Program Verification

What is a "correct program"?

Program Verification

What is a "correct program"?
It has to terminate.

Program Verification

What is a "correct program"?
It has to terminate.
Assuming it terminates, its ending state should match some stated objective.

Program Verification

What is a "correct program"?
It has to terminate. Provably impossible to detect (for all programs)
Assuming it terminates, its ending state should match some stated objective.
How do we specify what a program is supposed to do?

Program Verification

What is a "correct program"?
It has to terminate. Provably impossible to detect (for all programs)
Assuming it terminates, its ending state should match some stated objective.
How do we specify what a program is supposed to do?
initial assertion: conjunction of propositions about the initial variables used in the program

Program Verification

What is a "correct program"?
It has to terminate. Provably impossible to detect (for all programs)
Assuming it terminates, its ending state should match some stated objective.
How do we specify what a program is supposed to do?
initial assertion: conjunction of propositions about the initial variables used in the program
final assertion: conjunction of propositions about the final state of the program

Program Verification

What is a "correct program"?
It has to terminate. Provably impossible to detect (for all programs)
Assuming it terminates, its ending state should match some stated objective.
How do we specify what a program is supposed to do?
initial assertion: conjunction of propositions about the initial variables used in the program
final assertion: conjunction of propositions about the final state of the program Note: There are many programs that are "correct" for the same criteria. The ends justify the means.

Program Verification

What is a "correct program"?
It has to terminate. Provably impossible to detect (for all programs)
Assuming it terminates, its ending state should match some stated objective.
How do we specify what a program is supposed to do?
initial assertion: conjunction of propositions about the initial variables used in the program
final assertion: conjunction of propositions about the final state of the program Note: There are many programs that are "correct" for the same criteria. The ends justify the means.

What kind of programs will we consider?

Program Verification

What is a "correct program"?
It has to terminate. Provably impossible to detect (for all programs)
Assuming it terminates, its ending state should match some stated objective.
How do we specify what a program is supposed to do?
initial assertion: conjunction of propositions about the initial variables used in the program
final assertion: conjunction of propositions about the final state of the program
Note: There are many programs that are "correct" for the same criteria. The ends justify the means.

What kind of programs will we consider?
We will look at:

- Assignment statements
- Sequences of statements
- Conditional statements (If B then S1 else S2)
- iteration statements (while loops)

Hoare Triples, Assignments, and Sequences

Hoare Triple: $p\{S\} q$:
If p is true for initial state of code S, and S terminates, then q is true about the final state.

Hoare Triples, Assignments, and Sequences

Hoare Triple: $p\{S\} q$:
If p is true for initial state of code S, and S terminates, then q is true about the final state.
p is the pre-condition
q is the post-condition.

Hoare Triples, Assignments, and Sequences

Hoare Triple: $p\{S\} q$:
If p is true for initial state of code S, and S terminates, then q is true about the final state.
p is the pre-condition
q is the post-condition.

Assignment operator: $p(e)\{v \Leftarrow e\} p(v)$

Hoare Triples, Assignments, and Sequences

Hoare Triple: $p\{S\} q$:
If p is true for initial state of code S, and S terminates, then q is true about the final state.
p is the pre-condition
q is the post-condition.

Assignment operator:
$p(e)\{v \Leftarrow e\} p(v)$
$O D D(y)\{x \Leftarrow y+2\} O D D(x)$

Hoare Triples, Assignments, and Sequences

Hoare Triple: $p\{S\} q$:
If p is true for initial state of code S, and S terminates, then q is true about the final state.
p is the pre-condition
q is the post-condition.

Assignment operator:
$p(e)\{v \Leftarrow e\} p(v)$
$O D D(y)\{x \Leftarrow y+2\} O D D(x)$
$O D D(x)\{x \Leftarrow x+1\} \operatorname{Even}(x)$

Hoare Triples, Assignments, and Sequences

Hoare Triple: $p\{S\} q$:
If p is true for initial state of code S, and S terminates, then q is true about the final state.
p is the pre-condition
q is the post-condition.

Assignment operator:
$p(e)\{v \Leftarrow e\} p(v)$
$O D D(y)\{x \Leftarrow y+2\} O D D(x)$
ODD $(x)\{x \Leftarrow x+1\} \operatorname{Even}(x)$
Sequencing of statements:
$p\left\{S_{1}\right\} q$
$q\left\{S_{2}\right\} r$
$p\left\{S_{1} ; S_{2}\right\} r$

Examples

Consider the following simple program:

$$
y \Leftarrow 3 ; z \Leftarrow x+y
$$

Examples

Consider the following simple program:
$y \Leftarrow 3 ; z \Leftarrow x+y$
Claim: If we have the pre-condition $x=1$, we have the post-condition $z=4$.

Examples

Consider the following simple program:
$y \Leftarrow 3 ; z \Leftarrow x+y$
Claim: If we have the pre-condition $x=1$, we have the post-condition $z=4$. $(x=1)\{y \Leftarrow 3\}(x=1 \wedge y=3)$

Examples

Consider the following simple program:
$y \Leftarrow 3 ; z \Leftarrow x+y$
Claim: If we have the pre-condition $x=1$, we have the post-condition $z=4$. $(x=1)\{y \Leftarrow 3\}(x=1 \wedge y=3)$
$(x=1 \wedge y=3)\{z \Leftarrow x+y\}(z=4)$

Examples

Consider the following simple program:

$$
y \Leftarrow 3 ; z \Leftarrow x+y
$$

Claim: If we have the pre-condition $x=1$, we have the post-condition $z=4$. $(x=1)\{y \Leftarrow 3\}(x=1 \wedge y=3)$
$(x=1 \wedge y=3)\{z \Leftarrow x+y\}(z=4)$
$(x=1)\{y \Leftarrow 3 ; z \Leftarrow x+y\}(z=4)$

Examples

Consider the following simple program:
$y \Leftarrow 3 ; z \Leftarrow x+y$
Claim: If we have the pre-condition $x=1$, we have the post-condition $z=4$. $(x=1)\{y \Leftarrow 3\}(x=1 \wedge y=3)$
$(x=1 \wedge y=3)\{z \Leftarrow x+y\}(z=4)$
$(x=1)\{y \Leftarrow 3 ; z \Leftarrow x+y\}(z=4)$

Consider the following simple program:

$$
x \Leftarrow x+2 ; y \Leftarrow y+1
$$

Examples

Consider the following simple program:
$y \Leftarrow 3 ; z \Leftarrow x+y$
Claim: If we have the pre-condition $x=1$, we have the post-condition $z=4$. $(x=1)\{y \Leftarrow 3\}(x=1 \wedge y=3)$
$(x=1 \wedge y=3)\{z \Leftarrow x+y\}(z=4)$
$\overline{(x=1)}\{y \Leftarrow 3 ; z \Leftarrow x+y\}(z=4)$
Consider the following simple program:
$x \Leftarrow x+2 ; y \Leftarrow y+1$
Claim: if we have the pre-condtion $x=2 y$, we have the post-condition $x=2 y$.

Examples

Consider the following simple program:
$y \Leftarrow 3 ; z \Leftarrow x+y$
Claim: If we have the pre-condition $x=1$, we have the post-condition $z=4$. $(x=1)\{y \Leftarrow 3\}(x=1 \wedge y=3)$
$(x=1 \wedge y=3)\{z \Leftarrow x+y\}(z=4)$
$\overline{(x=1)}\{y \Leftarrow 3 ; z \Leftarrow x+y\}(z=4)$
Consider the following simple program:
$x \Leftarrow x+2 ; y \Leftarrow y+1$
Claim: if we have the pre-condtion $x=2 y$, we have the post-condition $x=2 y$. $(x=2 y)\{x \Leftarrow x+2\}(x=2 y+2)$

Examples

Consider the following simple program:
$y \Leftarrow 3 ; z \Leftarrow x+y$
Claim: If we have the pre-condition $x=1$, we have the post-condition $z=4$.
$(x=1)\{y \Leftarrow 3\}(x=1 \wedge y=3)$
$(x=1 \wedge y=3)\{z \Leftarrow x+y\}(z=4)$
$\overline{(x=1)}\{y \Leftarrow 3 ; z \Leftarrow x+y\}(z=4)$
Consider the following simple program:
$x \Leftarrow x+2 ; y \Leftarrow y+1$
Claim: if we have the pre-condtion $x=2 y$, we have the post-condition $x=2 y$. $(x=2 y)\{x \Leftarrow x+2\}(x=2 y+2)$
$(x=2(y+1))\{y \Leftarrow y+1\}(x=2 y)$

Examples

Consider the following simple program:
$y \Leftarrow 3 ; z \Leftarrow x+y$
Claim: If we have the pre-condition $x=1$, we have the post-condition $z=4$.
$(x=1)\{y \Leftarrow 3\}(x=1 \wedge y=3)$
$(x=1 \wedge y=3)\{z \Leftarrow x+y\}(z=4)$
$\overline{(x=1)}\{y \Leftarrow 3 ; z \Leftarrow x+y\}(z=4)$
Consider the following simple program:
$x \Leftarrow x+2 ; y \Leftarrow y+1$
Claim: if we have the pre-condtion $x=2 y$, we have the post-condition $x=2 y$.
$(x=2 y)\{x \Leftarrow x+2\}(x=2 y+2)$
$(x=2(y+1))\{y \Leftarrow y+1\}(x=2 y)$
$(x=2 y)\{x \Leftarrow x+2 ; y \Leftarrow y+1\}(x=2 y)$

Examples

Consider the following simple program:
$y \Leftarrow 3 ; z \Leftarrow x+y$
Claim: If we have the pre-condition $x=1$, we have the post-condition $z=4$.
$(x=1)\{y \Leftarrow 3\}(x=1 \wedge y=3)$
$(x=1 \wedge y=3)\{z \Leftarrow x+y\}(z=4)$
$\overline{(x=1)}\{y \Leftarrow 3 ; z \Leftarrow x+y\}(z=4)$
Consider the following simple program:
$x \Leftarrow x+2 ; y \Leftarrow y+1$
Claim: if we have the pre-condtion $x=2 y$, we have the post-condition $x=2 y$.
$(x=2 y)\{x \Leftarrow x+2\}(x=2 y+2)$
$(x=2(y+1))\{y \Leftarrow y+1\}(x=2 y)$
$(x=2 y)\{x \Leftarrow x+2 ; y \Leftarrow y+1\}(x=2 y)$
This is called an invariant condition (or just an invariant)

Branches

If-then:
$(p \wedge B)\{S\} q$
$(p \wedge \neg B) \rightarrow q$
$p\{$ if B then S$\} q$

Branches

If-then:
$(p \wedge B)\{S\} q$
$(p \wedge \neg B) \rightarrow q$
$p\{$ if B then S$\} q$

If-then-else:
$(p \wedge B)\left\{S_{1}\right\} q$
$(p \wedge \neg B)\left\{S_{2}\right\} q$
$p\left\{\right.$ if B then S_{1} else $\left.S_{2}\right\} q$

Branches

If-then:
$(p \wedge B)\{S\} q$
$(p \wedge \neg B) \rightarrow q$
$p\{$ if B then S$\} q$

If-then-else:
$(p \wedge B)\left\{S_{1}\right\} q$
$(p \wedge \neg B)\left\{S_{2}\right\} q$
$p\left\{\right.$ if B then S_{1} else $\left.S_{2}\right\} q$

Example:

Let $x=7$, and consider code:
\{if $y<x$ then $y \Leftarrow x$ \}
Show $y \geq 7$.

Branches

If-then:
$(p \wedge B)\{S\} q$
$(p \wedge \neg B) \rightarrow q$
$p\{$ if B then S$\} q$

If-then-else:
$(p \wedge B)\left\{S_{1}\right\} q$
$(p \wedge \neg B)\left\{S_{2}\right\} q$
$p\left\{\right.$ if B then S_{1} else $\left.S_{2}\right\} q$

Example:

Let $x=7$, and consider code:
\{if $y<x$ then $y \Leftarrow x\}$
Show $y \geq 7$.
$(x=7 \wedge y<x)\{y \Leftarrow x\}(y \geq 7)$

Branches

If-then:
$(p \wedge B)\{S\} q$
$(p \wedge \neg B) \rightarrow q$
$p\{$ if B then S$\} q$

If-then-else:
$(p \wedge B)\left\{S_{1}\right\} q$
$(p \wedge \neg B)\left\{S_{2}\right\} q$
$p\left\{\right.$ if B then S_{1} else $\left.S_{2}\right\} q$

Example:

Let $x=7$, and consider code:
\{if $y<x$ then $y \Leftarrow x\}$
Show $y \geq 7$.

$$
\begin{aligned}
& (x=7 \wedge y<x)\{y \Leftarrow x\}(y \geq 7) \\
& (x=7 \wedge y \geq x) \rightarrow(y \geq 7)
\end{aligned}
$$

Branches

If-then:
$(p \wedge B)\{S\} q$
$(p \wedge \neg B) \rightarrow q$
$p\{$ if B then S$\} q$

If-then-else:
$(p \wedge B)\left\{S_{1}\right\} q$
$(p \wedge \neg B)\left\{S_{2}\right\} q$
$p\left\{\right.$ if B then S_{1} else $\left.S_{2}\right\} q$

Example:

Let $x=7$, and consider code:
\{if $y<x$ then $y \Leftarrow x\}$
Show $y \geq 7$.

$$
\begin{aligned}
& (x=7 \wedge y<x)\{y \Leftarrow x\}(y \geq 7) \\
& (x=7 \wedge y \geq x) \rightarrow(y \geq 7) \\
& (x=7)\{\text { if } y<x \text { then } y \Leftarrow x\}(y \geq 7)
\end{aligned}
$$

While loops

$$
\begin{aligned}
& \text { While loop: } \\
& (p \wedge B)\{S\} p \\
& \overline{p\{\text { while } B \text { do } S\}(p \wedge \neg B)}
\end{aligned}
$$

While loops

While loop:
$(p \wedge B)\{S\} p$
$p\{$ while B do $S\}(p \wedge \neg B)$
We call p a loop invariant.

While loops

While loop:
$(p \wedge B)\{S\} p$
$p\{$ while B do $S\}(p \wedge \neg B)$
We call p a loop invariant.
Note that the correctness of this inference rule technically requires a mathematical induction.

Example: n !

$$
\begin{aligned}
& (p \wedge B)\{S\} p \\
& p\{\text { while } B \text { do } S\}(p \wedge \neg B)
\end{aligned}
$$

Example: n !

```
(p\wedgeB){S}p
p{while }B\mathrm{ do }S}(p\wedge\negB
```

Find a loop invariant for the following program, and prove the program computes n !
$i \Leftarrow 1$;
$f \Leftarrow 1$;
while $i<n$ do
$i \Leftarrow i+1$
$f \Leftarrow f \cdot i$

Example: n !

```
(p\wedgeB){S}p
p{while }B\mathrm{ do }S}(p\wedge\negB
```

Find a loop invariant for the following program, and prove the program computes n !
$i \Leftarrow 1$;
$f \Leftarrow 1$;
while $i<n$ do
$i \Leftarrow i+1$
$f \Leftarrow f \cdot i$
$p=(f=i!\wedge i \leq n)$
(Loop invariant)

Example: n !

```
(p\wedgeB){S}p
p{while }B\mathrm{ do }S}(p\wedge\negB
```

Find a loop invariant for the following program, and prove the program computes n !
$i \Leftarrow 1$;
$f \Leftarrow 1$;
while $i<n$ do
$i \Leftarrow i+1$
$f \Leftarrow f \cdot i$
$p=(f=i!\wedge i \leq n)$
$B=(i<n)$
(Loop invariant)
(Branch condition)

Example: n !

```
(p\wedgeB){S}p
p{\mathrm{ while }B\mathrm{ do }S}(p\wedge\negB)
```

Find a loop invariant for the following program, and prove the program computes n !

$$
\begin{aligned}
& i \Leftarrow 1 ; \\
& f \Leftarrow 1 ; \\
& \text { while } i<n \text { do } \\
& \quad i \Leftarrow i+1 \\
& \quad f \Leftarrow f \cdot i \\
& p=(f=i!\wedge i \leq n) \\
& B=(i<n)
\end{aligned}
$$

(Loop invariant)
(Branch condition)

$$
(f=i!\wedge i \leq n) \quad\{\text { while }(i<n) \text { do } S\} \quad(f=i!\wedge i \leq n) \wedge(i \geq n)
$$

Example: n !

```
(p\wedgeB){S}p
p{\mathrm{ while }B\mathrm{ do }S}(p\wedge\negB)
```

Find a loop invariant for the following program, and prove the program computes n !
$i \Leftarrow 1$;
$f \Leftarrow 1$;
while $i<n$ do
$i \Leftarrow i+1$
$f \Leftarrow f . i$
$p=(f=i!\wedge i \leq n)$
(Loop invariant)
$B=(i<n)$
(Branch condition)

$$
\begin{aligned}
(f=i!\wedge i \leq n) \quad\{\text { while }(i<n) \text { do } S\} & (f=i!\wedge i \leq n) \wedge(i \geq n) \\
& \equiv(f=i!\wedge i=n)
\end{aligned}
$$

Example: n !

```
(p\wedgeB){S}p
p{\mathrm{ while }B\mathrm{ do }S}(p\wedge\negB)
```

Find a loop invariant for the following program, and prove the program computes n !

$$
\begin{aligned}
& i \Leftarrow 1 ; \\
& f \Leftarrow 1 ; \\
& \text { while } i<n \text { do } \\
& \quad i \Leftarrow i+1 \\
& \quad f \Leftarrow f \cdot i \\
& p=(f=i!\wedge i \leq n) \\
& B=(i<n)
\end{aligned}
$$

(Loop invariant)
(Branch condition)

$$
\begin{aligned}
(f=i!\wedge i \leq n) \quad\{\text { while }(i<n) \text { do } S\} & (f=i!\wedge i \leq n) \wedge(i \geq n) \\
& \equiv(f=i!\wedge i=n) \equiv f=n!
\end{aligned}
$$

Example: n !

```
(p\wedgeB){S}p
p{\mathrm{ while }B\mathrm{ do }S}(p\wedge\negB)
```

Find a loop invariant for the following program, and prove the program computes n !

$$
\begin{aligned}
& i \Leftarrow 1 ; \\
& f \Leftarrow 1 ; \\
& \text { while } i<n \text { do } \\
& \quad i \Leftarrow i+1 \\
& \quad f \Leftarrow f \cdot i \\
& p=(f=i!\wedge i \leq n) \\
& B=(i<n)
\end{aligned}
$$

$$
\begin{array}{rll}
(f=i!\wedge i \leq n \wedge i<n) & \{i \Leftarrow i+1 ; f \Leftarrow f \cdot i\} & (f=i!\wedge i \leq n) \\
(f=i!\wedge i \leq n) & \{\text { while }(i<n) \text { do } S\} & (f=i!\wedge i \leq n) \wedge(i \geq n) \\
& & \equiv(f=i!\wedge i=n) \equiv f=n!
\end{array}
$$

Example: n !

```
(p\wedgeB){S}p
p{\mathrm{ while }B\mathrm{ do }S}(p\wedge\negB)
```

Find a loop invariant for the following program, and prove the program computes n !

$$
\begin{aligned}
& i \Leftarrow 1 ; \\
& f \Leftarrow 1 ; \\
& \text { while } i<n \text { do } \\
& \quad i \Leftarrow i+1 \\
& \quad f \Leftarrow f \cdot i \\
& p=(f=i!\wedge i \leq n) \\
& B=(i<n)
\end{aligned}
$$

(Loop invariant)
(Branch condition)

$$
\begin{array}{rll}
(f=i!\wedge i \leq n \wedge i<n) & \{i \Leftarrow i+1\} & (f=(i-1)!\wedge i \leq n) \\
(f=i!\wedge i \leq n \wedge i<n) & \{i \Leftarrow i+1 ; f \Leftarrow f \cdot i\} & (f=i!\wedge i \leq n) \\
(f=i!\wedge i \leq n) & \{\text { while }(i<n) \text { do } S\} & (f=i!\wedge i \leq n) \wedge(i \geq n) \\
& & \equiv(f=i!\wedge i=n) \equiv f=n!
\end{array}
$$

Example: n !

```
(p\wedgeB){S}p
p{\mathrm{ while }B\mathrm{ do }S}(p\wedge\negB)
```

Find a loop invariant for the following program, and prove the program computes n !

$$
\begin{aligned}
& i \Leftarrow 1 ; \\
& f \Leftarrow 1 ; \\
& \text { while } i<n \text { do } \\
& \quad i \Leftarrow i+1 \\
& \quad f \Leftarrow f \cdot i \\
& p=(f=i!\wedge i \leq n) \\
& B=(i<n)
\end{aligned}
$$

(Loop invariant)
(Branch condition)

$$
\begin{array}{rll}
(f=i!\wedge i \leq n \wedge i<n) & \{i \Leftarrow i+1\} & (f=(i-1)!\wedge i \leq n) \\
(f=(i-1)!\wedge i \leq n) & \{f \Leftarrow f \cdot i\} & (f=i!\wedge i \leq n) \\
(f=i!\wedge i \leq n \wedge i<n) & \{i \Leftarrow i+1 ; f \Leftarrow f \cdot i\} & (f=i!\wedge i \leq n) \\
(f=i!\wedge i \leq n) & \{\text { while }(i<n) \text { do } S\} & (f=i!\wedge i \leq n) \wedge(i \geq n) \\
& & \equiv(f=i!\wedge i=n) \equiv f=n!
\end{array}
$$

