).
Every element of some set satisfies some predicate:
Specify the set and the predicate:
∀x ∈ I : (x2 ≥ 0)

Existential quantifier: ∃ (for some, there exists ... such that).
Specify the set and the predicate:
∃x ∈ I : (x > 3) ∧ (x < 7)

U = {x1, x2, x3}
∀x ∈ U : p(x) ≡ (p(x1) ∧ p(x2) ∧ p(x3))

¬(p(x1) ∧ p(x2) ∧ p(x3)) ≡ ¬(∀x ∈ U : p(x))

≡ ¬p(x1) ∨ ¬p(x2) ∨ ¬p(x3)

≡ ∃x ∈ U : ¬p(x)

Placement of the ¬ operator is very important!
¬∃x ∈ P : IsCarOwner(x) It is not the case that someone has a car.
∃x ∈ P : ¬IsCarOwner(x) Someone does not have a car.
¬∃x ∈ P : ¬IsCarOwner(x) No one is without a car.



Quantifiers

Universal quantifier: ∀ (forall or every).
Every element of some set satisfies some predicate:
Specify the set and the predicate:
∀x ∈ I : (x2 ≥ 0)

Existential quantifier: ∃ (for some, there exists ... such that).
Specify the set and the predicate:
∃x ∈ I : (x > 3) ∧ (x < 7)

U = {x1, x2, x3}
∀x ∈ U : p(x) ≡ (p(x1) ∧ p(x2) ∧ p(x3))

¬(p(x1) ∧ p(x2) ∧ p(x3)) ≡ ¬(∀x ∈ U : p(x))

≡ ¬p(x1) ∨ ¬p(x2) ∨ ¬p(x3)

≡ ∃x ∈ U : ¬p(x)

Placement of the ¬ operator is very important!
¬∃x ∈ P : IsCarOwner(x) It is not the case that someone has a car.
∃x ∈ P : ¬IsCarOwner(x) Someone does not have a car.
¬∃x ∈ P : ¬IsCarOwner(x) No one is without a car.



Quantifiers

Universal quantifier: ∀ (forall or every).
Every element of some set satisfies some predicate:
Specify the set and the predicate:
∀x ∈ I : (x2 ≥ 0)

Existential quantifier: ∃ (for some, there exists ... such that).
Specify the set and the predicate:
∃x ∈ I : (x > 3) ∧ (x < 7)

U = {x1, x2, x3}
∀x ∈ U : p(x) ≡ (p(x1) ∧ p(x2) ∧ p(x3))

¬(p(x1) ∧ p(x2) ∧ p(x3)) ≡ ¬(∀x ∈ U : p(x))

≡ ¬p(x1) ∨ ¬p(x2) ∨ ¬p(x3)

≡ ∃x ∈ U : ¬p(x)

Placement of the ¬ operator is very important!
¬∃x ∈ P : IsCarOwner(x) It is not the case that someone has a car.
∃x ∈ P : ¬IsCarOwner(x) Someone does not have a car.
¬∃x ∈ P : ¬IsCarOwner(x) No one is without a car.



Quantifiers

Universal quantifier: ∀ (forall or every).
Every element of some set satisfies some predicate:
Specify the set and the predicate:
∀x ∈ I : (x2 ≥ 0)

Existential quantifier: ∃ (for some, there exists ... such that).
Specify the set and the predicate:
∃x ∈ I : (x > 3) ∧ (x < 7)

U = {x1, x2, x3}
∀x ∈ U : p(x) ≡ (p(x1) ∧ p(x2) ∧ p(x3))

¬(p(x1) ∧ p(x2) ∧ p(x3)) ≡ ¬(∀x ∈ U : p(x))

≡ ¬p(x1) ∨ ¬p(x2) ∨ ¬p(x3)

≡ ∃x ∈ U : ¬p(x)

Placement of the ¬ operator is very important!
¬∃x ∈ P : IsCarOwner(x)

It is not the case that someone has a car.

∃x ∈ P : ¬IsCarOwner(x)

Someone does not have a car.

¬∃x ∈ P : ¬IsCarOwner(x)

No one is without a car.



Quantifiers

Universal quantifier: ∀ (forall or every).
Every element of some set satisfies some predicate:
Specify the set and the predicate:
∀x ∈ I : (x2 ≥ 0)

Existential quantifier: ∃ (for some, there exists ... such that).
Specify the set and the predicate:
∃x ∈ I : (x > 3) ∧ (x < 7)

U = {x1, x2, x3}
∀x ∈ U : p(x) ≡ (p(x1) ∧ p(x2) ∧ p(x3))

¬(p(x1) ∧ p(x2) ∧ p(x3)) ≡ ¬(∀x ∈ U : p(x))

≡ ¬p(x1) ∨ ¬p(x2) ∨ ¬p(x3)

≡ ∃x ∈ U : ¬p(x)

Placement of the ¬ operator is very important!
¬∃x ∈ P : IsCarOwner(x) It is not the case that someone has a car.
∃x ∈ P : ¬IsCarOwner(x)

Someone does not have a car.

¬∃x ∈ P : ¬IsCarOwner(x)

No one is without a car.



Quantifiers

Universal quantifier: ∀ (forall or every).
Every element of some set satisfies some predicate:
Specify the set and the predicate:
∀x ∈ I : (x2 ≥ 0)

Existential quantifier: ∃ (for some, there exists ... such that).
Specify the set and the predicate:
∃x ∈ I : (x > 3) ∧ (x < 7)

U = {x1, x2, x3}
∀x ∈ U : p(x) ≡ (p(x1) ∧ p(x2) ∧ p(x3))

¬(p(x1) ∧ p(x2) ∧ p(x3)) ≡ ¬(∀x ∈ U : p(x))

≡ ¬p(x1) ∨ ¬p(x2) ∨ ¬p(x3)

≡ ∃x ∈ U : ¬p(x)

Placement of the ¬ operator is very important!
¬∃x ∈ P : IsCarOwner(x) It is not the case that someone has a car.
∃x ∈ P : ¬IsCarOwner(x) Someone does not have a car.
¬∃x ∈ P : ¬IsCarOwner(x)

No one is without a car.



Quantifiers

Universal quantifier: ∀ (forall or every).
Every element of some set satisfies some predicate:
Specify the set and the predicate:
∀x ∈ I : (x2 ≥ 0)

Existential quantifier: ∃ (for some, there exists ... such that).
Specify the set and the predicate:
∃x ∈ I : (x > 3) ∧ (x < 7)

U = {x1, x2, x3}
∀x ∈ U : p(x) ≡ (p(x1) ∧ p(x2) ∧ p(x3))

¬(p(x1) ∧ p(x2) ∧ p(x3)) ≡ ¬(∀x ∈ U : p(x))

≡ ¬p(x1) ∨ ¬p(x2) ∨ ¬p(x3)

≡ ∃x ∈ U : ¬p(x)

Placement of the ¬ operator is very important!
¬∃x ∈ P : IsCarOwner(x) It is not the case that someone has a car.
∃x ∈ P : ¬IsCarOwner(x) Someone does not have a car.
¬∃x ∈ P : ¬IsCarOwner(x) No one is without a car.



Multiple Quantifiers

If a predicate has more than 1 variable, we might apply more than 1 quantifier.

∀x : ∀y : BioMother(x , y)↔ (Birthed(x , y) ∧ (FemaleSex(x))
∀x : ∀y : ∀z : Offspring(x , y , z)↔ (BioMother(y , x) ∧ BioFather(z, x))

The use of ↔ here allows us to define the predicate, using other predicates.
In particular, note that the right hand side allows us to determine the value of the
Offspring predicate on every single input.

Some examples:
Every integer has a square that is greater or equal to 0:
∀x ∈ I : (x2 > 0)

Every integer has a square that is a positive integer:
∀x ∈ I : ∃y ∈ N : y = x2 The choice if y here might depend on the value of x already
fixed.

Ordering of quantifiers matters! (This is false!)
∃y ∈ N : ∀x ∈ I : (y = x2)

Define predicate isPerfectSquare:
∀x ∈ I : IsPerfectSquare(x)↔ (∃y ∈ I : x = y2)

There is a special member of N that is smaller than all other members:
∃y ∈ N : ∀x ∈ N : (y ≤ x)

When all quantifiers are of the same kind, ordering does not matter:
(∀x : ∀y : p(x , y)) ≡ (∀y : ∀x : p(x , y)). Both mean that p holds for all pairs (x , y).
(∃x : ∃y : p(x , y)) ≡ (∃y : ∃x : p(x , y)).



Multiple Quantifiers

If a predicate has more than 1 variable, we might apply more than 1 quantifier.
∀x : ∀y : BioMother(x , y)↔ (Birthed(x , y) ∧ (FemaleSex(x))

∀x : ∀y : ∀z : Offspring(x , y , z)↔ (BioMother(y , x) ∧ BioFather(z, x))

The use of ↔ here allows us to define the predicate, using other predicates.
In particular, note that the right hand side allows us to determine the value of the
Offspring predicate on every single input.

Some examples:
Every integer has a square that is greater or equal to 0:
∀x ∈ I : (x2 > 0)

Every integer has a square that is a positive integer:
∀x ∈ I : ∃y ∈ N : y = x2 The choice if y here might depend on the value of x already
fixed.

Ordering of quantifiers matters! (This is false!)
∃y ∈ N : ∀x ∈ I : (y = x2)

Define predicate isPerfectSquare:
∀x ∈ I : IsPerfectSquare(x)↔ (∃y ∈ I : x = y2)

There is a special member of N that is smaller than all other members:
∃y ∈ N : ∀x ∈ N : (y ≤ x)

When all quantifiers are of the same kind, ordering does not matter:
(∀x : ∀y : p(x , y)) ≡ (∀y : ∀x : p(x , y)). Both mean that p holds for all pairs (x , y).
(∃x : ∃y : p(x , y)) ≡ (∃y : ∃x : p(x , y)).



Multiple Quantifiers

If a predicate has more than 1 variable, we might apply more than 1 quantifier.
∀x : ∀y : BioMother(x , y)↔ (Birthed(x , y) ∧ (FemaleSex(x))
∀x : ∀y : ∀z : Offspring(x , y , z)↔ (BioMother(y , x) ∧ BioFather(z, x))

The use of ↔ here allows us to define the predicate, using other predicates.
In particular, note that the right hand side allows us to determine the value of the
Offspring predicate on every single input.

Some examples:
Every integer has a square that is greater or equal to 0:
∀x ∈ I : (x2 > 0)

Every integer has a square that is a positive integer:
∀x ∈ I : ∃y ∈ N : y = x2 The choice if y here might depend on the value of x already
fixed.

Ordering of quantifiers matters! (This is false!)
∃y ∈ N : ∀x ∈ I : (y = x2)

Define predicate isPerfectSquare:
∀x ∈ I : IsPerfectSquare(x)↔ (∃y ∈ I : x = y2)

There is a special member of N that is smaller than all other members:
∃y ∈ N : ∀x ∈ N : (y ≤ x)

When all quantifiers are of the same kind, ordering does not matter:
(∀x : ∀y : p(x , y)) ≡ (∀y : ∀x : p(x , y)). Both mean that p holds for all pairs (x , y).
(∃x : ∃y : p(x , y)) ≡ (∃y : ∃x : p(x , y)).



Multiple Quantifiers

If a predicate has more than 1 variable, we might apply more than 1 quantifier.
∀x : ∀y : BioMother(x , y)↔ (Birthed(x , y) ∧ (FemaleSex(x))
∀x : ∀y : ∀z : Offspring(x , y , z)↔ (BioMother(y , x) ∧ BioFather(z, x))

The use of ↔ here allows us to define the predicate, using other predicates.

In particular, note that the right hand side allows us to determine the value of the
Offspring predicate on every single input.

Some examples:
Every integer has a square that is greater or equal to 0:
∀x ∈ I : (x2 > 0)

Every integer has a square that is a positive integer:
∀x ∈ I : ∃y ∈ N : y = x2 The choice if y here might depend on the value of x already
fixed.

Ordering of quantifiers matters! (This is false!)
∃y ∈ N : ∀x ∈ I : (y = x2)

Define predicate isPerfectSquare:
∀x ∈ I : IsPerfectSquare(x)↔ (∃y ∈ I : x = y2)

There is a special member of N that is smaller than all other members:
∃y ∈ N : ∀x ∈ N : (y ≤ x)

When all quantifiers are of the same kind, ordering does not matter:
(∀x : ∀y : p(x , y)) ≡ (∀y : ∀x : p(x , y)). Both mean that p holds for all pairs (x , y).
(∃x : ∃y : p(x , y)) ≡ (∃y : ∃x : p(x , y)).



Multiple Quantifiers

If a predicate has more than 1 variable, we might apply more than 1 quantifier.
∀x : ∀y : BioMother(x , y)↔ (Birthed(x , y) ∧ (FemaleSex(x))
∀x : ∀y : ∀z : Offspring(x , y , z)↔ (BioMother(y , x) ∧ BioFather(z, x))

The use of ↔ here allows us to define the predicate, using other predicates.
In particular, note that the right hand side allows us to determine the value of the
Offspring predicate on every single input.

Some examples:
Every integer has a square that is greater or equal to 0:
∀x ∈ I : (x2 > 0)

Every integer has a square that is a positive integer:
∀x ∈ I : ∃y ∈ N : y = x2 The choice if y here might depend on the value of x already
fixed.

Ordering of quantifiers matters! (This is false!)
∃y ∈ N : ∀x ∈ I : (y = x2)

Define predicate isPerfectSquare:
∀x ∈ I : IsPerfectSquare(x)↔ (∃y ∈ I : x = y2)

There is a special member of N that is smaller than all other members:
∃y ∈ N : ∀x ∈ N : (y ≤ x)

When all quantifiers are of the same kind, ordering does not matter:
(∀x : ∀y : p(x , y)) ≡ (∀y : ∀x : p(x , y)). Both mean that p holds for all pairs (x , y).
(∃x : ∃y : p(x , y)) ≡ (∃y : ∃x : p(x , y)).



Multiple Quantifiers

If a predicate has more than 1 variable, we might apply more than 1 quantifier.
∀x : ∀y : BioMother(x , y)↔ (Birthed(x , y) ∧ (FemaleSex(x))
∀x : ∀y : ∀z : Offspring(x , y , z)↔ (BioMother(y , x) ∧ BioFather(z, x))

The use of ↔ here allows us to define the predicate, using other predicates.
In particular, note that the right hand side allows us to determine the value of the
Offspring predicate on every single input.

Some examples:
Every integer has a square that is greater or equal to 0:
∀x ∈ I : (x2 > 0)

Every integer has a square that is a positive integer:
∀x ∈ I : ∃y ∈ N : y = x2 The choice if y here might depend on the value of x already
fixed.

Ordering of quantifiers matters! (This is false!)
∃y ∈ N : ∀x ∈ I : (y = x2)

Define predicate isPerfectSquare:
∀x ∈ I : IsPerfectSquare(x)↔ (∃y ∈ I : x = y2)

There is a special member of N that is smaller than all other members:
∃y ∈ N : ∀x ∈ N : (y ≤ x)

When all quantifiers are of the same kind, ordering does not matter:
(∀x : ∀y : p(x , y)) ≡ (∀y : ∀x : p(x , y)). Both mean that p holds for all pairs (x , y).
(∃x : ∃y : p(x , y)) ≡ (∃y : ∃x : p(x , y)).



Multiple Quantifiers

If a predicate has more than 1 variable, we might apply more than 1 quantifier.
∀x : ∀y : BioMother(x , y)↔ (Birthed(x , y) ∧ (FemaleSex(x))
∀x : ∀y : ∀z : Offspring(x , y , z)↔ (BioMother(y , x) ∧ BioFather(z, x))

The use of ↔ here allows us to define the predicate, using other predicates.
In particular, note that the right hand side allows us to determine the value of the
Offspring predicate on every single input.

Some examples:
Every integer has a square that is greater or equal to 0:
∀x ∈ I : (x2 > 0)

Every integer has a square that is a positive integer:
∀x ∈ I : ∃y ∈ N : y = x2

The choice if y here might depend on the value of x already
fixed.

Ordering of quantifiers matters! (This is false!)
∃y ∈ N : ∀x ∈ I : (y = x2)

Define predicate isPerfectSquare:
∀x ∈ I : IsPerfectSquare(x)↔ (∃y ∈ I : x = y2)

There is a special member of N that is smaller than all other members:
∃y ∈ N : ∀x ∈ N : (y ≤ x)

When all quantifiers are of the same kind, ordering does not matter:
(∀x : ∀y : p(x , y)) ≡ (∀y : ∀x : p(x , y)). Both mean that p holds for all pairs (x , y).
(∃x : ∃y : p(x , y)) ≡ (∃y : ∃x : p(x , y)).



Multiple Quantifiers

If a predicate has more than 1 variable, we might apply more than 1 quantifier.
∀x : ∀y : BioMother(x , y)↔ (Birthed(x , y) ∧ (FemaleSex(x))
∀x : ∀y : ∀z : Offspring(x , y , z)↔ (BioMother(y , x) ∧ BioFather(z, x))

The use of ↔ here allows us to define the predicate, using other predicates.
In particular, note that the right hand side allows us to determine the value of the
Offspring predicate on every single input.

Some examples:
Every integer has a square that is greater or equal to 0:
∀x ∈ I : (x2 > 0)

Every integer has a square that is a positive integer:
∀x ∈ I : ∃y ∈ N : y = x2 The choice if y here might depend on the value of x already
fixed.

Ordering of quantifiers matters! (This is false!)
∃y ∈ N : ∀x ∈ I : (y = x2)

Define predicate isPerfectSquare:
∀x ∈ I : IsPerfectSquare(x)↔ (∃y ∈ I : x = y2)

There is a special member of N that is smaller than all other members:
∃y ∈ N : ∀x ∈ N : (y ≤ x)

When all quantifiers are of the same kind, ordering does not matter:
(∀x : ∀y : p(x , y)) ≡ (∀y : ∀x : p(x , y)). Both mean that p holds for all pairs (x , y).
(∃x : ∃y : p(x , y)) ≡ (∃y : ∃x : p(x , y)).



Multiple Quantifiers

If a predicate has more than 1 variable, we might apply more than 1 quantifier.
∀x : ∀y : BioMother(x , y)↔ (Birthed(x , y) ∧ (FemaleSex(x))
∀x : ∀y : ∀z : Offspring(x , y , z)↔ (BioMother(y , x) ∧ BioFather(z, x))

The use of ↔ here allows us to define the predicate, using other predicates.
In particular, note that the right hand side allows us to determine the value of the
Offspring predicate on every single input.

Some examples:
Every integer has a square that is greater or equal to 0:
∀x ∈ I : (x2 > 0)

Every integer has a square that is a positive integer:
∀x ∈ I : ∃y ∈ N : y = x2 The choice if y here might depend on the value of x already
fixed.

Ordering of quantifiers matters! (This is false!)
∃y ∈ N : ∀x ∈ I : (y = x2)

Define predicate isPerfectSquare:
∀x ∈ I : IsPerfectSquare(x)↔ (∃y ∈ I : x = y2)

There is a special member of N that is smaller than all other members:
∃y ∈ N : ∀x ∈ N : (y ≤ x)

When all quantifiers are of the same kind, ordering does not matter:
(∀x : ∀y : p(x , y)) ≡ (∀y : ∀x : p(x , y)). Both mean that p holds for all pairs (x , y).
(∃x : ∃y : p(x , y)) ≡ (∃y : ∃x : p(x , y)).



Multiple Quantifiers

If a predicate has more than 1 variable, we might apply more than 1 quantifier.
∀x : ∀y : BioMother(x , y)↔ (Birthed(x , y) ∧ (FemaleSex(x))
∀x : ∀y : ∀z : Offspring(x , y , z)↔ (BioMother(y , x) ∧ BioFather(z, x))

The use of ↔ here allows us to define the predicate, using other predicates.
In particular, note that the right hand side allows us to determine the value of the
Offspring predicate on every single input.

Some examples:
Every integer has a square that is greater or equal to 0:
∀x ∈ I : (x2 > 0)

Every integer has a square that is a positive integer:
∀x ∈ I : ∃y ∈ N : y = x2 The choice if y here might depend on the value of x already
fixed.

Ordering of quantifiers matters! (This is false!)
∃y ∈ N : ∀x ∈ I : (y = x2)

Define predicate isPerfectSquare:
∀x ∈ I : IsPerfectSquare(x)↔ (∃y ∈ I : x = y2)

There is a special member of N that is smaller than all other members:
∃y ∈ N : ∀x ∈ N : (y ≤ x)

When all quantifiers are of the same kind, ordering does not matter:
(∀x : ∀y : p(x , y)) ≡ (∀y : ∀x : p(x , y)). Both mean that p holds for all pairs (x , y).
(∃x : ∃y : p(x , y)) ≡ (∃y : ∃x : p(x , y)).



Multiple Quantifiers

If a predicate has more than 1 variable, we might apply more than 1 quantifier.
∀x : ∀y : BioMother(x , y)↔ (Birthed(x , y) ∧ (FemaleSex(x))
∀x : ∀y : ∀z : Offspring(x , y , z)↔ (BioMother(y , x) ∧ BioFather(z, x))

The use of ↔ here allows us to define the predicate, using other predicates.
In particular, note that the right hand side allows us to determine the value of the
Offspring predicate on every single input.

Some examples:
Every integer has a square that is greater or equal to 0:
∀x ∈ I : (x2 > 0)

Every integer has a square that is a positive integer:
∀x ∈ I : ∃y ∈ N : y = x2 The choice if y here might depend on the value of x already
fixed.

Ordering of quantifiers matters! (This is false!)
∃y ∈ N : ∀x ∈ I : (y = x2)

Define predicate isPerfectSquare:
∀x ∈ I : IsPerfectSquare(x)↔ (∃y ∈ I : x = y2)

There is a special member of N that is smaller than all other members:
∃y ∈ N : ∀x ∈ N : (y ≤ x)

When all quantifiers are of the same kind, ordering does not matter:
(∀x : ∀y : p(x , y)) ≡ (∀y : ∀x : p(x , y)). Both mean that p holds for all pairs (x , y).
(∃x : ∃y : p(x , y)) ≡ (∃y : ∃x : p(x , y)).



Multiple Quantifiers

If a predicate has more than 1 variable, we might apply more than 1 quantifier.
∀x : ∀y : BioMother(x , y)↔ (Birthed(x , y) ∧ (FemaleSex(x))
∀x : ∀y : ∀z : Offspring(x , y , z)↔ (BioMother(y , x) ∧ BioFather(z, x))

The use of ↔ here allows us to define the predicate, using other predicates.
In particular, note that the right hand side allows us to determine the value of the
Offspring predicate on every single input.

Some examples:
Every integer has a square that is greater or equal to 0:
∀x ∈ I : (x2 > 0)

Every integer has a square that is a positive integer:
∀x ∈ I : ∃y ∈ N : y = x2 The choice if y here might depend on the value of x already
fixed.

Ordering of quantifiers matters! (This is false!)
∃y ∈ N : ∀x ∈ I : (y = x2)

Define predicate isPerfectSquare:
∀x ∈ I : IsPerfectSquare(x)↔ (∃y ∈ I : x = y2)

There is a special member of N that is smaller than all other members:
∃y ∈ N : ∀x ∈ N : (y ≤ x)

When all quantifiers are of the same kind, ordering does not matter:
(∀x : ∀y : p(x , y)) ≡ (∀y : ∀x : p(x , y)).

Both mean that p holds for all pairs (x , y).
(∃x : ∃y : p(x , y)) ≡ (∃y : ∃x : p(x , y)).



Multiple Quantifiers

If a predicate has more than 1 variable, we might apply more than 1 quantifier.
∀x : ∀y : BioMother(x , y)↔ (Birthed(x , y) ∧ (FemaleSex(x))
∀x : ∀y : ∀z : Offspring(x , y , z)↔ (BioMother(y , x) ∧ BioFather(z, x))

The use of ↔ here allows us to define the predicate, using other predicates.
In particular, note that the right hand side allows us to determine the value of the
Offspring predicate on every single input.

Some examples:
Every integer has a square that is greater or equal to 0:
∀x ∈ I : (x2 > 0)

Every integer has a square that is a positive integer:
∀x ∈ I : ∃y ∈ N : y = x2 The choice if y here might depend on the value of x already
fixed.

Ordering of quantifiers matters! (This is false!)
∃y ∈ N : ∀x ∈ I : (y = x2)

Define predicate isPerfectSquare:
∀x ∈ I : IsPerfectSquare(x)↔ (∃y ∈ I : x = y2)

There is a special member of N that is smaller than all other members:
∃y ∈ N : ∀x ∈ N : (y ≤ x)

When all quantifiers are of the same kind, ordering does not matter:
(∀x : ∀y : p(x , y)) ≡ (∀y : ∀x : p(x , y)). Both mean that p holds for all pairs (x , y).

(∃x : ∃y : p(x , y)) ≡ (∃y : ∃x : p(x , y)).



Multiple Quantifiers

If a predicate has more than 1 variable, we might apply more than 1 quantifier.
∀x : ∀y : BioMother(x , y)↔ (Birthed(x , y) ∧ (FemaleSex(x))
∀x : ∀y : ∀z : Offspring(x , y , z)↔ (BioMother(y , x) ∧ BioFather(z, x))

The use of ↔ here allows us to define the predicate, using other predicates.
In particular, note that the right hand side allows us to determine the value of the
Offspring predicate on every single input.

Some examples:
Every integer has a square that is greater or equal to 0:
∀x ∈ I : (x2 > 0)

Every integer has a square that is a positive integer:
∀x ∈ I : ∃y ∈ N : y = x2 The choice if y here might depend on the value of x already
fixed.

Ordering of quantifiers matters! (This is false!)
∃y ∈ N : ∀x ∈ I : (y = x2)

Define predicate isPerfectSquare:
∀x ∈ I : IsPerfectSquare(x)↔ (∃y ∈ I : x = y2)

There is a special member of N that is smaller than all other members:
∃y ∈ N : ∀x ∈ N : (y ≤ x)

When all quantifiers are of the same kind, ordering does not matter:
(∀x : ∀y : p(x , y)) ≡ (∀y : ∀x : p(x , y)). Both mean that p holds for all pairs (x , y).
(∃x : ∃y : p(x , y)) ≡ (∃y : ∃x : p(x , y)).



Defining Formulas

Formulas
I If p is an n-argument predicate, and each of a1, . . . , an is either an element of a

domain U , or a variable over a domain, then p(a1, . . . , an) is a formula. By
convention, a predicate with n = 0 arguments is a simple Boolean variable.

I If α is a formula and β is a formula, then ¬α, (α ∨ β) and (α ∧ β) are formulas.

I If α is a formula and x is a variable over a domain, then (∃x : α) and (∀x : α) are
formulas.



Defining Formulas

Formulas
I If p is an n-argument predicate, and each of a1, . . . , an is either an element of a

domain U , or a variable over a domain, then p(a1, . . . , an) is a formula. By
convention, a predicate with n = 0 arguments is a simple Boolean variable.

I If α is a formula and β is a formula, then ¬α, (α ∨ β) and (α ∧ β) are formulas.

I If α is a formula and x is a variable over a domain, then (∃x : α) and (∀x : α) are
formulas.



Defining Formulas

Formulas
I If p is an n-argument predicate, and each of a1, . . . , an is either an element of a

domain U , or a variable over a domain, then p(a1, . . . , an) is a formula. By
convention, a predicate with n = 0 arguments is a simple Boolean variable.

I If α is a formula and β is a formula, then ¬α, (α ∨ β) and (α ∧ β) are formulas.

I If α is a formula and x is a variable over a domain, then (∃x : α) and (∀x : α) are
formulas.



More Examples: Character Arrays

Let A = (a1, . . . , an) and B = (b1, . . . , bn) be sequences of characters.
≺: predicate meaning x comes before y lexicographically. E.g. b ≺ d ≡ True.
In is the first n integers.

State that some letter appears in the same position in the sequences A and B.
∃i ∈ In : ai = bi

Every pair of elements of A are equal to each other:
∀i ∈ In : ∀j ∈ In : ai = aj .
∀i ∈ In : ai = a1

What does the following formula mean (in English)?
∀i ∈ In−1 : ai ≺ ai+1



More Examples: Character Arrays

Let A = (a1, . . . , an) and B = (b1, . . . , bn) be sequences of characters.
≺: predicate meaning x comes before y lexicographically. E.g. b ≺ d ≡ True.
In is the first n integers.

State that some letter appears in the same position in the sequences A and B.

∃i ∈ In : ai = bi

Every pair of elements of A are equal to each other:
∀i ∈ In : ∀j ∈ In : ai = aj .
∀i ∈ In : ai = a1

What does the following formula mean (in English)?
∀i ∈ In−1 : ai ≺ ai+1



More Examples: Character Arrays

Let A = (a1, . . . , an) and B = (b1, . . . , bn) be sequences of characters.
≺: predicate meaning x comes before y lexicographically. E.g. b ≺ d ≡ True.
In is the first n integers.

State that some letter appears in the same position in the sequences A and B.
∃i ∈ In : ai = bi

Every pair of elements of A are equal to each other:
∀i ∈ In : ∀j ∈ In : ai = aj .
∀i ∈ In : ai = a1

What does the following formula mean (in English)?
∀i ∈ In−1 : ai ≺ ai+1



More Examples: Character Arrays

Let A = (a1, . . . , an) and B = (b1, . . . , bn) be sequences of characters.
≺: predicate meaning x comes before y lexicographically. E.g. b ≺ d ≡ True.
In is the first n integers.

State that some letter appears in the same position in the sequences A and B.
∃i ∈ In : ai = bi

Every pair of elements of A are equal to each other:

∀i ∈ In : ∀j ∈ In : ai = aj .
∀i ∈ In : ai = a1

What does the following formula mean (in English)?
∀i ∈ In−1 : ai ≺ ai+1



More Examples: Character Arrays

Let A = (a1, . . . , an) and B = (b1, . . . , bn) be sequences of characters.
≺: predicate meaning x comes before y lexicographically. E.g. b ≺ d ≡ True.
In is the first n integers.

State that some letter appears in the same position in the sequences A and B.
∃i ∈ In : ai = bi

Every pair of elements of A are equal to each other:
∀i ∈ In : ∀j ∈ In : ai = aj .

∀i ∈ In : ai = a1

What does the following formula mean (in English)?
∀i ∈ In−1 : ai ≺ ai+1



More Examples: Character Arrays

Let A = (a1, . . . , an) and B = (b1, . . . , bn) be sequences of characters.
≺: predicate meaning x comes before y lexicographically. E.g. b ≺ d ≡ True.
In is the first n integers.

State that some letter appears in the same position in the sequences A and B.
∃i ∈ In : ai = bi

Every pair of elements of A are equal to each other:
∀i ∈ In : ∀j ∈ In : ai = aj .
∀i ∈ In : ai = a1

What does the following formula mean (in English)?
∀i ∈ In−1 : ai ≺ ai+1



More Examples: Character Arrays

Let A = (a1, . . . , an) and B = (b1, . . . , bn) be sequences of characters.
≺: predicate meaning x comes before y lexicographically. E.g. b ≺ d ≡ True.
In is the first n integers.

State that some letter appears in the same position in the sequences A and B.
∃i ∈ In : ai = bi

Every pair of elements of A are equal to each other:
∀i ∈ In : ∀j ∈ In : ai = aj .
∀i ∈ In : ai = a1

What does the following formula mean (in English)?
∀i ∈ In−1 : ai ≺ ai+1



More Examples: Graphs

Undirected Graph G = (V ,E):
V is a set of vertices, and
E ⊆ V × V is a relation on V , called the set of edges.

Because it is undirected, (x , y) ∈ E ↔ (y , x) ∈ E .

A path of length k from x ∈ V to y ∈ V is a sequence of vertices,
x = x0, x1, . . . , xk = y , such that ∀i ∈ {1, . . . , k} : (xi−1, xi ) ∈ E

Suppose V = {a, b, c, d} and E = {(a, b), (b, c), (a, d)}
Is the following formula True or False?
∀x ∈ V : ∃y ∈ V : (x , y) ∈ E

What about the following formula?
∃x ∈ V : ∀y ∈ V : (x , y) ∈ E

Assume ∀x ∈ V : (x , x) /∈ E
Give a formula for the following English sentence:
Every pair of vertices has a path of length 2.

∀x ∈ V : ∀y ∈ V : ∃Z ∈ V : ((x , z) ∈ E) ∧ ((y , z) ∈ E)



More Examples: Graphs

Undirected Graph G = (V ,E):
V is a set of vertices, and
E ⊆ V × V is a relation on V , called the set of edges.
Because it is undirected, (x , y) ∈ E ↔ (y , x) ∈ E .

A path of length k from x ∈ V to y ∈ V is a sequence of vertices,
x = x0, x1, . . . , xk = y , such that ∀i ∈ {1, . . . , k} : (xi−1, xi ) ∈ E

Suppose V = {a, b, c, d} and E = {(a, b), (b, c), (a, d)}
Is the following formula True or False?
∀x ∈ V : ∃y ∈ V : (x , y) ∈ E

What about the following formula?
∃x ∈ V : ∀y ∈ V : (x , y) ∈ E

Assume ∀x ∈ V : (x , x) /∈ E
Give a formula for the following English sentence:
Every pair of vertices has a path of length 2.

∀x ∈ V : ∀y ∈ V : ∃Z ∈ V : ((x , z) ∈ E) ∧ ((y , z) ∈ E)



More Examples: Graphs

Undirected Graph G = (V ,E):
V is a set of vertices, and
E ⊆ V × V is a relation on V , called the set of edges.
Because it is undirected, (x , y) ∈ E ↔ (y , x) ∈ E .

A path of length k from x ∈ V to y ∈ V is a sequence of vertices,
x = x0, x1, . . . , xk = y , such that ∀i ∈ {1, . . . , k} : (xi−1, xi ) ∈ E

Suppose V = {a, b, c, d} and E = {(a, b), (b, c), (a, d)}
Is the following formula True or False?
∀x ∈ V : ∃y ∈ V : (x , y) ∈ E

What about the following formula?
∃x ∈ V : ∀y ∈ V : (x , y) ∈ E

Assume ∀x ∈ V : (x , x) /∈ E
Give a formula for the following English sentence:
Every pair of vertices has a path of length 2.

∀x ∈ V : ∀y ∈ V : ∃Z ∈ V : ((x , z) ∈ E) ∧ ((y , z) ∈ E)



More Examples: Graphs

Undirected Graph G = (V ,E):
V is a set of vertices, and
E ⊆ V × V is a relation on V , called the set of edges.
Because it is undirected, (x , y) ∈ E ↔ (y , x) ∈ E .

A path of length k from x ∈ V to y ∈ V is a sequence of vertices,
x = x0, x1, . . . , xk = y , such that ∀i ∈ {1, . . . , k} : (xi−1, xi ) ∈ E

Suppose V = {a, b, c, d} and E = {(a, b), (b, c), (a, d)}
Is the following formula True or False?
∀x ∈ V : ∃y ∈ V : (x , y) ∈ E

What about the following formula?
∃x ∈ V : ∀y ∈ V : (x , y) ∈ E

Assume ∀x ∈ V : (x , x) /∈ E
Give a formula for the following English sentence:
Every pair of vertices has a path of length 2.

∀x ∈ V : ∀y ∈ V : ∃Z ∈ V : ((x , z) ∈ E) ∧ ((y , z) ∈ E)



More Examples: Graphs

Undirected Graph G = (V ,E):
V is a set of vertices, and
E ⊆ V × V is a relation on V , called the set of edges.
Because it is undirected, (x , y) ∈ E ↔ (y , x) ∈ E .

A path of length k from x ∈ V to y ∈ V is a sequence of vertices,
x = x0, x1, . . . , xk = y , such that ∀i ∈ {1, . . . , k} : (xi−1, xi ) ∈ E

Suppose V = {a, b, c, d} and E = {(a, b), (b, c), (a, d)}
Is the following formula True or False?
∀x ∈ V : ∃y ∈ V : (x , y) ∈ E

What about the following formula?
∃x ∈ V : ∀y ∈ V : (x , y) ∈ E

Assume ∀x ∈ V : (x , x) /∈ E
Give a formula for the following English sentence:
Every pair of vertices has a path of length 2.

∀x ∈ V : ∀y ∈ V : ∃Z ∈ V : ((x , z) ∈ E) ∧ ((y , z) ∈ E)



More Examples: Graphs

Undirected Graph G = (V ,E):
V is a set of vertices, and
E ⊆ V × V is a relation on V , called the set of edges.
Because it is undirected, (x , y) ∈ E ↔ (y , x) ∈ E .

A path of length k from x ∈ V to y ∈ V is a sequence of vertices,
x = x0, x1, . . . , xk = y , such that ∀i ∈ {1, . . . , k} : (xi−1, xi ) ∈ E

Suppose V = {a, b, c, d} and E = {(a, b), (b, c), (a, d)}
Is the following formula True or False?
∀x ∈ V : ∃y ∈ V : (x , y) ∈ E

What about the following formula?
∃x ∈ V : ∀y ∈ V : (x , y) ∈ E

Assume ∀x ∈ V : (x , x) /∈ E
Give a formula for the following English sentence:
Every pair of vertices has a path of length 2.

∀x ∈ V : ∀y ∈ V : ∃Z ∈ V : ((x , z) ∈ E) ∧ ((y , z) ∈ E)



More Examples: Graphs

Undirected Graph G = (V ,E):
V is a set of vertices, and
E ⊆ V × V is a relation on V , called the set of edges.
Because it is undirected, (x , y) ∈ E ↔ (y , x) ∈ E .

A path of length k from x ∈ V to y ∈ V is a sequence of vertices,
x = x0, x1, . . . , xk = y , such that ∀i ∈ {1, . . . , k} : (xi−1, xi ) ∈ E

Suppose V = {a, b, c, d} and E = {(a, b), (b, c), (a, d)}
Is the following formula True or False?
∀x ∈ V : ∃y ∈ V : (x , y) ∈ E

What about the following formula?
∃x ∈ V : ∀y ∈ V : (x , y) ∈ E

Assume ∀x ∈ V : (x , x) /∈ E
Give a formula for the following English sentence:
Every pair of vertices has a path of length 2.

∀x ∈ V : ∀y ∈ V : ∃Z ∈ V : ((x , z) ∈ E) ∧ ((y , z) ∈ E)



Example: Recursive Definition of Path

∀x ∈ V : ∀y ∈ V : Edge(x , y)↔ (x , y) ∈ E

Let Path(x , y) be a predicate for the property that there is a sequence of 0, 1, 2 or
more edges connecting x and y .
Give a recursive definition of Path, using predicate Edge:

∀x ∈ V : ∀y ∈ V : Path(x , y)↔ (x = y) ∨ ∃z ∈ V : Edge(x , z) ∧ Path(z, y)
Path of length 0: Path(x , x)↔ (x = x) ∨ . . .
Path of length 1: Path(x , y)↔ (x = y) ∨ ∃z ∈ V : Edge(x , z) ∧ Path(z, y)

Take z = y : Edge(x , y) ∧ Path(y , y)
Path of length 2 (x , r , y): Path(x , y)↔ (x = y) ∨ ∃z ∈ V : Edge(x , z) ∧ Path(z, y)

Take z = r : Edge(x , r) ∧ Path(r , y)
Path(r , y)↔ (r = y) ∨ ∃z ∈ V : Edge(r , z) ∧ Path(z, y)

Take z = y : Edge(r , y) ∧ Path(y , y)



Example: Recursive Definition of Path

∀x ∈ V : ∀y ∈ V : Edge(x , y)↔ (x , y) ∈ E

Let Path(x , y) be a predicate for the property that there is a sequence of 0, 1, 2 or
more edges connecting x and y .
Give a recursive definition of Path, using predicate Edge:

∀x ∈ V : ∀y ∈ V : Path(x , y)↔ (x = y) ∨ ∃z ∈ V : Edge(x , z) ∧ Path(z, y)
Path of length 0: Path(x , x)↔ (x = x) ∨ . . .
Path of length 1: Path(x , y)↔ (x = y) ∨ ∃z ∈ V : Edge(x , z) ∧ Path(z, y)

Take z = y : Edge(x , y) ∧ Path(y , y)
Path of length 2 (x , r , y): Path(x , y)↔ (x = y) ∨ ∃z ∈ V : Edge(x , z) ∧ Path(z, y)

Take z = r : Edge(x , r) ∧ Path(r , y)
Path(r , y)↔ (r = y) ∨ ∃z ∈ V : Edge(r , z) ∧ Path(z, y)

Take z = y : Edge(r , y) ∧ Path(y , y)



Example: Recursive Definition of Path

∀x ∈ V : ∀y ∈ V : Edge(x , y)↔ (x , y) ∈ E

Let Path(x , y) be a predicate for the property that there is a sequence of 0, 1, 2 or
more edges connecting x and y .
Give a recursive definition of Path, using predicate Edge:

∀x ∈ V : ∀y ∈ V : Path(x , y)↔ (x = y) ∨ ∃z ∈ V : Edge(x , z) ∧ Path(z, y)

Path of length 0: Path(x , x)↔ (x = x) ∨ . . .
Path of length 1: Path(x , y)↔ (x = y) ∨ ∃z ∈ V : Edge(x , z) ∧ Path(z, y)

Take z = y : Edge(x , y) ∧ Path(y , y)
Path of length 2 (x , r , y): Path(x , y)↔ (x = y) ∨ ∃z ∈ V : Edge(x , z) ∧ Path(z, y)

Take z = r : Edge(x , r) ∧ Path(r , y)
Path(r , y)↔ (r = y) ∨ ∃z ∈ V : Edge(r , z) ∧ Path(z, y)

Take z = y : Edge(r , y) ∧ Path(y , y)



Example: Recursive Definition of Path

∀x ∈ V : ∀y ∈ V : Edge(x , y)↔ (x , y) ∈ E

Let Path(x , y) be a predicate for the property that there is a sequence of 0, 1, 2 or
more edges connecting x and y .
Give a recursive definition of Path, using predicate Edge:

∀x ∈ V : ∀y ∈ V : Path(x , y)↔ (x = y) ∨ ∃z ∈ V : Edge(x , z) ∧ Path(z, y)
Path of length 0: Path(x , x)↔ (x = x) ∨ . . .

Path of length 1: Path(x , y)↔ (x = y) ∨ ∃z ∈ V : Edge(x , z) ∧ Path(z, y)
Take z = y : Edge(x , y) ∧ Path(y , y)

Path of length 2 (x , r , y): Path(x , y)↔ (x = y) ∨ ∃z ∈ V : Edge(x , z) ∧ Path(z, y)
Take z = r : Edge(x , r) ∧ Path(r , y)
Path(r , y)↔ (r = y) ∨ ∃z ∈ V : Edge(r , z) ∧ Path(z, y)

Take z = y : Edge(r , y) ∧ Path(y , y)



Example: Recursive Definition of Path

∀x ∈ V : ∀y ∈ V : Edge(x , y)↔ (x , y) ∈ E

Let Path(x , y) be a predicate for the property that there is a sequence of 0, 1, 2 or
more edges connecting x and y .
Give a recursive definition of Path, using predicate Edge:

∀x ∈ V : ∀y ∈ V : Path(x , y)↔ (x = y) ∨ ∃z ∈ V : Edge(x , z) ∧ Path(z, y)
Path of length 0: Path(x , x)↔ (x = x) ∨ . . .
Path of length 1: Path(x , y)↔ (x = y) ∨ ∃z ∈ V : Edge(x , z) ∧ Path(z, y)

Take z = y : Edge(x , y) ∧ Path(y , y)
Path of length 2 (x , r , y): Path(x , y)↔ (x = y) ∨ ∃z ∈ V : Edge(x , z) ∧ Path(z, y)

Take z = r : Edge(x , r) ∧ Path(r , y)
Path(r , y)↔ (r = y) ∨ ∃z ∈ V : Edge(r , z) ∧ Path(z, y)

Take z = y : Edge(r , y) ∧ Path(y , y)



Example: Recursive Definition of Path

∀x ∈ V : ∀y ∈ V : Edge(x , y)↔ (x , y) ∈ E

Let Path(x , y) be a predicate for the property that there is a sequence of 0, 1, 2 or
more edges connecting x and y .
Give a recursive definition of Path, using predicate Edge:

∀x ∈ V : ∀y ∈ V : Path(x , y)↔ (x = y) ∨ ∃z ∈ V : Edge(x , z) ∧ Path(z, y)
Path of length 0: Path(x , x)↔ (x = x) ∨ . . .
Path of length 1: Path(x , y)↔ (x = y) ∨ ∃z ∈ V : Edge(x , z) ∧ Path(z, y)

Take z = y : Edge(x , y) ∧ Path(y , y)

Path of length 2 (x , r , y): Path(x , y)↔ (x = y) ∨ ∃z ∈ V : Edge(x , z) ∧ Path(z, y)
Take z = r : Edge(x , r) ∧ Path(r , y)
Path(r , y)↔ (r = y) ∨ ∃z ∈ V : Edge(r , z) ∧ Path(z, y)

Take z = y : Edge(r , y) ∧ Path(y , y)



Example: Recursive Definition of Path

∀x ∈ V : ∀y ∈ V : Edge(x , y)↔ (x , y) ∈ E

Let Path(x , y) be a predicate for the property that there is a sequence of 0, 1, 2 or
more edges connecting x and y .
Give a recursive definition of Path, using predicate Edge:

∀x ∈ V : ∀y ∈ V : Path(x , y)↔ (x = y) ∨ ∃z ∈ V : Edge(x , z) ∧ Path(z, y)
Path of length 0: Path(x , x)↔ (x = x) ∨ . . .
Path of length 1: Path(x , y)↔ (x = y) ∨ ∃z ∈ V : Edge(x , z) ∧ Path(z, y)

Take z = y : Edge(x , y) ∧ Path(y , y)
Path of length 2 (x , r , y): Path(x , y)↔ (x = y) ∨ ∃z ∈ V : Edge(x , z) ∧ Path(z, y)

Take z = r : Edge(x , r) ∧ Path(r , y)
Path(r , y)↔ (r = y) ∨ ∃z ∈ V : Edge(r , z) ∧ Path(z, y)

Take z = y : Edge(r , y) ∧ Path(y , y)



Example: Recursive Definition of Path

∀x ∈ V : ∀y ∈ V : Edge(x , y)↔ (x , y) ∈ E

Let Path(x , y) be a predicate for the property that there is a sequence of 0, 1, 2 or
more edges connecting x and y .
Give a recursive definition of Path, using predicate Edge:

∀x ∈ V : ∀y ∈ V : Path(x , y)↔ (x = y) ∨ ∃z ∈ V : Edge(x , z) ∧ Path(z, y)
Path of length 0: Path(x , x)↔ (x = x) ∨ . . .
Path of length 1: Path(x , y)↔ (x = y) ∨ ∃z ∈ V : Edge(x , z) ∧ Path(z, y)

Take z = y : Edge(x , y) ∧ Path(y , y)
Path of length 2 (x , r , y): Path(x , y)↔ (x = y) ∨ ∃z ∈ V : Edge(x , z) ∧ Path(z, y)

Take z = r : Edge(x , r) ∧ Path(r , y)

Path(r , y)↔ (r = y) ∨ ∃z ∈ V : Edge(r , z) ∧ Path(z, y)
Take z = y : Edge(r , y) ∧ Path(y , y)



Example: Recursive Definition of Path

∀x ∈ V : ∀y ∈ V : Edge(x , y)↔ (x , y) ∈ E

Let Path(x , y) be a predicate for the property that there is a sequence of 0, 1, 2 or
more edges connecting x and y .
Give a recursive definition of Path, using predicate Edge:

∀x ∈ V : ∀y ∈ V : Path(x , y)↔ (x = y) ∨ ∃z ∈ V : Edge(x , z) ∧ Path(z, y)
Path of length 0: Path(x , x)↔ (x = x) ∨ . . .
Path of length 1: Path(x , y)↔ (x = y) ∨ ∃z ∈ V : Edge(x , z) ∧ Path(z, y)

Take z = y : Edge(x , y) ∧ Path(y , y)
Path of length 2 (x , r , y): Path(x , y)↔ (x = y) ∨ ∃z ∈ V : Edge(x , z) ∧ Path(z, y)

Take z = r : Edge(x , r) ∧ Path(r , y)
Path(r , y)↔ (r = y) ∨ ∃z ∈ V : Edge(r , z) ∧ Path(z, y)

Take z = y : Edge(r , y) ∧ Path(y , y)



Example: Recursive Definition of Path

∀x ∈ V : ∀y ∈ V : Edge(x , y)↔ (x , y) ∈ E

Let Path(x , y) be a predicate for the property that there is a sequence of 0, 1, 2 or
more edges connecting x and y .
Give a recursive definition of Path, using predicate Edge:

∀x ∈ V : ∀y ∈ V : Path(x , y)↔ (x = y) ∨ ∃z ∈ V : Edge(x , z) ∧ Path(z, y)
Path of length 0: Path(x , x)↔ (x = x) ∨ . . .
Path of length 1: Path(x , y)↔ (x = y) ∨ ∃z ∈ V : Edge(x , z) ∧ Path(z, y)

Take z = y : Edge(x , y) ∧ Path(y , y)
Path of length 2 (x , r , y): Path(x , y)↔ (x = y) ∨ ∃z ∈ V : Edge(x , z) ∧ Path(z, y)

Take z = r : Edge(x , r) ∧ Path(r , y)
Path(r , y)↔ (r = y) ∨ ∃z ∈ V : Edge(r , z) ∧ Path(z, y)

Take z = y : Edge(r , y) ∧ Path(y , y)



Exercise

Let V = {a, b, c, d}
Case a) Edge(a,b) = Edge(b,c) = Edge(b,d) = TRUE
Case b) Edge(a,b) = Edge(b,c) = Edge(c,d) = TRUE
∀x ∈ V : ∀y ∈ V : (x 6= y)→ Edge(x , y)

∀x ∈ V : ∀y ∈ V : Path(x , y)



Exercise

Let V = {a, b, c, d}
Case a) Edge(a,b) = Edge(b,c) = Edge(b,d) = TRUE
Case b) Edge(a,b) = Edge(b,c) = Edge(c,d) = TRUE
∀x ∈ V : ∀y ∈ V : (x 6= y)→ Edge(x , y)

∀x ∈ V : ∀y ∈ V : Path(x , y)


