A predicate is a function whose coDomain is {True, False}

A predicate is a function whose coDomain is {True, False} Could be $B \times B \rightarrow B$, such as with propositional operators

A predicate is a function whose coDomain is {True, False} Could be $B \times B \rightarrow B$, such as with propositional operators Could be $R \times R \rightarrow B$, such as >

A predicate is a function whose coDomain is {True, False} Could be $B \times B \to B$, such as with propositional operators Could be $R \times R \to B$, such as > Nouns: Could be *Person* \times *Person* $\to B$, such as the "Mother" predicate

A predicate is a function whose coDomain is {True, False} Could be $B \times B \to B$, such as with propositional operators Could be $R \times R \to B$, such as > Nouns: Could be *Person* \times *Person* $\to B$, such as the "Mother" predicate

Other examples:

A predicate is a function whose coDomain is {True, False} Could be $B \times B \to B$, such as with propositional operators Could be $R \times R \to B$, such as > Nouns: Could be *Person* \times *Person* $\to B$, such as the "Mother" predicate

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Other examples: Adjectives: Brown(desk)

A predicate is a function whose coDomain is {True, False} Could be $B \times B \to B$, such as with propositional operators Could be $R \times R \to B$, such as > Nouns: Could be *Person* \times *Person* $\to B$, such as the "Mother" predicate

Other examples: Adjectives: Brown(desk) Color (desk1, brown)

A predicate is a function whose coDomain is {True, False} Could be $B \times B \to B$, such as with propositional operators Could be $R \times R \to B$, such as > Nouns: Could be *Person* \times *Person* $\to B$, such as the "Mother" predicate

Other examples: Adjectives: Brown(desk) Color (desk1, brown) Big(Ant3, ants) Big(Elephant1, elephants)

A predicate is a function whose coDomain is {True, False} Could be $B \times B \to B$, such as with propositional operators Could be $R \times R \to B$, such as > Nouns: Could be *Person* \times *Person* $\to B$, such as the "Mother" predicate

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Other examples: Adjectives: Brown(desk) Color (desk1, brown) Big(Ant3, ants) Big(Elephant1, elephants) Size(Elephant1, elephants, big)

A predicate is a function whose coDomain is {True, False} Could be $B \times B \to B$, such as with propositional operators Could be $R \times R \to B$, such as > Nouns: Could be *Person* \times *Person* $\to B$, such as the "Mother" predicate

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Other examples: Adjectives: Brown(desk) Color (desk1, brown) Big(Ant3, ants) Big(Elephant1, elephants) Size(Elephant1, elephants, big) Size(Jumbo, Elephant, Small) ∧ Size(Jumbo, Mammal, Big)

A predicate is a function whose coDomain is {True, False} Could be $B \times B \to B$, such as with propositional operators Could be $R \times R \to B$, such as > Nouns: Could be *Person* \times *Person* $\to B$, such as the "Mother" predicate

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Other examples: Adjectives: Brown(desk) Color (desk1, brown) Big(Ant3, ants) Big(Elephant1, elephants) Size(Elephant1, elephants, big) Size(Jumbo, Elephant, Small) ∧ Size(Jumbo, Mammal, Big) Verbs: Borders(Bolivia, Peru)

A predicate is a function whose coDomain is {True, False} Could be $B \times B \to B$, such as with propositional operators Could be $R \times R \to B$, such as > Nouns: Could be *Person* \times *Person* $\to B$, such as the "Mother" predicate

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Other examples: Adjectives: Brown(desk) Color (desk1, brown) Big(Ant3, ants) Big(Elephant1, elephants) Size(Elephant1, elephants, big) Size(Jumbo, Elephant, Small) ∧ Size(Jumbo, Mammal, Big) Verbs: Borders(Bolivia, Peru)

Plays(Basketball, James) Plays(Soccer, Messi)

Universal quantifier: \forall (forall or every).

Universal quantifier: \forall (forall or every). Every element of some set satisfies some predicate:

Universal quantifier: \forall (forall or every). Every element of some set satisfies some predicate: Specify the set and the predicate: $\forall x \in \mathcal{I} : (x^2 \ge 0)$

Universal quantifier: \forall (forall or every). Every element of some set satisfies some predicate: Specify the set and the predicate: $\forall x \in \mathcal{I} : (x^2 \ge 0)$

Existential quantifier: \exists (for some, there exists ... such that).

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Universal quantifier: \forall (forall or every). Every element of some set satisfies some predicate: Specify the set and the predicate: $\forall x \in \mathcal{I} : (x^2 \ge 0)$

Existential quantifier: \exists (for some, there exists ... such that). Specify the set and the predicate: $\exists x \in \mathcal{I} : (x > 3) \land (x < 7)$

Universal quantifier: \forall (forall or every). Every element of some set satisfies some predicate: Specify the set and the predicate: $\forall x \in \mathcal{I} : (x^2 \ge 0)$

Existential quantifier: \exists (for some, there exists ... such that). Specify the set and the predicate: $\exists x \in \mathcal{I} : (x > 3) \land (x < 7)$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ □ のへで

 $\mathcal{U} = \{x_1, x_2, x_3\}$ $\forall x \in \mathcal{U} : p(x) \equiv (p(x_1) \land p(x_2) \land p(x_3))$

Universal quantifier: \forall (forall or every). Every element of some set satisfies some predicate: Specify the set and the predicate: $\forall x \in \mathcal{I} : (x^2 \ge 0)$

Existential quantifier: \exists (for some, there exists ... such that). Specify the set and the predicate: $\exists x \in \mathcal{I} : (x > 3) \land (x < 7)$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

 $\begin{aligned} \mathcal{U} &= \{x_1, x_2, x_3\} \\ \forall x \in \mathcal{U} : p(x) \equiv (p(x_1) \land p(x_2) \land p(x_3)) \\ \neg (p(x_1) \land p(x_2) \land p(x_3)) \equiv \neg (\forall x \in \mathcal{U} : p(x)) \end{aligned}$

Universal quantifier: \forall (forall or every). Every element of some set satisfies some predicate: Specify the set and the predicate: $\forall x \in \mathcal{I} : (x^2 \ge 0)$

Existential quantifier: \exists (for some, there exists ... such that). Specify the set and the predicate: $\exists x \in \mathcal{I} : (x > 3) \land (x < 7)$

$$\begin{aligned} \mathcal{U} &= \{x_1, x_2, x_3\} \\ \forall x \in \mathcal{U} : p(x) \equiv (p(x_1) \land p(x_2) \land p(x_3)) \\ \neg (p(x_1) \land p(x_2) \land p(x_3)) \equiv \neg (\forall x \in \mathcal{U} : p(x)) \\ &\equiv \neg p(x_1) \lor \neg p(x_2) \lor \neg p(x_3) \end{aligned}$$

Universal quantifier: \forall (forall or every). Every element of some set satisfies some predicate: Specify the set and the predicate: $\forall x \in \mathcal{I} : (x^2 \ge 0)$

Existential quantifier: \exists (for some, there exists ... such that). Specify the set and the predicate: $\exists x \in \mathcal{I} : (x > 3) \land (x < 7)$

$$\begin{aligned} \mathcal{U} &= \{x_1, x_2, x_3\} \\ \forall x \in \mathcal{U} : p(x) \equiv (p(x_1) \land p(x_2) \land p(x_3)) \\ \neg (p(x_1) \land p(x_2) \land p(x_3)) \equiv \neg (\forall x \in \mathcal{U} : p(x)) \\ &\equiv \neg p(x_1) \lor \neg p(x_2) \lor \neg p(x_3) \\ &\equiv \exists x \in \mathcal{U} : \neg p(x) \end{aligned}$$

Universal quantifier: \forall (forall or every). Every element of some set satisfies some predicate: Specify the set and the predicate: $\forall x \in \mathcal{I} : (x^2 \ge 0)$

Existential quantifier: \exists (for some, there exists ... such that). Specify the set and the predicate: $\exists x \in \mathcal{I} : (x > 3) \land (x < 7)$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

$$\begin{aligned} \mathcal{U} &= \{x_1, x_2, x_3\} \\ \forall x \in \mathcal{U} : p(x) \equiv (p(x_1) \land p(x_2) \land p(x_3)) \\ \neg(p(x_1) \land p(x_2) \land p(x_3)) \equiv \neg(\forall x \in \mathcal{U} : p(x)) \\ &\equiv \neg p(x_1) \lor \neg p(x_2) \lor \neg p(x_3) \\ &\equiv \exists x \in \mathcal{U} : \neg p(x) \end{aligned}$$

Placement of the \neg operator is very important!

 $\neg \exists x \in P : IsCarOwner(x) \\ \exists x \in P : \neg IsCarOwner(x) \\ \neg \exists x \in P : \neg IsCarOwner(x)$

Universal quantifier: \forall (forall or every). Every element of some set satisfies some predicate: Specify the set and the predicate: $\forall x \in \mathcal{I} : (x^2 \ge 0)$

Existential quantifier: \exists (for some, there exists ... such that). Specify the set and the predicate: $\exists x \in \mathcal{I} : (x > 3) \land (x < 7)$

$$\begin{aligned} \mathcal{U} &= \{x_1, x_2, x_3\} \\ \forall x \in \mathcal{U} : p(x) \equiv (p(x_1) \land p(x_2) \land p(x_3)) \\ \neg(p(x_1) \land p(x_2) \land p(x_3)) \equiv \neg(\forall x \in \mathcal{U} : p(x)) \\ &\equiv \neg p(x_1) \lor \neg p(x_2) \lor \neg p(x_3) \\ &\equiv \exists x \in \mathcal{U} : \neg p(x) \end{aligned}$$

Placement of the \neg operator is very important!

 $\neg \exists x \in P : JsCarOwner(x)$ It is not the case that someone has a car. $\exists x \in P : \neg JsCarOwner(x)$ $\neg \exists x \in P : \neg JsCarOwner(x)$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

Universal quantifier: \forall (forall or every). Every element of some set satisfies some predicate: Specify the set and the predicate: $\forall x \in \mathcal{I} : (x^2 > 0)$

Existential quantifier: \exists (for some, there exists ... such that). Specify the set and the predicate: $\exists x \in \mathcal{I} : (x > 3) \land (x < 7)$

$$\begin{aligned} \mathcal{U} &= \{x_1, x_2, x_3\} \\ \forall x \in \mathcal{U} : p(x) \equiv (p(x_1) \land p(x_2) \land p(x_3)) \\ \neg (p(x_1) \land p(x_2) \land p(x_3)) \equiv \neg (\forall x \in \mathcal{U} : p(x)) \\ &\equiv \neg p(x_1) \lor \neg p(x_2) \lor \neg p(x_3) \\ &\equiv \exists x \in \mathcal{U} : \neg p(x) \end{aligned}$$

Placement of the ¬ operator is very important!

 $\neg \exists x \in P : \neg IsCarOwner(x)$

 $\neg \exists x \in P : IsCarOwner(x)$ It is not the case that someone has a car. $\exists x \in P : \neg IsCarOwner(x)$ Someone does not have a car.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Universal quantifier: \forall (forall or every). Every element of some set satisfies some predicate: Specify the set and the predicate: $\forall x \in \mathcal{I} : (x^2 \ge 0)$

Existential quantifier: \exists (for some, there exists ... such that). Specify the set and the predicate: $\exists x \in \mathcal{I} : (x > 3) \land (x < 7)$

$$\begin{aligned} \mathcal{U} &= \{x_1, x_2, x_3\} \\ \forall x \in \mathcal{U} : p(x) \equiv (p(x_1) \land p(x_2) \land p(x_3)) \\ \neg (p(x_1) \land p(x_2) \land p(x_3)) \equiv \neg (\forall x \in \mathcal{U} : p(x)) \\ &\equiv \neg p(x_1) \lor \neg p(x_2) \lor \neg p(x_3) \\ &\equiv \exists x \in \mathcal{U} : \neg p(x) \end{aligned}$$

Placement of the \neg operator is very important!

 $\begin{array}{ll} \neg \exists x \in P : \textit{IsCarOwner}(x) & \text{It is not the case that someone has a car.} \\ \exists x \in P : \neg \textit{IsCarOwner}(x) & \text{Someone does not have a car.} \\ \neg \exists x \in P : \neg \textit{IsCarOwner}(x) & \text{No one is without a car.} \end{array}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

If a predicate has more than 1 variable, we might apply more than 1 quantifier.

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

If a predicate has more than 1 variable, we might apply more than 1 quantifier. $\forall x : \forall y : BioMother(x, y) \leftrightarrow (Birthed(x, y) \land (FemaleSex(x)))$

If a predicate has more than 1 variable, we might apply more than 1 quantifier. $\forall x : \forall y : BioMother(x, y) \leftrightarrow (Birthed(x, y) \land (FemaleSex(x)))$ $\forall x : \forall y : \forall z : Offspring(x, y, z) \leftrightarrow (BioMother(y, x) \land BioFather(z, x))$

If a predicate has more than 1 variable, we might apply more than 1 quantifier. $\forall x : \forall y : BioMother(x, y) \leftrightarrow (Birthed(x, y) \land (FemaleSex(x)))$ $\forall x : \forall y : \forall z : Offspring(x, y, z) \leftrightarrow (BioMother(y, x) \land BioFather(z, x))$

The use of \leftrightarrow here allows us to define the predicate, using other predicates.

If a predicate has more than 1 variable, we might apply more than 1 quantifier. $\forall x : \forall y : BioMother(x, y) \leftrightarrow (Birthed(x, y) \land (FemaleSex(x)))$ $\forall x : \forall y : \forall z : Offspring(x, y, z) \leftrightarrow (BioMother(y, x) \land BioFather(z, x))$

The use of \leftrightarrow here allows us to define the predicate, using other predicates. In particular, note that the right hand side allows us to determine the value of the Offspring predicate *on every single input*.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

If a predicate has more than 1 variable, we might apply more than 1 quantifier. $\forall x : \forall y : BioMother(x, y) \leftrightarrow (Birthed(x, y) \land (FemaleSex(x)))$ $\forall x : \forall y : \forall z : Offspring(x, y, z) \leftrightarrow (BioMother(y, x) \land BioFather(z, x))$

The use of \leftrightarrow here allows us to define the predicate, using other predicates. In particular, note that the right hand side allows us to determine the value of the Offspring predicate *on every single input*.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Some examples:

Every integer has a square that is greater or equal to 0: $\forall x \in \mathcal{I} : (x^2 > 0)$

If a predicate has more than 1 variable, we might apply more than 1 quantifier. $\forall x : \forall y : BioMother(x, y) \leftrightarrow (Birthed(x, y) \land (FemaleSex(x)))$ $\forall x : \forall y : \forall z : Offspring(x, y, z) \leftrightarrow (BioMother(y, x) \land BioFather(z, x))$

The use of \leftrightarrow here allows us to define the predicate, using other predicates. In particular, note that the right hand side allows us to determine the value of the Offspring predicate *on every single input*.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Some examples:

Every integer has a square that is greater or equal to 0: $\forall x \in \mathcal{I} : (x^2 > 0)$

Every integer has a square that is a positive integer: $\forall x \in \mathcal{I} : \exists y \in \mathcal{N} : y = x^2$

If a predicate has more than 1 variable, we might apply more than 1 quantifier. $\forall x : \forall y : BioMother(x, y) \leftrightarrow (Birthed(x, y) \land (FemaleSex(x)))$ $\forall x : \forall y : \forall z : Offspring(x, y, z) \leftrightarrow (BioMother(y, x) \land BioFather(z, x))$

The use of \leftrightarrow here allows us to define the predicate, using other predicates. In particular, note that the right hand side allows us to determine the value of the Offspring predicate *on every single input*.

Some examples:

Every integer has a square that is greater or equal to 0: $\forall x \in \mathcal{I} : (x^2 > 0)$

Every integer has a square that is a positive integer:

 $\forall x \in \mathcal{I} : \exists y \in \mathcal{N} : y = x^2$ The choice if y here might depend on the value of x already fixed.

If a predicate has more than 1 variable, we might apply more than 1 quantifier. $\forall x : \forall y : BioMother(x, y) \leftrightarrow (Birthed(x, y) \land (FemaleSex(x)))$ $\forall x : \forall y : \forall z : Offspring(x, y, z) \leftrightarrow (BioMother(y, x) \land BioFather(z, x))$

The use of \leftrightarrow here allows us to define the predicate, using other predicates. In particular, note that the right hand side allows us to determine the value of the Offspring predicate *on every single input*.

Some examples:

Every integer has a square that is greater or equal to 0: $\forall x \in \mathcal{I} : (x^2 > 0)$

Every integer has a square that is a positive integer:

 $\forall x \in \mathcal{I} : \exists y \in \mathcal{N} : y = x^2$ The choice if y here might depend on the value of x already fixed.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Ordering of quantifiers matters! (This is false!) $\exists y \in \mathcal{N} : \forall x \in \mathcal{I} : (y = x^2)$

If a predicate has more than 1 variable, we might apply more than 1 quantifier. $\forall x : \forall y : BioMother(x, y) \leftrightarrow (Birthed(x, y) \land (FemaleSex(x)))$ $\forall x : \forall y : \forall z : Offspring(x, y, z) \leftrightarrow (BioMother(y, x) \land BioFather(z, x))$

The use of \leftrightarrow here allows us to define the predicate, using other predicates. In particular, note that the right hand side allows us to determine the value of the Offspring predicate *on every single input*.

Some examples:

Every integer has a square that is greater or equal to 0: $\forall x \in \mathcal{I} : (x^2 > 0)$

Every integer has a square that is a positive integer:

 $\forall x \in \mathcal{I} : \exists y \in \mathcal{N} : y = x^2$ The choice if y here might depend on the value of x already fixed.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Ordering of quantifiers matters! (This is false!) $\exists y \in \mathcal{N} : \forall x \in \mathcal{I} : (y = x^2)$

Define predicate isPerfectSquare:

 $\forall x \in \mathcal{I} : \mathsf{IsPerfectSquare}(x) \leftrightarrow (\exists y \in I : x = y^2)$

If a predicate has more than 1 variable, we might apply more than 1 quantifier. $\forall x : \forall y : BioMother(x, y) \leftrightarrow (Birthed(x, y) \land (FemaleSex(x)))$ $\forall x : \forall y : \forall z : Offspring(x, y, z) \leftrightarrow (BioMother(y, x) \land BioFather(z, x))$

The use of \leftrightarrow here allows us to define the predicate, using other predicates. In particular, note that the right hand side allows us to determine the value of the Offspring predicate *on every single input*.

Some examples:

Every integer has a square that is greater or equal to 0: $\forall x \in \mathcal{I} : (x^2 > 0)$

Every integer has a square that is a positive integer:

 $\forall x \in \mathcal{I} : \exists y \in \mathcal{N} : y = x^2$ The choice if y here might depend on the value of x already fixed.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Ordering of quantifiers matters! (This is false!) $\exists y \in \mathcal{N} : \forall x \in \mathcal{I} : (y = x^2)$

Define predicate isPerfectSquare:

 $\forall x \in \mathcal{I} : \mathsf{IsPerfectSquare}(x) \leftrightarrow (\exists y \in I : x = y^2)$

There is a special member of N that is smaller than all other members: $\exists y \in N : \forall x \in N : (y \le x)$

If a predicate has more than 1 variable, we might apply more than 1 quantifier. $\forall x : \forall y : BioMother(x, y) \leftrightarrow (Birthed(x, y) \land (FemaleSex(x)))$ $\forall x : \forall y : \forall z : Offspring(x, y, z) \leftrightarrow (BioMother(y, x) \land BioFather(z, x))$

The use of \leftrightarrow here allows us to define the predicate, using other predicates. In particular, note that the right hand side allows us to determine the value of the Offspring predicate *on every single input*.

Some examples:

Every integer has a square that is greater or equal to 0: $\forall x \in \mathcal{I} : (x^2 > 0)$

Every integer has a square that is a positive integer:

 $\forall x \in \mathcal{I} : \exists y \in \mathcal{N} : y = x^2$ The choice if y here might depend on the value of x already fixed.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Ordering of quantifiers matters! (This is false!) $\exists y \in \mathcal{N} : \forall x \in \mathcal{I} : (y = x^2)$

Define predicate isPerfectSquare:

 $\forall x \in \mathcal{I} : \mathsf{IsPerfectSquare}(x) \leftrightarrow (\exists y \in I : x = y^2)$

There is a special member of N that is smaller than all other members: $\exists y \in N : \forall x \in N : (y \le x)$

When all quantifiers are of the same kind, ordering does not matter: $(\forall x : \forall y : p(x, y)) \equiv (\forall y : \forall x : p(x, y)).$

If a predicate has more than 1 variable, we might apply more than 1 quantifier. $\forall x : \forall y : BioMother(x, y) \leftrightarrow (Birthed(x, y) \land (FemaleSex(x)))$ $\forall x : \forall y : \forall z : Offspring(x, y, z) \leftrightarrow (BioMother(y, x) \land BioFather(z, x))$

The use of \leftrightarrow here allows us to define the predicate, using other predicates. In particular, note that the right hand side allows us to determine the value of the Offspring predicate *on every single input*.

Some examples:

Every integer has a square that is greater or equal to 0: $\forall x \in \mathcal{I} : (x^2 > 0)$

Every integer has a square that is a positive integer:

 $\forall x \in \mathcal{I} : \exists y \in \mathcal{N} : y = x^2$ The choice if y here might depend on the value of x already fixed.

Ordering of quantifiers matters! (This is false!) $\exists y \in \mathcal{N} : \forall x \in \mathcal{I} : (y = x^2)$

Define predicate isPerfectSquare:

 $\forall x \in \mathcal{I} : \mathsf{IsPerfectSquare}(x) \leftrightarrow (\exists y \in I : x = y^2)$

There is a special member of N that is smaller than all other members: $\exists y \in N : \forall x \in N : (y \le x)$

When all quantifiers are of the same kind, ordering does not matter: $(\forall x : \forall y : p(x, y)) \equiv (\forall y : \forall x : p(x, y))$. Both mean that p holds for all pairs (x, y).

If a predicate has more than 1 variable, we might apply more than 1 quantifier. $\forall x : \forall y : BioMother(x, y) \leftrightarrow (Birthed(x, y) \land (FemaleSex(x)))$ $\forall x : \forall y : \forall z : Offspring(x, y, z) \leftrightarrow (BioMother(y, x) \land BioFather(z, x))$

The use of \leftrightarrow here allows us to define the predicate, using other predicates. In particular, note that the right hand side allows us to determine the value of the Offspring predicate *on every single input*.

Some examples:

Every integer has a square that is greater or equal to 0: $\forall x \in \mathcal{I} : (x^2 > 0)$

Every integer has a square that is a positive integer:

 $\forall x \in \mathcal{I} : \exists y \in \mathcal{N} : y = x^2$ The choice if y here might depend on the value of x already fixed.

Ordering of quantifiers matters! (This is false!) $\exists y \in \mathcal{N} : \forall x \in \mathcal{I} : (y = x^2)$

Define predicate isPerfectSquare:

 $\forall x \in \mathcal{I} : \mathsf{IsPerfectSquare}(x) \leftrightarrow (\exists y \in I : x = y^2)$

There is a special member of N that is smaller than all other members: $\exists y \in N : \forall x \in N : (y \le x)$

When all quantifiers are of the same kind, ordering does not matter: $(\forall x : \forall y : p(x, y)) \equiv (\forall y : \forall x : p(x, y))$. Both mean that p holds for all pairs (x, y). $(\exists x : \exists y : p(x, y)) \equiv (\exists y : \exists x : p(x, y))$.

Defining Formulas

Formulas

If p is an n-argument predicate, and each of a₁,..., a_n is either an element of a domain U, or a variable over a domain, then p(a₁,..., a_n) is a formula. By convention, a predicate with n = 0 arguments is a simple Boolean variable.

Defining Formulas

Formulas

- If p is an n-argument predicate, and each of a₁,..., a_n is either an element of a domain U, or a variable over a domain, then p(a₁,..., a_n) is a formula. By convention, a predicate with n = 0 arguments is a simple Boolean variable.
- If α is a formula and β is a formula, then $\neg \alpha$, $(\alpha \lor \beta)$ and $(\alpha \land \beta)$ are formulas.

Defining Formulas

Formulas

- If p is an n-argument predicate, and each of a₁,..., a_n is either an element of a domain U, or a variable over a domain, then p(a₁,..., a_n) is a formula. By convention, a predicate with n = 0 arguments is a simple Boolean variable.
- If α is a formula and β is a formula, then $\neg \alpha$, $(\alpha \lor \beta)$ and $(\alpha \land \beta)$ are formulas.
- If α is a formula and x is a variable over a domain, then $(\exists x : \alpha)$ and $(\forall x : \alpha)$ are formulas.

Let $A = (a_1, \ldots, a_n)$ and $B = (b_1, \ldots, b_n)$ be sequences of characters. \prec : predicate meaning x comes before y lexicographically. E.g. $b \prec d \equiv$ True. \mathcal{I}_n is the first *n* integers.

Let $A = (a_1, \ldots, a_n)$ and $B = (b_1, \ldots, b_n)$ be sequences of characters. \prec : predicate meaning x comes before y lexicographically. E.g. $b \prec d \equiv$ True. \mathcal{I}_n is the first *n* integers.

State that some letter appears in the same position in the sequences A and B.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Let $A = (a_1, \ldots, a_n)$ and $B = (b_1, \ldots, b_n)$ be sequences of characters. \prec : predicate meaning x comes before y lexicographically. E.g. $b \prec d \equiv$ True. \mathcal{I}_n is the first *n* integers.

State that some letter appears in the same position in the sequences A and B. $\exists i \in \mathcal{I}_n : a_i = b_i$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Let $A = (a_1, \ldots, a_n)$ and $B = (b_1, \ldots, b_n)$ be sequences of characters. \prec : predicate meaning x comes before y lexicographically. E.g. $b \prec d \equiv$ True. \mathcal{I}_n is the first *n* integers.

State that some letter appears in the same position in the sequences A and B. $\exists i \in \mathcal{I}_n : a_i = b_i$

Every pair of elements of A are equal to each other:

Let $A = (a_1, \ldots, a_n)$ and $B = (b_1, \ldots, b_n)$ be sequences of characters. \prec : predicate meaning x comes before y lexicographically. E.g. $b \prec d \equiv$ True. \mathcal{I}_n is the first *n* integers.

State that some letter appears in the same position in the sequences A and B. $\exists i \in \mathcal{I}_n : a_i = b_i$

Every pair of elements of A are equal to each other:

 $\forall i \in \mathcal{I}_n : \forall j \in \mathcal{I}_n : a_i = a_j.$

Let $A = (a_1, \ldots, a_n)$ and $B = (b_1, \ldots, b_n)$ be sequences of characters. \prec : predicate meaning x comes before y lexicographically. E.g. $b \prec d \equiv$ True. \mathcal{I}_n is the first *n* integers.

State that some letter appears in the same position in the sequences A and B. $\exists i \in \mathcal{I}_n : a_i = b_i$

Every pair of elements of A are equal to each other:

 $\forall i \in \mathcal{I}_n : \forall j \in \mathcal{I}_n : a_i = a_j. \\ \forall i \in \mathcal{I}_n : a_i = a_1$

Let $A = (a_1, \ldots, a_n)$ and $B = (b_1, \ldots, b_n)$ be sequences of characters. \prec : predicate meaning x comes before y lexicographically. E.g. $b \prec d \equiv$ True. \mathcal{I}_n is the first *n* integers.

State that some letter appears in the same position in the sequences A and B. $\exists i \in \mathcal{I}_n : a_i = b_i$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Every pair of elements of A are equal to each other:

 $\forall i \in \mathcal{I}_n : \forall j \in \mathcal{I}_n : a_i = a_j. \\ \forall i \in \mathcal{I}_n : a_i = a_1$

What does the following formula mean (in English)? $\forall i \in \mathcal{I}_{n-1} : a_i \prec a_{i+1}$

Undirected Graph G = (V, E): V is a set of vertices, and $E \subseteq V \times V$ is a relation on V, called the set of edges.

Undirected Graph G = (V, E): V is a set of vertices, and $E \subseteq V \times V$ is a relation on V, called the set of edges. Because it is undirected, $(x, y) \in E \leftrightarrow (y, x) \in E$.

Undirected Graph G = (V, E): V is a set of vertices, and $E \subseteq V \times V$ is a relation on V, called the set of edges. Because it is undirected, $(x, y) \in E \Leftrightarrow (y, x) \in E$.

A path of length k from $x \in V$ to $y \in V$ is a sequence of vertices, $x = x_0, x_1, \dots, x_k = y$, such that $\forall i \in \{1, \dots, k\} : (x_{i-1}, x_i) \in E$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Undirected Graph G = (V, E): V is a set of vertices, and $E \subseteq V \times V$ is a relation on V, called the set of edges. Because it is undirected, $(x, y) \in E \leftrightarrow (y, x) \in E$. A path of length k from $x \in V$ to $y \in V$ is a sequence of vertices, $x = x_0, x_1, \dots, x_k = y$, such that $\forall i \in \{1, \dots, k\} : (x_{i-1}, x_i) \in E$ Suppose $V = \{a, b, c, d\}$ and $E = \{(a, b), (b, c), (a, d)\}$ Is the following formula True or False? $\forall x \in V : \exists y \in V : (x, y) \in E$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Undirected Graph G = (V, E): V is a set of vertices, and $E \subseteq V \times V$ is a relation on V, called the set of edges. Because it is undirected, $(x, y) \in E \leftrightarrow (y, x) \in E$. A path of length k from $x \in V$ to $y \in V$ is a sequence of vertices, $x = x_0, x_1, \dots, x_k = y$, such that $\forall i \in \{1, \dots, k\} : (x_{i-1}, x_i) \in E$ Suppose $V = \{a, b, c, d\}$ and $E = \{(a, b), (b, c), (a, d)\}$ Is the following formula True or False? $\forall x \in V : \exists y \in V : (x, y) \in E$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

What about the following formula? $\exists x \in V : \forall y \in V : (x, y) \in E$

Undirected Graph G = (V, E): V is a set of vertices, and $E \subseteq V \times V$ is a relation on V, called the set of edges. Because it is undirected, $(x, y) \in E \leftrightarrow (y, x) \in E$. A path of length k from $x \in V$ to $y \in V$ is a sequence of vertices,

 $x = x_0, x_1, \dots, x_k = y$, such that $\forall i \in \{1, \dots, k\} : (x_{i-1}, x_i) \in E$

Suppose $V = \{a, b, c, d\}$ and $E = \{(a, b), (b, c), (a, d)\}$ Is the following formula True or False? $\forall x \in V : \exists y \in V : (x, y) \in E$

What about the following formula? $\exists x \in V : \forall y \in V : (x, y) \in E$

Assume $\forall x \in V : (x, x) \notin E$ Give a formula for the following English sentence: Every pair of vertices has a path of length 2.

Undirected Graph G = (V, E): V is a set of vertices, and $E \subseteq V \times V$ is a relation on V, called the set of edges. Because it is undirected, $(x, y) \in E \leftrightarrow (y, x) \in E$. A path of length k from $x \in V$ to $y \in V$ is a sequence of vertices, $x = x_0, x_1, \dots, x_k = y$, such that $\forall i \in \{1, \dots, k\} : (x_{i-1}, x_i) \in E$

Suppose $V = \{a, b, c, d\}$ and $E = \{(a, b), (b, c), (a, d)\}$ Is the following formula True or False? $\forall x \in V : \exists y \in V : (x, y) \in E$

What about the following formula? $\exists x \in V : \forall y \in V : (x, y) \in E$

Assume $\forall x \in V : (x, x) \notin E$ Give a formula for the following English sentence: Every pair of vertices has a path of length 2.

 $\forall x \in V : \forall y \in V : \exists Z \in V : ((x, z) \in E) \land ((y, z) \in E)$

 $\forall x \in V : \forall y \in V : Edge(x, y) \leftrightarrow (x, y) \in E$

 $\forall x \in V : \forall y \in V : Edge(x, y) \leftrightarrow (x, y) \in E$

Let Path(x, y) be a predicate for the property that there is a sequence of 0, 1, 2 or more edges connecting x and y.

Give a recursive definition of Path, using predicate Edge:

 $\forall x \in V : \forall y \in V : Edge(x, y) \leftrightarrow (x, y) \in E$

Let Path(x, y) be a predicate for the property that there is a sequence of 0, 1, 2 or more edges connecting x and y.

Give a recursive definition of Path, using predicate Edge:

 $\forall x \in V : \forall y \in V : \operatorname{Path}(x, y) \leftrightarrow (x = y) \lor \exists z \in V : Edge(x, z) \land Path(z, y)$

 $\forall x \in V : \forall y \in V : Edge(x, y) \leftrightarrow (x, y) \in E$

Let Path(x, y) be a predicate for the property that there is a sequence of 0, 1, 2 or more edges connecting x and y.

Give a recursive definition of Path, using predicate Edge:

 $\forall x \in V : \forall y \in V : Path(x, y) \leftrightarrow (x = y) \lor \exists z \in V : Edge(x, z) \land Path(z, y)$ Path of length 0: $Path(x, x) \leftrightarrow (x = x) \lor \dots$

 $\forall x \in V : \forall y \in V : Edge(x, y) \leftrightarrow (x, y) \in E$

Let Path(x, y) be a predicate for the property that there is a sequence of 0, 1, 2 or more edges connecting x and y.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Give a recursive definition of Path, using predicate Edge:

 $\forall x \in V : \forall y \in V : Path(x, y) \leftrightarrow (x = y) \lor \exists z \in V : Edge(x, z) \land Path(z, y)$ Path of length 0: $Path(x, x) \leftrightarrow (x = x) \lor \dots$ Path of length 1: $Path(x, y) \leftrightarrow (x = y) \lor \exists z \in V : Edge(x, z) \land Path(z, y)$

 $\forall x \in V : \forall y \in V : Edge(x, y) \leftrightarrow (x, y) \in E$

Let Path(x, y) be a predicate for the property that there is a sequence of 0, 1, 2 or more edges connecting x and y.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Give a recursive definition of Path, using predicate Edge:

 $\begin{aligned} \forall x \in V : \forall y \in V : \operatorname{Path}(x, y) \leftrightarrow (x = y) \lor \exists z \in V : Edge(x, z) \land Path(z, y) \\ \text{Path of length 0: } Path(x, x) \leftrightarrow (x = x) \lor \dots \\ \text{Path of length 1: } Path(x, y) \leftrightarrow (x = y) \lor \exists z \in V : Edge(x, z) \land Path(z, y) \\ \text{Take } z = y : Edge(x, y) \land Path(y, y) \end{aligned}$

 $\forall x \in V : \forall y \in V : Edge(x, y) \leftrightarrow (x, y) \in E$

Let Path(x, y) be a predicate for the property that there is a sequence of 0, 1, 2 or more edges connecting x and y.

Give a recursive definition of Path, using predicate Edge:

 $\forall x \in V : \forall y \in V : \operatorname{Path}(x, y) \leftrightarrow (x = y) \lor \exists z \in V : Edge(x, z) \land Path(z, y)$ Path of length 0: $Path(x, x) \leftrightarrow (x = x) \lor \dots$ Path of length 1: $Path(x, y) \leftrightarrow (x = y) \lor \exists z \in V : Edge(x, z) \land Path(z, y)$ Take z = y: $Edge(x, y) \land Path(y, y)$ Path of length 2 (x, r, y): $Path(x, y) \leftrightarrow (x = y) \lor \exists z \in V : Edge(x, z) \land Path(z, y)$

 $\forall x \in V : \forall y \in V : Edge(x, y) \leftrightarrow (x, y) \in E$

Let Path(x, y) be a predicate for the property that there is a sequence of 0, 1, 2 or more edges connecting x and y.

Give a recursive definition of Path, using predicate Edge:

 $\forall x \in V : \forall y \in V : \operatorname{Path}(x, y) \leftrightarrow (x = y) \lor \exists z \in V : Edge(x, z) \land Path(z, y)$ Path of length 0: $Path(x, x) \leftrightarrow (x = x) \lor \dots$ Path of length 1: $Path(x, y) \leftrightarrow (x = y) \lor \exists z \in V : Edge(x, z) \land Path(z, y)$ Take z = y: $Edge(x, y) \land Path(y, y)$ Path of length 2 (x, r, y): $Path(x, y) \leftrightarrow (x = y) \lor \exists z \in V : Edge(x, z) \land Path(z, y)$ Take z = r: $Edge(x, r) \land Path(r, y)$

 $\forall x \in V : \forall y \in V : Edge(x, y) \leftrightarrow (x, y) \in E$

Let Path(x, y) be a predicate for the property that there is a sequence of 0, 1, 2 or more edges connecting x and y.

Give a recursive definition of Path, using predicate Edge:

$$\forall x \in V : \forall y \in V : \operatorname{Path}(x, y) \leftrightarrow (x = y) \lor \exists z \in V : Edge(x, z) \land Path(z, y)$$
Path of length 0: $Path(x, x) \leftrightarrow (x = x) \lor \dots$
Path of length 1: $Path(x, y) \leftrightarrow (x = y) \lor \exists z \in V : Edge(x, z) \land Path(z, y)$
Take $z = y$: $Edge(x, y) \land Path(y, y)$
Path of length 2 (x, r, y) : $Path(x, y) \leftrightarrow (x = y) \lor \exists z \in V : Edge(x, z) \land Path(z, y)$
Take $z = r$: $Edge(x, r) \land Path(r, y)$
Path $(r, y) \leftrightarrow (r = y) \lor \exists z \in V : Edge(r, z) \land Path(z, y)$

 $\forall x \in V : \forall y \in V : Edge(x, y) \leftrightarrow (x, y) \in E$

Let Path(x, y) be a predicate for the property that there is a sequence of 0, 1, 2 or more edges connecting x and y.

Give a recursive definition of Path, using predicate Edge:

$$\begin{aligned} \forall x \in V : \forall y \in V : \operatorname{Path}(x, y) \leftrightarrow (x = y) \lor \exists z \in V : Edge(x, z) \land Path(z, y) \\ \text{Path of length 0: } Path(x, x) \leftrightarrow (x = x) \lor \dots \\ \text{Path of length 1: } Path(x, y) \leftrightarrow (x = y) \lor \exists z \in V : Edge(x, z) \land Path(z, y) \\ & \text{Take } z = y : Edge(x, y) \land Path(y, y) \\ \text{Path of length 2 } (x, r, y) : Path(x, y) \leftrightarrow (x = y) \lor \exists z \in V : Edge(x, z) \land Path(z, y) \\ & \text{Take } z = r : Edge(x, r) \land Path(r, y) \\ & Path(r, y) \leftrightarrow (r = y) \lor \exists z \in V : Edge(r, z) \land Path(z, y) \\ & \text{Take } z = y : Edge(r, y) \land Path(y, y) \end{aligned}$$

Exercise

Let
$$V = \{a, b, c, d\}$$

Case a) Edge(a,b) = Edge(b,c) = Edge(b,d) = TRUE
Case b) Edge(a,b) = Edge(b,c) = Edge(c,d) = TRUE
 $\forall x \in V : \forall y \in V : (x \neq y) \rightarrow Edge(x, y)$

Exercise

Let
$$V = \{a, b, c, d\}$$

Case a) Edge(a,b) = Edge(b,c) = Edge(b,d) = TRUE
Case b) Edge(a,b) = Edge(b,c) = Edge(c,d) = TRUE
 $\forall x \in V : \forall y \in V : (x \neq y) \rightarrow Edge(x, y)$
 $\forall x \in V : \forall y \in V : Path(x, y)$