
Program Verification

What is a “correct program”?

It has to terminate. Provably impossible to detect (for all programs)
Assuming it terminates, its ending state should match some stated objective.

How do we specify what a program is supposed to do?
initial assertion: conjunction of propositions about the initial variables used in the

program
final assertion: conjunction of propositions about the final state of the program
Note: There are many programs that are “correct” for the same criteria. The ends

justify the means.

What kind of programs will we consider?
We will look at:

I Assignment statements

I Sequences of statements

I Conditional statements (If B then S1 else S2)

I iteration statements (while loops)
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Hoare Triples, Assignments, and Sequences

Hoare Triple: p{S}q:
If p is true for initial state of code S, and S terminates,

then q is true about the final state.

p is the pre-condition
q is the post-condition.

Assignment operator:
p(e){v ⇐ e}p(v)
ODD(y){x ⇐ y + 2}ODD(x)
ODD(x){x ⇐ x + 1}Even(x)

Sequencing of statements:
p{S1}q
q{S2}r

p{S1; S2}r
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Examples

Consider the following simple program:
y ⇐ 3; z ⇐ x + y

Claim: If we have the pre-condition x = 1, we have the post-condition z = 4.
(x = 1){y ⇐ 3}(x = 1 ∧ y = 3)
(x = 1 ∧ y = 3){z ⇐ x + y}(z = 4)

(x = 1){y ⇐ 3; z ⇐ x + y}(z = 4)

Consider the following simple program:
x ⇐ x + 2; y ⇐ y + 1

Claim: if we have the pre-condtion x = 2y , we have the post-condition x = 2y .
(x = 2y){x ⇐ x + 2}(x = 2y + 2)
(x = 2(y + 1)){y ⇐ y + 1}(x = 2y)

(x = 2y){x ⇐ x + 2; y ⇐ y + 1}(x = 2y)

This is called an invariant condition (or just an invariant)
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Branches

If-then:
(p ∧ B){S}q
(p ∧ ¬B)→ q

p{if B then S}q

If-then-else:
(p ∧ B){S1}q
(p ∧ ¬B){S2}q

p{if B then S1 else S2}q

Example:
Let x = 7, and consider code:
{if y < x then y ⇐ x}
Show y ≥ 7.

(x = 7 ∧ y < x){y ⇐ x}(y ≥ 7)
(x = 7 ∧ y ≥ x)→ (y ≥ 7)
(x = 7){if y < x then y ⇐ x}(y ≥ 7)
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While loops

While loop:
(p ∧ B){S}p

p{while B do S}(p ∧ ¬B)

We call p a loop invariant.
Note that the correctness of this inference rule technically requires a mathematical
induction.
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Example: n!

(p ∧ B){S}p

p{while B do S}(p ∧ ¬B)

Find a loop invariant for the following program, and prove the program computes n!
i ⇐ 1;
f ⇐ 1;
while i < n do

i ⇐ i + 1
f ⇐ f · i

p = (f = i! ∧ i ≤ n) (Loop invariant)
B = (i < n) (Branch condition)

(f = i! ∧ i ≤ n ∧ i < n) {i ⇐ i + 1} (f = (i − 1)! ∧ i ≤ n)

(f = (i − 1)! ∧ i ≤ n) {f ⇐ f · i} (f = i! ∧ i ≤ n)

(f = i! ∧ i ≤ n ∧ i < n) {i ⇐ i + 1; f ⇐ f · i} (f = i! ∧ i ≤ n)

(f = i! ∧ i ≤ n) {while (i < n) do S} (f = i! ∧ i ≤ n) ∧ (i ≥ n)

≡ (f = i! ∧ i = n) ≡ f = n!
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