Inference Rules and Tautologies

We're going to start proving things through deduction.

Inference Rules and Tautologies

We're going to start proving things through deduction.
We will prove that propositions are tautologies - that the given proposition is true for every possible variable state.

Inference Rules and Tautologies

We're going to start proving things through deduction.
We will prove that propositions are tautologies - that the given proposition is true for every possible variable state.

- We could do this through truth-tables.

Inference Rules and Tautologies

We're going to start proving things through deduction.
We will prove that propositions are tautologies - that the given proposition is true for every possible variable state.

- We could do this through truth-tables.
- We could do this through algebraic manipulations: $p \equiv \cdots \equiv$ True

Inference Rules and Tautologies

We're going to start proving things through deduction.
We will prove that propositions are tautologies - that the given proposition is true for every possible variable state.

- We could do this through truth-tables.
- We could do this through algebraic manipulations: $p \equiv \cdots \equiv$ True
- We'll do it through a progression of "inferences".

Inference Rules and Tautologies

We're going to start proving things through deduction.
We will prove that propositions are tautologies - that the given proposition is true for every possible variable state.

- We could do this through truth-tables.
- We could do this through algebraic manipulations: $p \equiv \cdots \equiv$ True
- We'll do it through a progression of "inferences".

Modus Ponens
α
$\alpha \rightarrow \beta$
β

Inference Rules and Tautologies

We're going to start proving things through deduction.
We will prove that propositions are tautologies - that the given proposition is true for every possible variable state.

- We could do this through truth-tables.
- We could do this through algebraic manipulations: $p \equiv \cdots \equiv$ True
- We'll do it through a progression of "inferences".

Modus Ponens
α
$\alpha \rightarrow \beta$
β
If α is true, and $\alpha \rightarrow \beta$ is true, then it follows that β is true.

Inference Rules and Tautologies

We're going to start proving things through deduction.
We will prove that propositions are tautologies - that the given proposition is true for every possible variable state.

- We could do this through truth-tables.
- We could do this through algebraic manipulations: $p \equiv \cdots \equiv$ True
- We'll do it through a progression of "inferences".

Modus Ponens
α
$\alpha \rightarrow \beta$
β
If α is true, and $\alpha \rightarrow \beta$ is true, then it follows that β is true.
(If α is false, or $\alpha \rightarrow \beta$ is false, then we can't say anything about β.)

Inference Rules and Tautologies

We're going to start proving things through deduction.
We will prove that propositions are tautologies - that the given proposition is true for every possible variable state.

- We could do this through truth-tables.
- We could do this through algebraic manipulations: $p \equiv \cdots \equiv$ True
- We'll do it through a progression of "inferences".

Modus Ponens
α
$\alpha \rightarrow \beta$
β
If α is true, and $\alpha \rightarrow \beta$ is true, then it follows that β is true. (If α is false, or $\alpha \rightarrow \beta$ is false, then we can't say anything about β.)
$(\alpha \wedge(\alpha \rightarrow \beta)) \rightarrow \beta)$

Inference Rules and Tautologies

We're going to start proving things through deduction.
We will prove that propositions are tautologies - that the given proposition is true for every possible variable state.

- We could do this through truth-tables.
- We could do this through algebraic manipulations: $p \equiv \cdots \equiv$ True
- We'll do it through a progression of "inferences".

Modus Ponens
α
$\alpha \rightarrow \beta$
β
If α is true, and $\alpha \rightarrow \beta$ is true, then it follows that β is true. (If α is false, or $\alpha \rightarrow \beta$ is false, then we can't say anything about β.)
$(\alpha \wedge(\alpha \rightarrow \beta)) \rightarrow \beta)$ Because this is a tautology, we have an inference rule!

Inference Rules and Tautologies

We're going to start proving things through deduction.
We will prove that propositions are tautologies - that the given proposition is true for every possible variable state.

- We could do this through truth-tables.
- We could do this through algebraic manipulations: $p \equiv \cdots \equiv$ True
- We'll do it through a progression of "inferences".

Modus Ponens
α
$\alpha \rightarrow \beta$
β
If α is true, and $\alpha \rightarrow \beta$ is true, then it follows that β is true.
(If α is false, or $\alpha \rightarrow \beta$ is false, then we can't say anything about β.)
$(\alpha \wedge(\alpha \rightarrow \beta)) \rightarrow \beta)$ Because this is a tautology, we have an inference rule!
Modus Tollens
$\alpha \rightarrow \beta$
$\neg \beta$
$\neg \alpha$

Inference Rules and Tautologies

We're going to start proving things through deduction.
We will prove that propositions are tautologies - that the given proposition is true for every possible variable state.

- We could do this through truth-tables.
- We could do this through algebraic manipulations: $p \equiv \cdots \equiv$ True
- We'll do it through a progression of "inferences".

Modus Ponens
α
$\alpha \rightarrow \beta$
β
If α is true, and $\alpha \rightarrow \beta$ is true, then it follows that β is true.
(If α is false, or $\alpha \rightarrow \beta$ is false, then we can't say anything about β.)
$(\alpha \wedge(\alpha \rightarrow \beta)) \rightarrow \beta)$ Because this is a tautology, we have an inference rule!
Modus Tollens
$\alpha \rightarrow \beta$
$\neg \beta$
$\neg \alpha$
$((\alpha \rightarrow \beta) \wedge \neg \beta) \rightarrow \neg \alpha)$

Inference Rules and Tautologies

We're going to start proving things through deduction.
We will prove that propositions are tautologies - that the given proposition is true for every possible variable state.

- We could do this through truth-tables.
- We could do this through algebraic manipulations: $p \equiv \cdots \equiv$ True
- We'll do it through a progression of "inferences".

Modus Ponens
α
$\alpha \rightarrow \beta$
β
If α is true, and $\alpha \rightarrow \beta$ is true, then it follows that β is true.
(If α is false, or $\alpha \rightarrow \beta$ is false, then we can't say anything about β.)
$(\alpha \wedge(\alpha \rightarrow \beta)) \rightarrow \beta)$ Because this is a tautology, we have an inference rule!
Modus Tollens
$\alpha \rightarrow \beta$
$\neg \beta$
$\neg \alpha$
$((\alpha \rightarrow \beta) \wedge \neg \beta) \rightarrow \neg \alpha)$ Because this is a tautology, we have an inference rule!

Inference Rules

CHAPTER 3. PROOFS BY DEDUCTION

Modus ponens:	$\begin{aligned} & \alpha \rightarrow \beta \\ & \alpha \end{aligned}$	Modus tollens:	$\begin{gathered} \alpha \rightarrow \beta \\ \neg \beta \end{gathered}$
	β		$\neg \alpha$
\wedge introduction:	α	\wedge elimination:	
	β		$\alpha \wedge \beta$
	$\alpha \wedge \beta$		$\alpha[$ or β]
\checkmark introduction:	$\alpha[$ or β]	\checkmark elimination:	$\alpha \vee \beta$
		(Case analysis)	$\alpha \rightarrow \gamma$
	$\alpha \vee \beta$		$\beta \rightarrow \gamma$
			γ
$\neg \neg$ introduction:	α	$\neg \neg$ elimination:	$\neg \neg \alpha$
	$\neg \neg \alpha$		α
\leftrightarrow introduction:	$\alpha \rightarrow \beta$	\leftrightarrow elimination:	$\alpha \leftrightarrow \beta$
	$\beta \rightarrow \alpha$		$(\alpha \rightarrow \beta) \wedge(\beta \rightarrow \alpha)$
	$\alpha \leftrightarrow \beta$		
Contradiction:	α	Tautology:	
	$\neg \alpha$	(when $\alpha=$ IRUE)	α
	FALSE		

Figure 3.1: Rules of Inference

Proof by Rules

A proof is a sequence of assertions, each of which the reader agrees to.

Proof by Rules

A proof is a sequence of assertions, each of which the reader agrees to. The last assertion in the list is the theorem being proven.

Proof by Rules

A proof is a sequence of assertions, each of which the reader agrees to. The last assertion in the list is the theorem being proven.
Each assertion follows from the previous assertions by some inference rule.

Proof by Rules

A proof is a sequence of assertions, each of which the reader agrees to. The last assertion in the list is the theorem being proven.
Each assertion follows from the previous assertions by some inference rule.
A sequent: $\alpha \vdash \beta$ is a statement:
"There exists a proof that starts with assertion α and ends with β ".

Proof by Rules

A proof is a sequence of assertions, each of which the reader agrees to. The last assertion in the list is the theorem being proven.
Each assertion follows from the previous assertions by some inference rule.
A sequent: $\alpha \vdash \beta$ is a statement:
"There exists a proof that starts with assertion α and ends with β ".
(The sequent is valid if such a proof actually exists.)

Proof by Rules

A proof is a sequence of assertions, each of which the reader agrees to. The last assertion in the list is the theorem being proven.
Each assertion follows from the previous assertions by some inference rule.
A sequent: $\alpha \vdash \beta$ is a statement:
"There exists a proof that starts with assertion α and ends with β ".
(The sequent is valid if such a proof actually exists.)
Note that α here is taken as a starting point: it is assumed true without proof.

Proof by Rules

A proof is a sequence of assertions, each of which the reader agrees to. The last assertion in the list is the theorem being proven.
Each assertion follows from the previous assertions by some inference rule.
A sequent: $\alpha \vdash \beta$ is a statement:
"There exists a proof that starts with assertion α and ends with β ".
(The sequent is valid if such a proof actually exists.)
Note that α here is taken as a starting point: it is assumed true without proof.
Example: $p \vdash p \wedge(q \vee p)$

Proof by Rules

A proof is a sequence of assertions, each of which the reader agrees to.
The last assertion in the list is the theorem being proven.
Each assertion follows from the previous assertions by some inference rule.
A sequent: $\alpha \vdash \beta$ is a statement:
"There exists a proof that starts with assertion α and ends with β ".
(The sequent is valid if such a proof actually exists.)
Note that α here is taken as a starting point: it is assumed true without proof.
Example: $p \vdash p \wedge(q \vee p)$
p
$q \vee p \quad(\vee$ introduction from line 1)
$p \wedge(q \vee p) \quad(\wedge$ introduction from lines 1 and 2$)$

Proof by Rules

A proof is a sequence of assertions, each of which the reader agrees to.
The last assertion in the list is the theorem being proven.
Each assertion follows from the previous assertions by some inference rule.
A sequent: $\alpha \vdash \beta$ is a statement:
"There exists a proof that starts with assertion α and ends with β ".
(The sequent is valid if such a proof actually exists.)
Note that α here is taken as a starting point: it is assumed true without proof.
Example: $p \vdash p \wedge(q \vee p)$
p
$q \vee p \quad(\vee$ introduction from line 1$)$
$p \wedge(q \vee p) \quad(\wedge$ introduction from lines 1 and 2$)$
Example: $p \wedge q \vdash p \wedge(q \vee r)$

Proof by Rules

A proof is a sequence of assertions, each of which the reader agrees to.
The last assertion in the list is the theorem being proven.
Each assertion follows from the previous assertions by some inference rule.
A sequent: $\alpha \vdash \beta$ is a statement:
"There exists a proof that starts with assertion α and ends with β ".
(The sequent is valid if such a proof actually exists.)
Note that α here is taken as a starting point: it is assumed true without proof.
Example: $p \vdash p \wedge(q \vee p)$
p
$q \vee p \quad(\vee$ introduction from line 1$)$
$p \wedge(q \vee p) \quad(\wedge$ introduction from lines 1 and 2)
Example: $p \wedge q \vdash p \wedge(q \vee r)$
$p \quad(\wedge$ elimination from line 1$)$
$q \quad(\wedge$ elimination from line 1$)$
$q \vee r \quad(\vee$ introduction from line 3)
$p \wedge(q \vee r) \quad(\wedge$ introduction from lines 2 and 4)

Assumptions

We can make assumptions in our proofs. They might be true, and they might be false.

Assumptions

We can make assumptions in our proofs. They might be true, and they might be false. We denote this by indenting, and using []

Assumptions

We can make assumptions in our proofs. They might be true, and they might be false. We denote this by indenting, and using []
α_{1}
α_{2}
[α_{3}]
α_{4}
α_{5}
α_{6}

Assumptions

We can make assumptions in our proofs. They might be true, and they might be false. We denote this by indenting, and using []
α_{1}
α_{2}
[α_{3}]
α_{4}
α_{5}
α_{6}

- α_{3} might or might not be true.

Assumptions

We can make assumptions in our proofs. They might be true, and they might be false. We denote this by indenting, and using []
α_{1}
α_{2}
[α_{3}]
α_{4}
α_{5}
α_{6}

- α_{3} might or might not be true.
- α_{4} and α_{5} follow by inference rules, assuming α_{3} is true.

Assumptions

We can make assumptions in our proofs. They might be true, and they might be false. We denote this by indenting, and using []
α_{1}
α_{2}
[α_{3}]
α_{4}
α_{5}
α_{6}

- α_{3} might or might not be true.
- α_{4} and α_{5} follow by inference rules, assuming α_{3} is true.
- α_{4} and α_{5} might also rely on α_{1} or α_{2}. These are still true, with or without our assumption α_{3}.

Assumptions

We can make assumptions in our proofs. They might be true, and they might be false. We denote this by indenting, and using []
α_{1}
α_{2}
[α_{3}]
α_{4}
α_{5}
α_{6}

- α_{3} might or might not be true.
- α_{4} and α_{5} follow by inference rules, assuming α_{3} is true.
- α_{4} and α_{5} might also rely on α_{1} or α_{2}. These are still true, with or without our assumption α_{3}.
- if α_{6} is our theorem statement, it has to hold without any assumptions.
(It should not be indented!)

Assumptions

We can make assumptions in our proofs. They might be true, and they might be false. We denote this by indenting, and using []
α_{1}
α_{2}
[α_{3}]
α_{4}
α_{5}
α_{6}

- α_{3} might or might not be true.
- α_{4} and α_{5} follow by inference rules, assuming α_{3} is true.
- α_{4} and α_{5} might also rely on α_{1} or α_{2}. These are still true, with or without our assumption α_{3}.
- if α_{6} is our theorem statement, it has to hold without any assumptions.
(It should not be indented!)
We can even have nested assumptions:
α_{1}
α_{2}
[α_{3}]
α_{4}

$$
\left[\alpha_{5}\right]
$$

$$
\alpha_{6}
$$

α_{7}
α_{8}

\rightarrow introduction

Assumptions allow us to introduce 2 new inference rules that are very important.

\rightarrow introduction

Assumptions allow us to introduce 2 new inference rules that are very important. The first is \rightarrow Introduction:

\rightarrow introduction

Assumptions allow us to introduce 2 new inference rules that are very important.
The first is \rightarrow Introduction:
[α]
β
$\alpha \rightarrow \beta$

\rightarrow introduction

Assumptions allow us to introduce 2 new inference rules that are very important. The first is \rightarrow Introduction:
[α]
β
$\alpha \rightarrow \beta$
Example: $p \rightarrow q \vdash(p \wedge r) \rightarrow(q \wedge r)$

\rightarrow introduction

Assumptions allow us to introduce 2 new inference rules that are very important. The first is \rightarrow Introduction:
[α]
β
$\alpha \rightarrow \beta$
Example: $p \rightarrow q \vdash(p \wedge r) \rightarrow(q \wedge r)$

1. $p \rightarrow q \quad$ given

\rightarrow introduction

Assumptions allow us to introduce 2 new inference rules that are very important. The first is \rightarrow Introduction:
[α]
β
$\alpha \rightarrow \beta$
Example: $p \rightarrow q \vdash(p \wedge r) \rightarrow(q \wedge r)$

1. $p \rightarrow q \quad$ given
2. $[p \wedge r]$ assumption

\rightarrow introduction

Assumptions allow us to introduce 2 new inference rules that are very important. The first is \rightarrow Introduction:
[α]
β
$\alpha \rightarrow \beta$
Example: $p \rightarrow q \vdash(p \wedge r) \rightarrow(q \wedge r)$

1. $p \rightarrow q \quad$ given
2. $[p \wedge r]$ assumption
3. $p \wedge$ elimination, from line 2

\rightarrow introduction

Assumptions allow us to introduce 2 new inference rules that are very important. The first is \rightarrow Introduction:
[α]
β
$\alpha \rightarrow \beta$
Example: $p \rightarrow q \vdash(p \wedge r) \rightarrow(q \wedge r)$

1. $p \rightarrow q$
2. $[p \wedge r]$
3. $p \wedge$ elimination, from line 2
4. $r \wedge$ elimination, from line 2

\rightarrow introduction

Assumptions allow us to introduce 2 new inference rules that are very important. The first is \rightarrow Introduction:
[α]
β
$\alpha \rightarrow \beta$
Example: $p \rightarrow q \vdash(p \wedge r) \rightarrow(q \wedge r)$

1. $p \rightarrow q$
2. $[p \wedge r]$
3. $p \wedge$ elimination, from line 2
4. $r \wedge$ elimination, from line 2
5. $\quad q \quad$ modus ponens, from line 1 and 3

\rightarrow introduction

Assumptions allow us to introduce 2 new inference rules that are very important. The first is \rightarrow Introduction:
[α]
β

$\alpha \rightarrow \beta$

Example: $p \rightarrow q \vdash(p \wedge r) \rightarrow(q \wedge r)$

1. $p \rightarrow q$
given
2. $[p \wedge r]$
3. $p \wedge$ elimination, from line 2
4. $r \wedge$ elimination, from line 2
5. $\quad q \quad$ modus ponens, from line 1 and 3
6. $\quad q \wedge r \wedge$ introduction, from lines 5 and 4

\rightarrow introduction

Assumptions allow us to introduce 2 new inference rules that are very important. The first is \rightarrow Introduction:
[α]
β
$\alpha \rightarrow \beta$
Example: $p \rightarrow q \vdash(p \wedge r) \rightarrow(q \wedge r)$

1. $p \rightarrow q$
given
2. $[p \wedge r]$
3. $p \wedge$ elimination, from line 2
4. $r \wedge$ elimination, from line 2
5. $\quad q \quad$ modus ponens, from line 1 and 3
6. $\quad q \wedge r \wedge$ introduction, from lines 5 and 4
7. $(p \wedge r) \rightarrow(q \wedge r) \rightarrow$ introduction, from lines 2 and 6

\rightarrow introduction

Assumptions allow us to introduce 2 new inference rules that are very important. The first is \rightarrow Introduction:
[α]
β
$\alpha \rightarrow \beta$
Example: $p \rightarrow q \vdash(p \wedge r) \rightarrow(q \wedge r)$

1. $p \rightarrow q \quad$ given
2. $[p \wedge r]$ assumption
3. $p \wedge$ elimination, from line 2
4. $r \wedge$ elimination, from line 2
5. $\quad q \quad$ modus ponens, from line 1 and 3
6. $\quad q \wedge r \wedge$ introduction, from lines 5 and 4
7. $(p \wedge r) \rightarrow(q \wedge r) \rightarrow$ introduction, from lines 2 and 6

Example: $(p \rightarrow q) \rightarrow((p \wedge r) \rightarrow(q \wedge r))$

\rightarrow introduction

Assumptions allow us to introduce 2 new inference rules that are very important. The first is \rightarrow Introduction:
[α]
β
$\alpha \rightarrow \beta$
Example: $p \rightarrow q \vdash(p \wedge r) \rightarrow(q \wedge r)$

1. $p \rightarrow q$
2. $[p \wedge r]$
3. $p \wedge$ elimination, from line 2
4. $r \wedge$ elimination, from line 2
5. $\quad q \quad$ modus ponens, from line 1 and 3
6. $\quad q \wedge r \quad \wedge$ introduction, from lines 5 and 4
7. $(p \wedge r) \rightarrow(q \wedge r) \quad \rightarrow$ introduction, from lines 2 and 6

Example: $(p \rightarrow q) \rightarrow((p \wedge r) \rightarrow(q \wedge r))$

1. $\quad[p \rightarrow q]$
assumption
2. $[p \wedge r]$ assumption
3. p
4. r
5. q
6. $\quad q \wedge r$
7. $(p \wedge r) \rightarrow(q \wedge r)$
8. $(p \rightarrow q) \rightarrow((p \wedge r) \rightarrow(q \wedge r)) \quad \rightarrow$ introduction, from lines 1 and 7

Reduction to absurdity
[α]
False

Reduction to absurdity
[α]
α_{2}
α_{3}
False
$\neg \alpha$
Example: $\alpha \vee \neg \alpha$

Reduction to absurdity

[α]
α_{2}
α_{3}
False

$$
\neg \alpha
$$

Example: $\alpha \vee \neg \alpha$

1. $\quad[\neg(\alpha \vee \neg \alpha)]$
assumption

Reduction to absurdity

	$[\alpha]$
	α_{2}
	α_{3}
	False
$\neg \alpha$	

Example: $\alpha \vee \neg \alpha$

1. $\quad[\neg(\alpha \vee \neg \alpha)]$
2.

assumption
assumption

Reduction to absurdity

	$[\alpha]$
	α_{2}
α_{3}	
	False
$\neg \alpha$	

Example: $\alpha \vee \neg \alpha$

1. $\quad[\neg(\alpha \vee \neg \alpha)]$
2.
3.

[α]
$\alpha \vee \neg \alpha$
assumption
assumption
\checkmark introduction, from line 2

Reduction to absurdity

	$[\alpha]$
	α_{2}
α_{3}	
	False
$\neg \alpha$	

Example: $\alpha \vee \neg \alpha$

1. $\quad[\neg(\alpha \vee \neg \alpha)]$
2.
3.
4.

[α]
$\alpha \vee \neg \alpha$
False
assumption
assumption
\checkmark introduction, from line 2
contradiction, from lines 1 and 3

Reduction to absurdity

$[\alpha]$
α_{2}
α_{3}
False
$\neg \alpha$

Example: $\alpha \vee \neg \alpha$

1. $\quad[\neg(\alpha \vee \neg \alpha)]$
2.
3.
4.
5. $\neg \alpha$
assumption
assumption
\checkmark introduction, from line 2
contradiction, from lines 1 and 3
reduction to absurdity, from lines 2 and 4

Reduction to absurdity

	$[\alpha]$
	α_{2}
	α_{3}
	False
$\neg \alpha$	

Example: $\alpha \vee \neg \alpha$

1. $\quad[\neg(\alpha \vee \neg \alpha)]$
2.
3.
4.
5. $\neg \alpha$
6. $\quad \neg \alpha \vee \alpha$
assumption
assumption
\checkmark introduction, from line 2
contradiction, from lines 1 and 3
reduction to absurdity, from lines 2 and 4
\checkmark introduction, from line 5

Reduction to absurdity

$[\alpha]$
α_{2}
α_{3}
False
$\neg \alpha$

Example: $\alpha \vee \neg \alpha$

1. $\quad[\neg(\alpha \vee \neg \alpha)]$
2.
3.
4.
5. $\neg \alpha$
6. $\neg \alpha \vee \alpha$
7. False
[α
$\alpha \vee \neg \alpha$
False
contradiction, from lines 1 and 3
reduction to absurdity, from lines 2 and 4
\checkmark introduction, from line 5
contradiction, from lines 1 and 6

Reduction to absurdity

$[\alpha]$
α_{2}
α_{3}
False
$\neg \alpha$

Example: $\alpha \vee \neg \alpha$

1. $\quad[\neg(\alpha \vee \neg \alpha)]$
2.
3.
4.
5. $\neg \alpha$
6. $\neg \alpha \vee \alpha$
7. False
8. $\neg \neg(\alpha \vee \neg \alpha)$
[α] assumption
$\alpha \vee \neg \alpha \quad \vee$ introduction, from line 2
False contradiction, from lines 1 and 3
reduction to absurdity, from lines 2 and 4
\checkmark introduction, from line 5
contradiction, from lines 1 and 6
reduction to absurdity, from lines 1 and 7

Reduction to absurdity

	$[\alpha]$
	α_{2}
α_{3}	
	False
$\neg \alpha$	

Example: $\alpha \vee \neg \alpha$

1. $\quad[\neg(\alpha \vee \neg \alpha)]$
2.
3.
4.
5. $\neg \alpha$
6. $\quad \neg \alpha \vee \alpha$
7. False
8. $\neg \neg(\alpha \vee \neg \alpha)$
9. $\alpha \vee \neg \alpha$
$\alpha \vee \neg \alpha$
False
contradiction, from lines 1 and 3
reduction to absurdity, from lines 2 and 4
\checkmark introduction, from line 5
contradiction, from lines 1 and 6
reduction to absurdity, from lines 1 and 7
double negation, from line 8

Example

11. $(\neg(a \vee b)) \rightarrow(\neg a \wedge \neg b)$

Example

1. $\quad[\neg(a \vee b)] \quad$ assumption
2. $\quad \neg a \wedge \neg b$
3. $(\neg(a \vee b)) \rightarrow(\neg a \wedge \neg b) \quad$ implication introduction

Example

1.	$[\neg(a \vee b)]$	assumption
2.	$[a]$	assumption

10. $\neg a \wedge \neg b$
11. $(\neg(a \vee b)) \rightarrow(\neg a \wedge \neg b) \quad$ implication introduction

Example

1.	$[\neg(a \vee b)]$	assumption
2.	$[a]$	assumption
3.	$a \vee b$	\vee introduction, line 2

10. $\quad \neg a \wedge \neg b$
11. $(\neg(a \vee b)) \rightarrow(\neg a \wedge \neg b) \quad$ implication introduction

Example

1.	$[\neg(a \vee b)]$	assumption
2.	$[a]$	assumption
3.	$a \vee b$	\vee introduction, line 2
4.	False	contradiction, lines 1 and 3

10. $\neg a \wedge \neg b$
11. $(\neg(a \vee b)) \rightarrow(\neg a \wedge \neg b) \quad$ implication introduction

Example

1.	$[\neg(a \vee b)]$	assumption 2.
3.	$[a]$	assumption
4.	$a \vee b$	\vee introduction, line 2
5.		False
contradiction, lines 1 and 3		
		reduction to absurdity, lines 2 and 4

10. $\neg a \wedge \neg b$
11. $(\neg(a \vee b)) \rightarrow(\neg a \wedge \neg b) \quad$ implication introduction

Example

1.	$[\neg(a \vee b)]$		assumption
2.		[a]	assumption
3.		$a \vee b$	\checkmark introduction, line 2
4.		False	contradiction, lines 1 and 3
5.	$\neg a$		reduction to absurdity, lines 2 and 4
6.		[b]	assumption

10. $\neg a \wedge \neg b$
11. $(\neg(a \vee b)) \rightarrow(\neg a \wedge \neg b) \quad$ implication introduction

Example

1.	$[\neg(a \vee b)]$		assumption
2.		[a]	assumption
3.		$a \vee b$	\checkmark introduction, line 2
4.		False	contradiction, lines 1 and 3
5.	$\neg a$		reduction to absurdity, lines 2 and 4
6.		[b]	assumption
7.		$a \vee b$	\checkmark introduction, line 6

10. $\neg a \wedge \neg b$
11. $(\neg(a \vee b)) \rightarrow(\neg a \wedge \neg b) \quad$ implication introduction

Example

1.	$[\neg(a \vee b)]$	assumption
2.	[a]	assumption
3.	$a \vee b$	\checkmark introduction, line 2
4.	False	contradiction, lines 1 and 3
5.	$\neg a$	reduction to absurdity, lines 2 and 4
6.	[b]	assumption
7.	$a \vee b$	\checkmark introduction, line 6
8.	False	contradiction, lines 1 and 7
10.	$\neg a \wedge \neg b$	
	b)) $\rightarrow(\neg a \wedge \neg b)$	implication introduction

Example

1.	$[\neg(a \vee b)]$	assumption
2.	[a]	assumption
3.	$a \vee b$	\checkmark introduction, line 2
4.	False	contradiction, lines 1 and 3
5.	$\neg a$	reduction to absurdity, lines 2 and 4
6.	[b]	assumption
7.	$a \vee b$	\checkmark introduction, line 6
8.	False	contradiction, lines 1 and 7
9.	$\neg b$	reduction to absurdity, lines 6 and 8
10.	$\neg a \wedge \neg b$	
	$)) \rightarrow(\neg a \wedge \neg b)$	implication introduction

Example

1.	$[\neg(a \vee b)]$	assumption
2.	[a]	assumption
3.	$a \vee b$	\checkmark introduction, line 2
4.	False	contradiction, lines 1 and 3
5.	$\neg a$	reduction to absurdity, lines 2 and 4
6.	[b]	assumption
7.	$a \vee b$	\checkmark introduction, line 6
8.	False	contradiction, lines 1 and 7
9.	$\neg b$	reduction to absurdity, lines 6 and 8
10.	$\neg a \wedge \neg b$	\wedge introduction, lines 5 and 9
)) $\rightarrow(\neg a \wedge \neg b)$	implication introduction

Any tautology could be listed as an inference rule: the choice is arbitrary.

Any tautology could be listed as an inference rule: the choice is arbitrary. We limit our set for the sake of the exercise.

Any tautology could be listed as an inference rule: the choice is arbitrary. We limit our set for the sake of the exercise.
If I were to add one more, it would be this one:
$\neg p$

$$
p \rightarrow q
$$

Any tautology could be listed as an inference rule: the choice is arbitrary.
We limit our set for the sake of the exercise.
If I were to add one more, it would be this one:
$\neg p$
$p \rightarrow q$
We will NOT add this inference rule. Instead, we will frequently use the following sub-proof.

$\neg p \vdash p \rightarrow q$

Any tautology could be listed as an inference rule: the choice is arbitrary.
We limit our set for the sake of the exercise.
If I were to add one more, it would be this one:
$\neg p$
$p \rightarrow q$
We will NOT add this inference rule. Instead, we will frequently use the following sub-proof.

1. $\neg p$ given
2. $p \rightarrow q$

$\neg p \vdash p \rightarrow q$

Any tautology could be listed as an inference rule: the choice is arbitrary.
We limit our set for the sake of the exercise.
If I were to add one more, it would be this one:
$\neg p$
$p \rightarrow q$
We will NOT add this inference rule. Instead, we will frequently use the following sub-proof.

1. $\neg p$		given
2.	$[p]$	assumption

5. q
6. $p \rightarrow q$

$\neg p \vdash p \rightarrow q$

Any tautology could be listed as an inference rule: the choice is arbitrary.
We limit our set for the sake of the exercise.
If I were to add one more, it would be this one:
$\neg p$
$p \rightarrow q$
We will NOT add this inference rule. Instead, we will frequently use the following sub-proof.

1. $\neg p$		given		
2.	$[p]$			
3.		$[\neg q]$		assumption
:---				
assumption				

5. q
6. $p \rightarrow q$

$\neg p \vdash p \rightarrow q$

Any tautology could be listed as an inference rule: the choice is arbitrary.
We limit our set for the sake of the exercise.
If I were to add one more, it would be this one:
$\neg p$
$p \rightarrow q$
We will NOT add this inference rule. Instead, we will frequently use the following sub-proof.

1. $\neg p$		given 2.		
3.	$[p]$			
assumption				
4.		$[\neg q]$		assumption
:---				
5.				
6. $p \rightarrow q$	$\quad q \quad$ False	contradiction, lines 1 and 2.		
:---				

$\neg p \vdash p \rightarrow q$

Any tautology could be listed as an inference rule: the choice is arbitrary.
We limit our set for the sake of the exercise.
If I were to add one more, it would be this one:
$\neg p$
$p \rightarrow q$
We will NOT add this inference rule. Instead, we will frequently use the following sub-proof.
\(\left.$$
\begin{array}{lll}\text { 1. } \neg p & & \begin{array}{l}\text { given } \\
\text { 2. }\end{array}
$$

assumption\end{array}\right][p] \quad\)| assumption |
| :--- |
| 3. |

$\neg p \vdash p \rightarrow q$

Any tautology could be listed as an inference rule: the choice is arbitrary.
We limit our set for the sake of the exercise.
If I were to add one more, it would be this one:
$\neg p$
$p \rightarrow q$
We will NOT add this inference rule. Instead, we will frequently use the following sub-proof.

$\neg p \vdash p \rightarrow q$

Any tautology could be listed as an inference rule: the choice is arbitrary.
We limit our set for the sake of the exercise.
If I were to add one more, it would be this one:
$\neg p$
$p \rightarrow q$
We will NOT add this inference rule. Instead, we will frequently use the following sub-proof.

1. $\neg p$			given
2.	[p]		assumption
3.		$[\neg q]$	assumption
4.		False	contradiction, lines 1 and 2.
5.	q		reduction to absurdity, lines 3 and 4.
6. $p \rightarrow q$			implication introduction, lines 2 and 5 .

Note: $\neg p$ means that $p \rightarrow$ anything!

1. $\neg p$
2.
3.
4.
5. q
6. $p \rightarrow \neg q$
given
assumption
assumption
contradiction, lines 1 and 2.
reduction to absurdity, lines 3 and 4 .
implication introduction, lines 2 and 5.

Example

$((p \vee q) \wedge \neg p) \rightarrow q$

Example

$$
[(p \vee q) \wedge \neg p]
$$

assumption

$$
((p \vee q) \stackrel{q}{\wedge \neg p) \rightarrow q}
$$

[^0]
Example

$$
\begin{array}{ll}
{[(p \vee q) \wedge \neg p]} & \text { assumption } \\
p \vee q & \wedge \text { elimination }
\end{array}
$$

$$
((p \vee q) \wedge \stackrel{q}{\neg p) \rightarrow q}
$$

[^1]
Example

$[(p \vee q) \wedge \neg p]$	assumption
$p \vee q$	\wedge elimination
$\neg p$	\wedge elimination

$$
((p \vee q) \wedge \neg p) \rightarrow q
$$

[^2]
Example

$[(p \vee q) \wedge \neg p]$	assumption
$p \vee q$	\wedge elimination
$\neg p$	\wedge elimination

$$
p \rightarrow q
$$

$$
((p \vee q) \stackrel{q}{\wedge} \neg p) \rightarrow q
$$

\rightarrow introduction

Example

$[(p \vee q) \wedge \neg p]$	assumption
$p \vee q$	\wedge elimination
$\neg p$	\wedge elimination

$$
p \rightarrow q
$$

$$
\begin{gathered}
q \rightarrow q \\
q \\
((p \vee q) \wedge \neg p) \rightarrow q
\end{gathered}
$$

\rightarrow introduction

Example

$$
\begin{aligned}
& {[(p \vee q) \wedge \neg p]} \\
& p \vee q \\
& \neg p
\end{aligned}
$$

assumption
\wedge elimination
\wedge elimination

$$
\begin{aligned}
& p \rightarrow q \\
& q \rightarrow q \\
& q \\
&((p \vee q) \wedge \neg p) \rightarrow q
\end{aligned}
$$

case analysis
\rightarrow introduction

Example

$\begin{aligned} & {[(p \vee q) \wedge \neg p]} \\ & p \vee q \\ & \neg p \end{aligned}$	assumption \wedge elimination \wedge elimination assumption
$p \rightarrow q$	
$\begin{gathered} q \rightarrow q \\ q \\ ((p \vee q) \wedge \neg p) \rightarrow q \end{gathered}$	case analysis \rightarrow introduction

Example

$[(p \vee q) \wedge \neg p]$		assumption
$p \vee q$		\wedge elimination
$\neg p$		\wedge elimination

$$
p \rightarrow q
$$

$$
\begin{gathered}
q \rightarrow q \\
q \\
((p \vee q) \wedge \neg p) \rightarrow q
\end{gathered}
$$

case analysis
\rightarrow introduction

Example

$[(p \vee q) \wedge \neg p]$		assumption $p \vee q$
$\neg p$		\wedge elimination
		\wedge elimination

q	$\rightarrow q$
q	
$((p \vee q) \wedge \neg p)$	$\rightarrow q$

case analysis
\rightarrow introduction

Example

$$
\begin{array}{ll}
{[(p \vee q) \wedge \neg p]} \\
p \vee q \\
\neg p & \\
& \quad[p] \\
& \neg \neg q
\end{array}
$$

assumption
\wedge elimination
\wedge elimination
assumption
$[\neg q]$ assumption
False contradiction
reduction to absurdity
$p \rightarrow q$
$\begin{aligned} & q \rightarrow q \\ & q \\ &((p \vee q) \wedge \neg p) \rightarrow q\end{aligned}$
case analysis
\rightarrow introduction

Example

Example

Example

Example

assumption
\wedge elimination
\wedge elimination
assumption
assumption
contradiction
reduction to absurdity
$\neg \neg$ elimination
\rightarrow introduction
assumption
case analysis
\rightarrow introduction

Example

$[(p \vee q) \wedge \neg p]$$p \vee q$				assumption \wedge elimination
$\neg p$				\wedge elimination
		[p]		assumption
			$[\neg q]$	assumption
			False	contradiction
		$\neg \neg q$		reduction to absurdity
		q		$\neg \neg$ elimination
	$p \rightarrow q$			\rightarrow introduction
		[q]		assumption
		q		
	$q \rightarrow q$			\rightarrow introduction
	q			case analysis
$((p \vee q) \wedge \neg p) \rightarrow q$				\rightarrow introduction

Example

$$
(p \rightarrow q) \leftrightarrow(\neg p \vee q)
$$

Example

$$
(\neg p \vee q) \rightarrow(p \rightarrow q)
$$

$$
\begin{aligned}
& (p \rightarrow q) \rightarrow(\neg p \vee q) \\
& (p \rightarrow q) \leftrightarrow(\neg p \vee q)
\end{aligned}
$$

Example

$$
[\neg p \vee q]
$$

assumption

$$
\begin{gathered}
p \rightarrow q \\
(\neg p \vee q) \rightarrow(p \rightarrow q)
\end{gathered}
$$

$$
\begin{aligned}
& (p \rightarrow q) \rightarrow(\neg p \vee q) \\
& (p \rightarrow q) \leftrightarrow(\neg p \vee q)
\end{aligned}
$$

\rightarrow introduction
\leftrightarrow introduction

Example

$$
[\neg p \vee q] \quad[\neg p]
$$

assumption

assumption

$$
\begin{gathered}
p \rightarrow q \\
(\neg p \vee q) \rightarrow(p \rightarrow q)
\end{gathered}
$$

\rightarrow introduction

$$
\begin{aligned}
& (p \rightarrow q) \rightarrow(\neg p \vee q) \\
& (p \rightarrow q) \leftrightarrow(\neg p \vee q)
\end{aligned}
$$

Example

$$
[\neg p \vee q]
$$

$[\neg p]$	
	$\neg p]$
$p \rightarrow q$	q

$$
\begin{gathered}
p \rightarrow q \\
(\neg p \vee q) \rightarrow(p \rightarrow q)
\end{gathered}
$$

[$\neg q]$ assumption
False contradiction reduction to absurdity $\neg \neg$ elimination \rightarrow introduction
\rightarrow introduction
$(p \rightarrow q) \rightarrow(\neg p \vee q)$
$(p \rightarrow q) \leftrightarrow(\neg p \vee q)$
\leftrightarrow introduction

Example

$$
\begin{gathered}
p \rightarrow q \\
(\neg p \vee q) \rightarrow(p \rightarrow q)
\end{gathered}
$$

$$
\begin{aligned}
& (p \rightarrow q) \rightarrow(\neg p \vee q) \\
& (p \rightarrow q) \leftrightarrow(\neg p \vee q)
\end{aligned}
$$

$$
\begin{aligned}
& {[\neg p \vee q]} \\
& \text { [p] } \\
& \neg \neg q \\
& q \\
& p \rightarrow q \\
& \neg p \rightarrow(p \rightarrow q)
\end{aligned}
$$

assumption
assumption
assumption
assumption
contradiction
reduction to absurdity
\neg ᄀelimination
\rightarrow introduction
\rightarrow introduction
\rightarrow introduction
\leftrightarrow introduction

Example

$$
\begin{gathered}
p \rightarrow q \\
(\neg p \vee q) \rightarrow(p \rightarrow q)
\end{gathered}
$$

$$
(p \rightarrow q) \rightarrow(\neg p \vee q)
$$

$$
(p \rightarrow q) \leftrightarrow(\neg p \vee q)
$$

$$
\begin{aligned}
& {[\neg p \vee q]} \\
& \text { [p] } \\
& \neg \neg q \\
& q \\
& \neg p \rightarrow \underset{[q]}{\stackrel{p \rightarrow q}{q}}
\end{aligned}
$$

assumption
assumption
assumption
assumption
contradiction
reduction to absurdity
\neg ᄀelimination
\rightarrow introduction
\rightarrow introduction assumption
\rightarrow introduction
\leftrightarrow introduction

Example

Example

Example

Example

assumption
assumption
assumption
assumption
contradiction
reduction to absurdity
$\neg \neg$ elimination
\rightarrow introduction
\rightarrow introduction assumption assumption
\rightarrow introduction
\rightarrow introduction
\rightarrow introduction

$$
\begin{aligned}
& (p \rightarrow q) \rightarrow(\neg p \vee q) \\
& (p \rightarrow q) \leftrightarrow(\neg p \vee q)
\end{aligned}
$$

\leftrightarrow introduction

Example

assumption
assumption
assumption
assumption
contradiction
reduction to absurdity
$\neg \neg$ elimination
\rightarrow introduction
\rightarrow introduction assumption assumption
\rightarrow introduction
\rightarrow introduction
case analysis
\rightarrow introduction

$$
\begin{aligned}
& (p \rightarrow q) \rightarrow(\neg p \vee q) \\
& (p \rightarrow q) \leftrightarrow(\neg p \vee q)
\end{aligned}
$$

Example

[^0]: \rightarrow introduction

[^1]: \rightarrow introduction

[^2]: \rightarrow introduction

