We're going to start proving things through *deduction*.

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

We're going to start proving things through *deduction*.

We will prove that propositions are tautologies – that the given proposition is true for every possible variable state.

We're going to start proving things through *deduction*.

We will prove that propositions are tautologies – that the given proposition is true for every possible variable state.

We could do this through truth-tables.

We're going to start proving things through *deduction*.

We will prove that propositions are tautologies – that the given proposition is true for every possible variable state.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

- We could do this through truth-tables.
- ▶ We could do this through algebraic manipulations: $p \equiv \cdots \equiv$ True

We're going to start proving things through *deduction*.

We will prove that propositions are tautologies – that the given proposition is true for every possible variable state.

- We could do this through truth-tables.
- ▶ We could do this through algebraic manipulations: $p \equiv \cdots \equiv$ True
- ▶ We'll do it through a progression of "inferences".

We're going to start proving things through *deduction*.

We will prove that propositions are tautologies – that the given proposition is true for every possible variable state.

- We could do this through truth-tables.
- ▶ We could do this through algebraic manipulations: $p \equiv \cdots \equiv$ True
- ▶ We'll do it through a progression of "inferences".

Modus Ponens

 α

 $\alpha \to \beta$

β

We're going to start proving things through *deduction*.

We will prove that propositions are tautologies – that the given proposition is true for every possible variable state.

- We could do this through truth-tables.
- ▶ We could do this through algebraic manipulations: $p \equiv \cdots \equiv$ True
- ▶ We'll do it through a progression of "inferences".

Modus Ponens

 α

 $\alpha \to \beta$

β

If α is true, and $\alpha \rightarrow \beta$ is true, then it follows that β is true.

We're going to start proving things through *deduction*.

We will prove that propositions are tautologies – that the given proposition is true for every possible variable state.

- We could do this through truth-tables.
- ▶ We could do this through algebraic manipulations: $p \equiv \cdots \equiv$ True
- ▶ We'll do it through a progression of "inferences".

Modus Ponens

 α

 $\alpha \to \beta$

β

If α is true, and $\alpha \to \beta$ is true, then it follows that β is true. (If α is false, or $\alpha \to \beta$ is false, then we can't say anything about β .)

We're going to start proving things through *deduction*.

We will prove that propositions are tautologies – that the given proposition is true for every possible variable state.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- We could do this through truth-tables.
- ▶ We could do this through algebraic manipulations: $p \equiv \cdots \equiv$ True
- ▶ We'll do it through a progression of "inferences".

Modus Ponens

 α

 $\alpha \to \beta$

β

If α is true, and $\alpha \to \beta$ is true, then it follows that β is true. (If α is false, or $\alpha \to \beta$ is false, then we can't say anything about β .)

 $(\alpha \land (\alpha \rightarrow \beta)) \rightarrow \beta)$

We're going to start proving things through *deduction*.

We will prove that propositions are tautologies – that the given proposition is true for every possible variable state.

- We could do this through truth-tables.
- ▶ We could do this through algebraic manipulations: $p \equiv \cdots \equiv$ True
- ▶ We'll do it through a progression of "inferences".

Modus Ponens

 α

 $\alpha \to \beta$

β

If α is true, and $\alpha \rightarrow \beta$ is true, then it follows that β is true. (If α is false, or $\alpha \rightarrow \beta$ is false, then we can't say anything about β .)

 $(\alpha \land (\alpha \rightarrow \beta)) \rightarrow \beta)$ Because this is a tautology, we have an inference rule!

We're going to start proving things through *deduction*.

We will prove that propositions are tautologies – that the given proposition is true for every possible variable state.

- We could do this through truth-tables.
- ▶ We could do this through algebraic manipulations: $p \equiv \cdots \equiv$ True
- ▶ We'll do it through a progression of "inferences".

Modus Ponens

 $\begin{array}{c} \alpha \\ \alpha \rightarrow \beta \end{array}$

β

If α is true, and $\alpha \to \beta$ is true, then it follows that β is true. (If α is false, or $\alpha \to \beta$ is false, then we can't say anything about β .)

 $(\alpha \land (\alpha \rightarrow \beta)) \rightarrow \beta)$ Because this is a tautology, we have an inference rule!

 $\begin{array}{l} \text{Modus Tollens} \\ \alpha \rightarrow \beta \\ \neg \beta \end{array}$

 $\neg \alpha$

We're going to start proving things through *deduction*.

We will prove that propositions are tautologies – that the given proposition is true for every possible variable state.

- We could do this through truth-tables.
- ▶ We could do this through algebraic manipulations: $p \equiv \cdots \equiv$ True
- ▶ We'll do it through a progression of "inferences".

Modus Ponens

 $\begin{array}{c} \alpha \\ \alpha \rightarrow \beta \end{array}$

β

If α is true, and $\alpha \to \beta$ is true, then it follows that β is true. (If α is false, or $\alpha \to \beta$ is false, then we can't say anything about β .)

 $(\alpha \land (\alpha \rightarrow \beta)) \rightarrow \beta)$ Because this is a tautology, we have an inference rule!

 $\begin{array}{l} \text{Modus Tollens} \\ \alpha \rightarrow \beta \\ \neg \beta \end{array}$

 $\neg \alpha$

 $((\alpha \rightarrow \beta) \land \neg \beta) \rightarrow \neg \alpha)$

We're going to start proving things through *deduction*.

We will prove that propositions are tautologies – that the given proposition is true for every possible variable state.

- We could do this through truth-tables.
- ▶ We could do this through algebraic manipulations: $p \equiv \cdots \equiv$ True
- We'll do it through a progression of "inferences".

Modus Ponens

 $\begin{array}{c} \alpha \\ \alpha \rightarrow \beta \end{array}$

в

If α is true, and $\alpha \to \beta$ is true, then it follows that β is true. (If α is false, or $\alpha \to \beta$ is false, then we can't say anything about β .)

 $(\alpha \land (\alpha \rightarrow \beta)) \rightarrow \beta)$ Because this is a tautology, we have an inference rule!

 $\begin{array}{l} \text{Modus Tollens} \\ \alpha \to \beta \\ \neg \beta \end{array}$

 $\neg \alpha$

 $((\alpha
ightarrow \beta) \land \neg \beta)
ightarrow \neg \alpha)$ Because this is a tautology, we have an inference rule!

Inference Rules

CHAPTER 3. PROOFS BY DEDUCTION

Modus ponens:	$\begin{array}{c} \alpha \rightarrow \beta \\ \alpha \\ \hline \\ \beta \end{array}$	Modus tollens:	$ \begin{array}{c} \alpha \to \beta \\ \neg \beta \\ \hline \neg \alpha \end{array} $
$\wedge \rm introduction:$	$\frac{\frac{\alpha}{\beta}}{\alpha \wedge \beta}$	\wedge elimination:	$\frac{\alpha \wedge \beta}{\alpha \text{ [or } \beta]}$
\vee introduction:	$\frac{\alpha \ [\text{or} \ \beta]}{\alpha \lor \beta}$	∨ elimination: (Case analysis)	$ \begin{array}{c} \alpha \lor \beta \\ \alpha \to \gamma \\ \beta \to \gamma \\ \hline \gamma \end{array} $
\neg \neg introduction:	$\frac{\alpha}{\neg \neg \alpha}$	$\neg \neg$ elimination:	$\neg \neg \alpha$
\leftrightarrow introduction:	$ \begin{array}{c} \alpha \rightarrow \beta \\ \beta \rightarrow \alpha \\ \hline \\ \alpha \leftrightarrow \beta \end{array} $	\leftrightarrow elimination:	$\frac{\alpha \leftrightarrow \beta}{(\alpha \rightarrow \beta) \land (\beta \rightarrow \alpha)}$
Contradiction:	$\frac{\alpha}{\neg \alpha}$ FALSE	Tautology: (when $\alpha \equiv \text{TRUE}$)	α

Figure 3.1: Rules of Inference

A proof is a sequence of assertions, each of which the reader agrees to.

A proof is a sequence of assertions, each of which the reader agrees to. The last assertion in the list is the theorem being proven.

A proof is a sequence of assertions, each of which the reader agrees to. The last assertion in the list is the theorem being proven.

Each assertion follows from the previous assertions by some inference rule.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

A proof is a sequence of assertions, each of which the reader agrees to. The last assertion in the list is the theorem being proven. Each assertion follows from the previous assertions by some inference rule.

A sequent: $\alpha \vdash \beta$ is a statement:

"There exists a proof that starts with assertion α and ends with β ".

A proof is a sequence of assertions, each of which the reader agrees to. The last assertion in the list is the theorem being proven.

Each assertion follows from the previous assertions by some inference rule.

A sequent: $\alpha \vdash \beta$ is a statement:

"There exists a proof that starts with assertion α and ends with β ".

(The sequent is valid if such a proof actually exists.)

A proof is a sequence of assertions, each of which the reader agrees to. The last assertion in the list is the theorem being proven.

Each assertion follows from the previous assertions by some inference rule.

A sequent: $\alpha \vdash \beta$ is a statement:

"There exists a proof that starts with assertion α and ends with β ".

(The sequent is valid if such a proof actually exists.)

Note that α here is taken as a starting point: it is assumed true without proof.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

A proof is a sequence of assertions, each of which the reader agrees to. The last assertion in the list is the theorem being proven.

Each assertion follows from the previous assertions by some inference rule.

A sequent: $\alpha \vdash \beta$ is a statement:

"There exists a proof that starts with assertion α and ends with β ".

(The sequent is valid if such a proof actually exists.)

Note that α here is taken as a starting point: it is assumed true without proof.

Example: $p \vdash p \land (q \lor p)$

A proof is a sequence of assertions, each of which the reader agrees to. The last assertion in the list is the theorem being proven.

Each assertion follows from the previous assertions by some inference rule.

A sequent: $\alpha \vdash \beta$ is a statement:

"There exists a proof that starts with assertion α and ends with β ".

(The sequent is valid if such a proof actually exists.)

Note that α here is taken as a starting point: it is assumed true without proof.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Example: $p \vdash p \land (q \lor p)$ p $q \lor p$ (\lor introduction from line 1) $p \land (q \lor p)$ (\land introduction from lines 1 and 2)

A proof is a sequence of assertions, each of which the reader agrees to. The last assertion in the list is the theorem being proven.

Each assertion follows from the previous assertions by some inference rule.

A sequent: $\alpha \vdash \beta$ is a statement: "There exists a proof that starts with assertion α and ends with β ". (The sequent is valid if such a proof actually exists.) Note that α here is taken as a starting point: it is assumed true without proof.

Example: $p \vdash p \land (q \lor p)$ p $q \lor p$ (\lor introduction from line 1) $p \land (q \lor p)$ (\land introduction from lines 1 and 2)

Example: $p \land q \vdash p \land (q \lor r)$

A proof is a sequence of assertions, each of which the reader agrees to. The last assertion in the list is the theorem being proven.

Each assertion follows from the previous assertions by some inference rule.

A sequent: $\alpha \vdash \beta$ is a statement:

"There exists a proof that starts with assertion α and ends with β ".

(The sequent is valid if such a proof actually exists.)

Note that α here is taken as a starting point: it is assumed true without proof.

Example: $p \vdash p \land (q \lor p)$ p $q \lor p$ (\lor introduction from line 1) $p \land (q \lor p)$ (\land introduction from lines 1 and 2) Example: $p \land q \vdash p \land (q \lor r)$ $p \land q$ p (\land elimination from line 1) q (\land elimination from line 1) $q \lor r$ (\lor introduction from line 3) $p \land (q \lor r)$ (\land introduction from lines 2 and 4)

We can make assumptions in our proofs. They might be true, and they might be false.

We can make assumptions in our proofs. They might be true, and they might be false. We denote this by indenting, and using $[\]$

We can make assumptions in our proofs. They might be true, and they might be false. We denote this by indenting, and using $[\]$

 $\begin{array}{c} lpha_1 & & \\ lpha_2 & & \\ & & [lpha_3] & \\ & lpha_4 & \\ & lpha_5 & \\ lpha_6 & & \end{array}$

We can make assumptions in our proofs. They might be true, and they might be false. We denote this by indenting, and using $[\]$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

• α_3 might or might not be true.

We can make assumptions in our proofs. They might be true, and they might be false. We denote this by indenting, and using [

 $\begin{array}{c} \alpha_1 \\ \alpha_2 \\ & [\alpha_3] \\ & \alpha_4 \\ & \alpha_5 \\ \alpha_6 \end{array}$

- α_3 might or might not be true.
- α_4 and α_5 follow by inference rules, *assuming* α_3 is true.

We can make assumptions in our proofs. They might be true, and they might be false. We denote this by indenting, and using [

 $\begin{array}{c} \alpha_1 \\ \alpha_2 \\ & [\alpha_3] \\ & \alpha_4 \\ & \alpha_5 \end{array}$

- α_3 might or might not be true.
- α_4 and α_5 follow by inference rules, assuming α_3 is true.
- α_4 and α_5 might also rely on α_1 or α_2 . These are still true, with or without our assumption α_3 .

We can make assumptions in our proofs. They might be true, and they might be false. We denote this by indenting, and using [

 $\begin{array}{c} lpha_1 \\ lpha_2 \\ & [lpha_3] \\ & lpha_4 \\ & lpha_5 \\ lpha_6 \end{array}$

- α_3 might or might not be true.
- α_4 and α_5 follow by inference rules, *assuming* α_3 is true.
- α_4 and α_5 might also rely on α_1 or α_2 . These are still true, with or without our assumption α_3 .

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

• if α_6 is our theorem statement, it has to hold *without* any assumptions. (It should not be indented!)

We can make assumptions in our proofs. They might be true, and they might be false. We denote this by indenting, and using [

```
\begin{array}{c} \alpha_1 \\ \alpha_2 \\ & [\alpha_3] \\ & \alpha_4 \\ & \alpha_5 \end{array}
```

 α_6

- α₃ might or might not be true.
- α_4 and α_5 follow by inference rules, assuming α_3 is true.
- α_4 and α_5 might also rely on α_1 or α_2 . These are still true, with or without our assumption α_3 .

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

• if α_6 is our theorem statement, it has to hold *without* any assumptions. (It should not be indented!)

We can even have nested assumptions:

```
\begin{array}{c} \alpha_1 \\ \alpha_2 \\ & [\alpha_3] \\ & \alpha_4 \\ & [\alpha_5] \\ & & \alpha_6 \\ & & \alpha_7 \end{array}
```

 α_8

Assumptions allow us to introduce 2 new inference rules that are very important.

<□ > < @ > < E > < E > E のQ @

Assumptions allow us to introduce 2 new inference rules that are very important. The first is \rightarrow Introduction:

Assumptions allow us to introduce 2 new inference rules that are very important. The first is \rightarrow Introduction:

 $\begin{bmatrix} \alpha \end{bmatrix}$ β

 $\alpha \to \beta$

Assumptions allow us to introduce 2 new inference rules that are very important. The first is \rightarrow Introduction:

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

 $\begin{bmatrix} \alpha \end{bmatrix}$ β

 $\alpha \to \beta$

Example: $p \rightarrow q \vdash (p \land r) \rightarrow (q \land r)$

Assumptions allow us to introduce 2 new inference rules that are very important. The first is \rightarrow Introduction:

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

 $\begin{bmatrix} \alpha \\ \beta \\ \hline \alpha \to \beta \end{bmatrix}$ Example: $p \to q \vdash (p \land r) \to (q \land r)$ 1. $p \to q$ given

Assumptions allow us to introduce 2 new inference rules that are very important. The first is \rightarrow Introduction:

 $\begin{bmatrix} \alpha \\ \beta \\ \hline \alpha \to \beta \end{bmatrix}$ Example: $p \to q \vdash (p \land r) \to (q \land r)$ 1. $p \to q$ given
2. $[p \land r]$ assumption

Assumptions allow us to introduce 2 new inference rules that are very important. The first is \rightarrow Introduction:

Assumptions allow us to introduce 2 new inference rules that are very important. The first is \rightarrow Introduction:

Assumptions allow us to introduce 2 new inference rules that are very important. The first is \rightarrow Introduction:

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Assumptions allow us to introduce 2 new inference rules that are very important. The first is \rightarrow Introduction:

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Assumptions allow us to introduce 2 new inference rules that are very important. The first is \rightarrow Introduction:

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Assumptions allow us to introduce 2 new inference rules that are very important. The first is \rightarrow Introduction:

Example: $(p \rightarrow q) \rightarrow ((p \land r) \rightarrow (q \land r))$

Assumptions allow us to introduce 2 new inference rules that are very important. The first is \rightarrow Introduction:

 $[\alpha]$ в $\alpha \rightarrow \beta$ Example: $p \rightarrow q \vdash (p \land r) \rightarrow (q \land r)$ 1. $p \rightarrow q$ given2. $[p \wedge r]$ assumption 3. p \land elimination, from line 2 4. r \land elimination, from line 2 5. q modus ponens, from line 1 and 3 6. $q \wedge r$ \wedge introduction, from lines 5 and 4 7. $(p \wedge r) \rightarrow (q \wedge r) \rightarrow \text{introduction, from lines 2 and 6}$ Example: $(p \rightarrow q) \rightarrow ((p \land r) \rightarrow (q \land r))$ 1. $[p \rightarrow q]$ assumption $[p \wedge r]$ 2. assumption 3. \wedge elimination. from line 2 р 4. \wedge elimination, from line 2 5.qmodus ponens, from line 1 and 36. $q \wedge r$ \wedge introduction, from lines 5 and 47. $(p \wedge r) \rightarrow (q \wedge r)$ \rightarrow introduction, from lines 2 and 6 8. $(p \rightarrow q) \rightarrow ((p \land r) \rightarrow (q \land r)) \rightarrow \text{introduction, from lines 1 and 7}$

<□ > < @ > < E > < E > E のQ @

[lpha]False

 $\neg \alpha$

 $\begin{array}{c} [\alpha] \\ \alpha_2 \\ \alpha_3 \\ \text{False} \end{array}$

 $\neg \alpha$

Example: $\alpha \lor \neg \alpha$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

 $\begin{array}{c} [\alpha] \\ \alpha_2 \\ \alpha_3 \\ \text{False} \end{array}$

 $\neg \alpha$

Example: $\alpha \lor \neg \alpha$ 1. $[\neg(\alpha \lor \neg \alpha)]$

assumption

 $\begin{array}{c} [\alpha] \\ \alpha_2 \\ \alpha_3 \\ \text{False} \end{array}$

 $\neg \alpha$

Exampl	e: $\alpha \vee \neg \alpha$		
1.	$[\neg(\alpha \lor \neg \alpha)]$		assumption
2.		$[\alpha]$	assumption

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

 $\left[lpha
ight] lpha _{2} lpha _{3} \ {
m False}$

 $\neg \alpha$

Example: $\alpha \lor \neg \alpha$		
1. $[\neg(\alpha \lor \neg \alpha)]$	α)]	assumption
2.	$[\alpha]$	assumption
3.	$\alpha \vee \neg \alpha$	\lor introduction, from line 2

 $\begin{bmatrix} \alpha \end{bmatrix}$ α_2 α_3 False

 $\neg \alpha$

Example	: $\alpha \lor \neg \alpha$		
1.	$[\neg(\alpha \lor \neg \alpha)]$		assumption
2.		$[\alpha]$	assumption
3.		$\alpha \vee \neg \alpha$	\lor introduction, from line 2
4.		False	contradiction, from lines 1 and 3

 $\left[lpha
ight] lpha _{2} lpha _{3} \ {
m False}$

 $\neg \alpha$

Examp	le: $\alpha \lor \neg \alpha$		
1.	$[\neg(\alpha \lor \neg \alpha)]$		assumption
2.		$[\alpha]$	assumption
3.		$\alpha \vee \neg \alpha$	\lor introduction, from line 2
4.		False	contradiction, from lines 1 and 3
5.	$\neg \alpha$		reduction to absurdity, from lines 2 and 4 $$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

 $\begin{bmatrix} \alpha \end{bmatrix}$ α_2 α_3 False

 $\neg \alpha$

Example:	$\alpha \vee \neg \alpha$		
1.	$[\neg(\alpha \lor \neg \alpha)]$		assu
2.		$[\alpha]$	assu
3.		$\alpha \vee \neg \alpha$	∨in
4.		False	cont
5.	$\neg \alpha$		redu
6.	$\neg \alpha \lor \alpha$		∨ in

assumption assumption ∨ introduction, from line 2 contradiction, from lines 1 and 3 reduction to absurdity, from lines 2 and 4 ∨ introduction, from line 5

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

 $\begin{array}{c} [\alpha] \\ \alpha_2 \\ \alpha_3 \\ \text{False} \end{array}$

 $\neg \alpha$

Exampl	e: $\alpha \lor \neg \alpha$		
1.	$[\neg(\alpha \lor \neg \alpha)]$		assumption
2.		$[\alpha]$	assumption
3.		$\alpha \vee \neg \alpha$	∨ introduction, from line 2
4.		False	contradiction, from lines 1 and 3
5.	$\neg \alpha$		reduction to absurdity, from lines
6.	$\neg \alpha \lor \alpha$		\lor introduction, from line 5
7.	False		contradiction, from lines 1 and 6

2 and 4

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

 $\begin{array}{c} [\alpha] \\ \alpha_2 \\ \alpha_3 \\ \text{False} \end{array}$

 $\neg \alpha$

Example:	$\alpha \vee \neg \alpha$	
1.	$[\neg(\alpha \lor \neg \alpha)]$	
2.		$[\alpha]$
3.		$\alpha \vee \neg$
4.		False
5.	$\neg \alpha$	
6.	$\neg \alpha \lor \alpha$	
7.	False	
8. ¬¬($\alpha \vee \neg \alpha$)	

assumption assumption $\neg \alpha$ \lor introduction, from line 2 e contradiction, from lines 1 and 3 reduction to absurdity, from lines 2 and 4 \lor introduction, from line 5 contradiction, from lines 1 and 6 reduction to absurdity, from lines 1 and 7

 $\begin{array}{c} [\alpha] \\ \alpha_2 \\ \alpha_3 \\ \text{False} \end{array}$

 $\neg \alpha$

Example:	$\alpha \vee \neg \alpha$	
1.	$[\neg(\alpha \lor \neg \alpha)]$	
2.		$[\alpha]$
3.		$\alpha \vee \neg \alpha$
4.		False
5.	$\neg \alpha$	
6.	$\neg \alpha \lor \alpha$	
7.	False	
8. ¬¬($\alpha \lor \neg \alpha$)	
9. $\alpha \vee $	$\neg \alpha$	

assumption assumption \lor introduction, from line 2 contradiction, from lines 1 and 3 reduction to absurdity, from lines 2 and 4 \lor introduction, from lines 1 and 6 reduction to absurdity, from lines 1 and 7 double negation, from line 8

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

11.
$$(\neg(a \lor b)) \rightarrow (\neg a \land \neg b)$$

1. $[\neg(a \lor b)]$ assumption

10.
$$\neg a \land \neg b$$

11. $(\neg (a \lor b)) \rightarrow (\neg a \land \neg b)$ implication introduction

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

1.
$$[\neg(a \lor b)]$$
assumption2. $[a]$ assumption

10.
$$\neg a \land \neg b$$

11. $(\neg(a \lor b)) \to (\neg a \land \neg b)$ implication introduction

1.
$$[\neg(a \lor b)]$$
assumption2. $[a]$ assumption3. $a \lor b$ \lor introduction, line 2

10.
$$\neg a \land \neg b$$

11. $(\neg(a \lor b)) \to (\neg a \land \neg b)$ implication introduction

1. $[\neg(a \lor b)]$ assumption2.[a]assumption3. $a \lor b$ \lor introduction, line 24.Falsecontradiction, lines 1 and 3

10.
$$\neg a \land \neg b$$

11. $(\neg(a \lor b)) \to (\neg a \land \neg b)$ implication introduction

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

1. $[\neg(a \lor b)]$ assumption2.[a]assumption3. $a \lor b$ \lor introduction, line 24.Falsecontradiction, lines 1 and 35. $\neg a$ reduction to absurdity, lines 2 and 4

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

10.
$$\neg a \land \neg b$$

11. $(\neg (a \lor b)) \rightarrow (\neg a \land \neg b)$ implication introduction

1. 2.	$[eg(a \lor b)]$ [a]	assumption assumption
3.	$a \lor b$	\vee introduction, line 2
4.	False	contradiction, lines 1 and 3
5.	$\neg a$	reduction to absurdity, lines 2 and 4
6.	[<i>b</i>]	assumption

$$\begin{array}{ll} 10. & \neg a \wedge \neg b \\ 11. & (\neg(a \lor b)) \to (\neg a \wedge \neg b) & \text{ implication introduction} \end{array}$$

1.	$[\neg(a \lor b)]$	assumption
2.	[a]	assumption
3.	$a \lor b$	∨ introduction, line 2
4.	False	contradiction, lines 1 and 3
5.	$\neg a$	reduction to absurdity, lines 2 and 4
6.	[<i>b</i>]	assumption
7.	$a \lor b$	\lor introduction, line 6

10.
$$\neg a \land \neg b$$

11. $(\neg (a \lor b)) \rightarrow (\neg a \land \neg b)$ implication introduction

1. 2. 3. 4. 5. 6. 7. 8.	¬ <i>a</i>	[a] a∨b False [b]	assumption assumption ∨ introduction, line 2 contradiction, lines 1 and 3 reduction to absurdity, lines 2 and 4 assumption ∨ introduction, line 6 contradiction, lines 1 and 7
10.	$\neg a \land \neg b$		

10.
$$\neg a \land \neg b$$

11. $(\neg(a \lor b)) \to (\neg a \land \neg b)$ implication introduction

1.	$[\neg(a \lor b)$]	assumption
2.		[a]	assumption
3.		$a \lor b$	\lor introduction, line 2
4.		False	contradiction, lines 1 and 3
5.	$\neg a$		reduction to absurdity, lines 2 and 4
6.		[<i>b</i>]	assumption
7.		$a \lor b$	\lor introduction, line 6
8.		False	contradiction, lines 1 and 7
9.	$\neg b$		reduction to absurdity, lines 6 and 8
10.	$\neg a \land \neg b$,	
11. (¬	$(a \lor b)) ightarrow (\neg a$	$\wedge \neg b$)	implication introduction

1.	$[\neg(a \lor b)]$		assumption
2.	,	[a]	assumption
3.		$a \lor b$	∨ introduction, line 2
4.		False	contradiction, lines 1 and 3
5.	$\neg a$		reduction to absurdity, lines 2 and 4
6.		[<i>b</i>]	assumption
7.		$a \lor b$	\lor introduction, line 6
8.		False	contradiction, lines 1 and 7
9.	$\neg b$		reduction to absurdity, lines 6 and 8
10.	$\neg a \land \neg b$	5	\wedge introduction, lines 5 and 9
11. (¬($a \lor b)) ightarrow (\neg a$	$\land \neg b$)	implication introduction

$\neg p \vdash p \rightarrow q$

Any tautology *could* be listed as an inference rule: the choice is arbitrary.

<□ > < @ > < E > < E > E のQ @

$\neg p \vdash p \rightarrow q$

Any tautology *could* be listed as an inference rule: the choice is arbitrary. We limit our set for the sake of the exercise.

$eg p \vdash p ightarrow q$

Any tautology *could* be listed as an inference rule: the choice is arbitrary. We limit our set for the sake of the exercise.

If I were to add one more, it would be this one:

 $\neg p$

p
ightarrow q

$\neg p \vdash p \rightarrow q$

Any tautology *could* be listed as an inference rule: the choice is arbitrary. We limit our set for the sake of the exercise.

If I were to add one more, it would be this one:

 $\neg p$

p
ightarrow q

We will NOT add this inference rule. Instead, we will frequently use the following sub-proof.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

 $eg p \vdash p
ightarrow q$

Any tautology *could* be listed as an inference rule: the choice is arbitrary. We limit our set for the sake of the exercise.

If I were to add one more, it would be this one:

 $\neg p$

p
ightarrow q

We will NOT add this inference rule. Instead, we will frequently use the following sub-proof.

1. ¬*p* given

6. $p \rightarrow q$

Any tautology *could* be listed as an inference rule: the choice is arbitrary. We limit our set for the sake of the exercise.

If I were to add one more, it would be this one:

 $\neg p$

p
ightarrow q

We will NOT add this inference rule. Instead, we will frequently use the following sub-proof.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

1. <i>¬p</i> 2.	[<i>p</i>]	given assumption

5. q6. $p \rightarrow q$

Any tautology *could* be listed as an inference rule: the choice is arbitrary. We limit our set for the sake of the exercise.

If I were to add one more, it would be this one:

 $\neg p$

p
ightarrow q

We will NOT add this inference rule. Instead, we will frequently use the following sub-proof.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

1. <i>¬p</i> 2. 3.	[<i>p</i>]	$[\neg q]$	given assumption assumption
5. 6. $p \rightarrow q$	q		

Any tautology *could* be listed as an inference rule: the choice is arbitrary. We limit our set for the sake of the exercise.

If I were to add one more, it would be this one:

 $\neg p$

p
ightarrow q

We will NOT add this inference rule. Instead, we will frequently use the following sub-proof.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

1. $\neg p$ given2. [p]assumption3. $[\neg q]$ assumption4. Falsecontradiction, lines 1 and 2.5. q6. $p \rightarrow q$

Any tautology *could* be listed as an inference rule: the choice is arbitrary. We limit our set for the sake of the exercise.

If I were to add one more, it would be this one:

 $\neg p$

p
ightarrow q

We will NOT add this inference rule. Instead, we will frequently use the following sub-proof.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

1. $\neg p$			given
2.	[p]		assumption
3.		$[\neg q]$	assumption
4.		False	contradiction, lines 1 and 2.
5.	q		reduction to absurdity, lines 3 and 4.
6. $p \rightarrow$	q		

Any tautology *could* be listed as an inference rule: the choice is arbitrary. We limit our set for the sake of the exercise.

If I were to add one more, it would be this one:

 $\neg p$

p
ightarrow q

We will NOT add this inference rule. Instead, we will frequently use the following sub-proof.

1. $\neg p$			given
2.	[p]		assumption
3.		$[\neg q]$	assumption
4.		False	contradiction, lines 1 and 2.
5.	q		reduction to absurdity, lines 3 and 4.
6. $p ightarrow q$			implication introduction, lines 2 and 5.

Any tautology *could* be listed as an inference rule: the choice is arbitrary. We limit our set for the sake of the exercise.

If I were to add one more, it would be this one:

 $\neg p$

p
ightarrow q

We will NOT add this inference rule. Instead, we will frequently use the following sub-proof.

1.	$\neg p$			given
2.		[p]		assumption
3.			$[\neg q]$	assumption
4.			False	contradiction, lines 1 and 2.
5.		q		reduction to absurdity, lines 3 and 4.
6.	p ightarrow q			implication introduction, lines 2 and 5.
Not	e: <i>¬p</i> r	neans	that $p ightarrow$	anything!
	e: ¬pr ¬p	neans	that $p ightarrow$	anything! given
	$\neg p$	neans [<i>p</i>]	that $p ightarrow$, .
1.	$\neg p$			given
1. 2.	$\neg p$,	given assumption
1. 2. 3.	$\neg p$		[q]	given assumption assumption

 $((p \lor q) \land \neg p) \to q$

$[(p \lor q) \land \neg p]$ assumption

$$((p \lor q) \land \neg p) o q$$

 $\rightarrow \text{introduction}$

$[(p \lor q) \land \neg p]$	assumption
$p \lor q$	\land elimination

$$q \ ((p \lor q) \land \neg p) o q$$

 $\rightarrow \text{introduction}$

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

$[(p \lor q) \land \neg p]$	assumption
$p \lor q$	\land elimination
$\neg p$	\land elimination

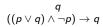
$$q \ ((p \lor q) \land \neg p) o q$$

 \rightarrow introduction

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

$[(p \lor q) \land \neg p]$	assumption
$p \lor q$	\land elimination
$\neg p$	\land elimination

p
ightarrow q



 $\rightarrow \text{introduction}$

<□ > < @ > < E > < E > E のQ @

 $((p \lor$

$egin{array}{lll} (p ee q) \land eg p \ p ee q \ eg p \ ee q \ eg p \ ee q \ eg p \ ee q \ ee \ ee $	assumption ∧ elimination ∧ elimination
p ightarrow q	
q ightarrow q	
q	
$(q) \land \neg p) ightarrow q$	ightarrow introduction

・ロト ・ 日 ・ ・ 田 ・ ・ 日 ・ うへぐ

$egin{array}{l} (p ee q) \land eg p \ p ee q \end{array} egin{array}{l} p ee q \end{array}$	assumption \land elimination
$\neg p$	\wedge elimination
p ightarrow q	
p / q	
$egin{array}{c} q ightarrow q \ q \ q \end{array}$	case analysis
$q \ ((p \lor q) \land \neg p) o q$	\rightarrow introduction

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

$[(p \lor q) \land \neg p]$	assumption
$p \lor q$	\land elimination
$\neg p$	\land elimination
[p]	assumption

p
ightarrow q

$$egin{array}{c} q
ightarrow q \ q \ ((p \lor q) \land \neg p)
ightarrow q \end{array}$$

case analysis \rightarrow introduction

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

	assumption
	\land elimination
	\land elimination
	assumption
$[\neg q]$	assumption
	$[\neg q]$

$$egin{array}{c} q
ightarrow q \ q \ ((p \lor q) \land \neg p)
ightarrow q \end{array}$$

 $\begin{array}{l} \mathsf{case \ analysis} \\ \to \ \mathsf{introduction} \end{array}$

<□ > < @ > < E > < E > E のQ @

$[(p \lor q) \land \neg p]$		assumption
$p \lor q$		\land elimination
$\neg p$		\land elimination
[p]		assumption
	$[\neg q]$	assumption
	False	contradiction

p
ightarrow q

 $egin{array}{c} q
ightarrow q \ q \ ((p ee q) \wedge
eg p)
ightarrow q) \end{array}$

 $\begin{array}{l} \mathsf{case \ analysis} \\ \to \ \mathsf{introduction} \end{array}$

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

$[(p \lor q) \land \neg p]$		assumption
$p \lor q$		\land elimination
$\neg p$		\land elimination
[p]		assumption
	$[\neg q]$	assumption
	False	contradiction
$ eg \neg \neg q$		reduction to absurdity

p
ightarrow q

 $egin{array}{c} q
ightarrow q \ q \ ((p ee q) \wedge
eg p)
ightarrow q) \end{array}$

 $\begin{array}{l} \mathsf{case \ analysis} \\ \to \ \mathsf{introduction} \end{array}$

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

$[(p \lor q)$	$\land \neg p]$		assumption
$p \lor q$			∧ elimination
$\neg p$			\land elimination
	[<i>p</i>]		assumption
		$[\neg q]$	assumption
		False	contradiction
	$\neg \neg q$		reduction to absurdity
	q		$\neg \neg$ elimination
p ightarrow q			

 $egin{array}{c} q
ightarrow q \ ((p ee q) \wedge
eg p)
ightarrow q) \end{array}$

 $\begin{array}{l} \mathsf{case \ analysis} \\ \to \ \mathsf{introduction} \end{array}$

$[(p \lor q)$	$\land \neg p]$		assumption
$p \lor q$			\land elimination
$\neg p$			\land elimination
	[<i>p</i>]		assumption
		$[\neg q]$	assumption
		False	contradiction
	$\neg \neg q$		reduction to absurdity
	q		$\neg \neg$ elimination
p ightarrow q			ightarrow introduction

 $egin{array}{c} q
ightarrow q \ q \ ((p ee q) \wedge
eg p)
ightarrow q \end{array}$

 $\begin{array}{l} \mathsf{case \ analysis} \\ \to \ \mathsf{introduction} \end{array}$

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

$[(p \lor q)$	$\land \neg p]$		assumption
$p \lor q$			\wedge elimination
$\neg p$			\wedge elimination
	[<i>p</i>]		assumption
		$[\neg q]$	assumption
		False	contradiction
	$\neg \neg q$		reduction to absurdity
	q		$\neg \neg$ elimination
p ightarrow q			ightarrow introduction
	[q]		assumption

$$egin{array}{c} q
ightarrow q \ q \ ((p ee q) \wedge
eg p)
ightarrow q \end{array}$$

 $\begin{array}{l} \mathsf{case \ analysis} \\ \to \ \mathsf{introduction} \end{array}$

<□ > < @ > < E > < E > E のQ @

[(p ee q) eq p ee q)	\ ¬ <i>p</i>]		assumption \land elimination
$\neg p$			\land elimination
	[p]		assumption
		$[\neg q]$	assumption
		False	contradiction
	$\neg \neg q$		reduction to absurdity
	q		$\neg \neg$ elimination
p ightarrow q			\rightarrow introduction
	[q]		assumption
	q		
q ightarrow q			
q			case analysis
$((p \lor q) \land \neg p) \to c$	7		ightarrow introduction

$egin{aligned} & \left(\left(p \lor q ight) ight) \ & p \lor q \ & onumber \ $	\ ¬p] [p] ¬¬q q [q]	[¬ <i>q</i>] False	assumption ∧ elimination ∧ elimination assumption assumption contradiction reduction to absurdity ¬¬ elimination → introduction assumption
	q		
$egin{array}{c} q ightarrow q \ q \ ((p ee q) \wedge eg p) ightarrow q \end{array}$,		\rightarrow introduction case analysis \rightarrow introduction

$$(p
ightarrow q) \leftrightarrow (\neg p \lor q)$$

$$(\neg p \lor q) \to (p \to q)$$

$$(p
ightarrow q)
ightarrow (\neg p \lor q) (\neg p \lor q) (\neg p \lor q)$$

 $\leftrightarrow \text{ introduction}$

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

 $[\neg p \lor q]$

 $p \to q$ $(\neg p \lor q) \to (p \to q) \to \text{introduction}$

 $(p
ightarrow q)
ightarrow (\neg p \lor q) \ (p
ightarrow q)
ightarrow (\neg p \lor q)$

 $\leftrightarrow \, \text{introduction}$

assumption

$$(
eg p \lor q) o (p o q)$$

 \rightarrow introduction

 $(p
ightarrow q)
ightarrow (\neg p \lor q) (\neg p \lor q) (p
ightarrow q)
ightarrow (\neg p \lor q)$

 $\leftrightarrow \, \text{introduction}$

$$\begin{bmatrix} \neg p \lor q \end{bmatrix}$$
 assumption

$$\begin{bmatrix} p \\ p \end{bmatrix}$$
 assumption

$$\begin{bmatrix} p \\ p \end{bmatrix}$$
 assumption

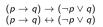
$$\begin{bmatrix} \neg q \\ p \end{bmatrix}$$
 assumption

$$\begin{bmatrix} \neg q \\ reduction to absurdity \\ q \\ p \rightarrow q \end{bmatrix}$$
 reduction to absurdity

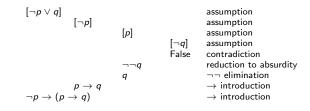
$$\begin{array}{c} \neg \neg q \\ p \rightarrow introduction \end{array}$$

$$(\neg p \lor q) o (p o q)$$

 $\rightarrow \text{ introduction}$



 $\leftrightarrow \, \text{introduction}$



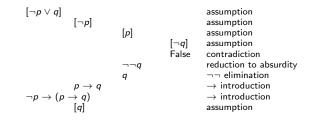
$$(
eg p
ightarrow q)
ightarrow (p
ightarrow q)$$

 \rightarrow introduction

$$(p
ightarrow q)
ightarrow (\neg p \lor q) \ (p
ightarrow q)
ightarrow (\neg p \lor q)$$

 $\leftrightarrow \, \text{introduction}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ



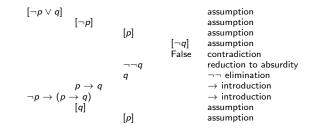
$$(
eg p \lor q) o (p o q)$$

 $\rightarrow \, \text{introduction}$

$$(p
ightarrow q)
ightarrow (\neg p \lor q) \ (p
ightarrow q)
ightarrow (\neg p \lor q)$$

 $\leftrightarrow \, \text{introduction}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

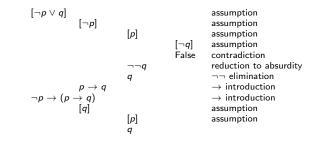


$$(\neg p \lor q) o (p o q)$$

 \rightarrow introduction

 $(p
ightarrow q)
ightarrow (\neg p \lor q) (p
ightarrow q)
ightarrow (\neg p \lor q)$

 $\leftrightarrow \, \text{introduction}$

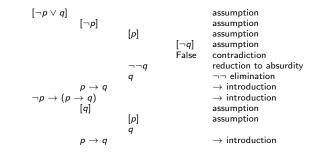


$$(\neg p \lor q)
ightarrow (p
ightarrow q)$$

 \rightarrow introduction

 $(p
ightarrow q)
ightarrow (\neg p \lor q) (p
ightarrow q)
ightarrow (\neg p \lor q)$

 $\leftrightarrow \, \text{introduction}$

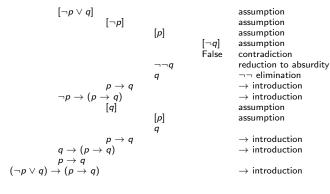


$$(
eg p \lor q) o (p o q)$$

 \rightarrow introduction

 $(p
ightarrow q)
ightarrow (\neg p \lor q) (\neg p \lor q) (p
ightarrow q) \leftrightarrow (\neg p \lor q)$

 $\leftrightarrow \text{ introduction}$



 $(p
ightarrow q)
ightarrow (\neg p \lor q) (\neg p \lor q) (\neg p \lor q)$

 $\leftrightarrow \text{ introduction}$

(*¬p*

$[eg p \lor q]$ [eg p]	[<i>p</i>]	[¬q] False	assumption assumption assumption assumption contradiction
$egin{array}{c} p ightarrow q \ eg p ightarrow q \ (p ightarrow q) \ [q] \end{array}$	ー <i>ー</i> q q	raise	reduction to absurdity $\neg \neg$ elimination \rightarrow introduction \rightarrow introduction
	[p] q		assumption assumption \rightarrow introduction \rightarrow introduction
$p ightarrow q ightarrow (p ightarrow q) \ p ightarrow q ightarrow (p ightarrow q) \ p ightarrow q ightarrow (p ightarrow q)$			case analysis \rightarrow introduction

 $(p
ightarrow q)
ightarrow (
eg p \lor q) \ (
eg p \lor q) \ \leftrightarrow (
eg p \lor q)$

 $\leftrightarrow \, \text{introduction}$

(*¬p*

$[\neg p \lor q]$ $[\neg p]$	[<i>p</i>]	[¬ <i>q</i>] False	assumption assumption assumption assumption contradiction
	$\neg \neg q$		reduction to absurdity
	q		¬¬ elimination
p ightarrow q			\rightarrow introduction
$egin{array}{c} p ightarrow q \ eg p ightarrow (p ightarrow q) \ [q] \end{array}$			\rightarrow introduction
[q]			assumption
	[p]		assumption
	a		
p ightarrow q	•		\rightarrow introduction
$p \rightarrow q$ $q \rightarrow (p \rightarrow q)$ $p \rightarrow q$ $p \rightarrow q$ $p \rightarrow q$			\rightarrow introduction
$p \rightarrow q$			case analysis
$(p \vee q) \rightarrow (p \rightarrow q)$			\rightarrow introduction
$p \lor q) o (p \to q) \ [p \to q]$			assumption

$$\begin{array}{c}
 \neg p \lor q \\
 (p \to q) \to (\neg p \lor q) \\
 (p \to q) \leftrightarrow (\neg p \lor q)
 \end{array}$$

 $\begin{array}{l} \rightarrow \text{ introduction} \\ \leftrightarrow \text{ introduction} \end{array}$

$[\neg ho \lor q]$ $[\neg ho]$	[<i>p</i>]	[¬q] False	assumption assumption assumption assumption contradiction
	$\neg \neg q$		reduction to absurdity
ho ightarrow q	q		$\neg \neg$ elimination \rightarrow introduction
$egin{array}{c} p ightarrow q \ eg p ightarrow q) \ [q] \end{array}$			ightarrow introduction
[q]	[<i>p</i>]		assumption assumption
	[P] 9		assumption
$p ightarrow q \ q ightarrow (p ightarrow q) \ p ightarrow q$			ightarrow introduction
q ightarrow (p ightarrow q) p ightarrow q			\rightarrow introduction case analysis
$p ightarrow q (eg p \lor q) ightarrow (p ightarrow q) = (p ightarrow q) \ [p ightarrow q] \ p \lor eg p$			\rightarrow introduction assumption tautology

 $egin{aligned} &
egin{aligned} &
egi$

 $\begin{array}{l} \rightarrow \text{ introduction} \\ \leftrightarrow \text{ introduction} \end{array}$

$[\neg p \lor q]$ $[\neg p]$	[₽]	[¬q] False	assumption assumption assumption assumption contradiction
	$\neg \neg q$		reduction to absurdity
$p \rightarrow q$	q		$\neg \neg$ elimination \rightarrow introduction
$egin{array}{c} p ightarrow q \ eg p ightarrow (p ightarrow q) \ [q] \end{array}$	7		\rightarrow introduction
[q]			assumption
	[p]		assumption
p ightarrow c	q		\rightarrow introduction
q ightarrow (p ightarrow q)			ightarrow introduction
$(eg p ee q) egin{array}{c} p ightarrow q \ (p ee q) ightarrow (p ightarrow q) \ [p ightarrow q] \end{array}$			case analysis
$(\neg p \lor q) \rightarrow (p \rightarrow q)$			\rightarrow introduction assumption
$ \begin{array}{c} [p \rightarrow q] \\ p \lor \neg p \end{array} $			tautology
[p]			assumption

 $egin{aligned} &
egin{aligned} &
egi$

 $\begin{array}{l} \rightarrow \text{ introduction} \\ \leftrightarrow \text{ introduction} \end{array}$

$[\neg p \lor q]$	[¬ <i>p</i>]	[p]	[¬q] False	assumption assumption assumption contradiction reduction to absurdity
		$\neg \neg q$		¬¬ elimination
eg p ightarrow (p -	$egin{array}{c} p ightarrow q \ ightarrow q) \ [q] \end{array}$	Ч		\rightarrow introduction \rightarrow introduction assumption
		[p]		assumption
		9		
q ightarrow (p ightarrow p ightarrow q	$p \rightarrow q$ q)			\rightarrow introduction \rightarrow introduction
(eg p ightarrow q) ightarrow (p ightarrow q) ightarrow (p ightarrow q) [p ightarrow q]	.,			case analysis \rightarrow introduction
[p ightarrow q] $p \lor \neg p$				assumption tautology
, ,	[<i>p</i>]			assumption
	q			modus ponens

 $egin{aligned} &
egin{aligned} &
egi$

 $\begin{array}{l} \rightarrow \text{ introduction} \\ \leftrightarrow \text{ introduction} \end{array}$

 $[\neg p \lor q]$ assumption $[\neg p]$ assumption [p]assumption $[\neg q]$ assumption False contradiction reduction to absurdity $\neg \neg q$ $\neg \neg$ elimination q $egin{array}{c} p
ightarrow q \
eg p
ightarrow q) \ [q] \end{array}$ \rightarrow introduction \rightarrow introduction assumption [p] assumption $p \rightarrow q$ $q \rightarrow (p \rightarrow q)$ $p \rightarrow q$ $(\neg p \lor q) \rightarrow (p \rightarrow q)$ $[p \rightarrow q]$ $p \lor -r$ q \rightarrow introduction \rightarrow introduction case analysis \rightarrow introduction assumption tautology $[p] \\ q \\ q \lor \neg p$ assumption modus ponens ∨ introduction

 $egin{aligned}
end{aligned}
end{aligned}
& (p
ightarrow q)
ightarrow (\neg p \lor q)
ightarrow$

 $\begin{array}{l} \rightarrow \mbox{ introduction} \\ \leftrightarrow \mbox{ introduction} \end{array}$

 $[\neg p \lor q]$ assumption $[\neg p]$ assumption [p]assumption $[\neg q]$ assumption False contradiction reduction to absurdity $\neg \neg q$ $\neg \neg$ elimination q $egin{array}{c} p
ightarrow q \
eg p
ightarrow q) \ [q] \end{array}$ \rightarrow introduction \rightarrow introduction assumption [p] assumption q $p \rightarrow q$ $q \rightarrow (p \rightarrow q)$ $p \rightarrow q$ $(\neg p \lor q) \rightarrow (p \rightarrow q)$ $[p \rightarrow q]$ $p \lor -r$ \rightarrow introduction \rightarrow introduction case analysis \rightarrow introduction assumption tautology $[p] \ q \ q \lor \neg p$ assumption modus ponens ∨ introduction $p \rightarrow (q \vee \neg p)$ \rightarrow introduction

 $egin{aligned}
eqn p & \lor q \\
(p
ightarrow q)
ightarrow (\neg p \lor q) \\
(p
ightarrow q) \leftrightarrow (\neg p \lor q)
egin{aligned}
equation (p
ightarrow q) \\
eqn (p
ightarrow q)
ightarrow (\neg p \lor q)
eqn (p
ightarrow q) \\
eqn (p
ightarrow q)
ightarrow (\neg p \lor q) \\
eqn (p
ightarrow q)
ightarrow (\neg p \lor q)
ightarrow (\neg p \lor q) \\
eqn (p
ightarrow q)
ightarrow (\neg p \lor q)
ightarr$

 $\begin{array}{l} \rightarrow \mbox{ introduction} \\ \leftrightarrow \mbox{ introduction} \end{array}$

 $[\neg p \lor q]$ $[\neg p]$ assumption assumption [p]assumption $[\neg q]$ assumption False contradiction reduction to absurdity $\neg \neg q$ $\neg \neg$ elimination q $egin{array}{c} p
ightarrow q \
eg p
ightarrow q) \ [q] \end{array}$ \rightarrow introduction \rightarrow introduction assumption [p] assumption p
ightarrow q q
ightarrow (p
ightarrow q) $(\neg p \lor q)
ightarrow (p
ightarrow q)$ [p
ightarrow q] $p \lor - \neg$ q \rightarrow introduction \rightarrow introduction case analysis \rightarrow introduction assumption tautology [p] assumption $p
ightarrow (q \lor \neg p) \ [\neg p]$ modus ponens ∨ introduction \rightarrow introduction assumption

 $p \lor q \ (p
ightarrow q)
ightarrow (\neg p \lor q) \ (\neg p \lor q) \ (p
ightarrow q)
ightarrow (\neg p \lor q)$

 $[\neg p \lor q]$ $[\neg p]$ assumption assumption [p]assumption $[\neg q]$ assumption False contradiction reduction to absurdity $\neg \neg q$ $\neg \neg$ elimination q $egin{array}{c} p
ightarrow q \
eg p
ightarrow q) \ [q] \end{array}$ \rightarrow introduction \rightarrow introduction assumption [p] assumption p
ightarrow q q
ightarrow (p
ightarrow q) $(\neg p \lor q)
ightarrow (p
ightarrow q)$ [p
ightarrow q] $p \lor - \neg$ q \rightarrow introduction \rightarrow introduction case analysis \rightarrow introduction assumption tautology [p] assumption $p
ightarrow (q \lor \neg p) \ [\neg p]$ modus ponens ∨ introduction \rightarrow introduction assumption $\neg p \lor a$ ∨ introduction

 $p \lor q \ (p
ightarrow q)
ightarrow (\neg p \lor q) \ (\neg p \lor q) \ (p
ightarrow q)
ightarrow (\neg p \lor q)$

 $\begin{array}{l} \rightarrow \mbox{ introduction} \\ \leftrightarrow \mbox{ introduction} \end{array}$

 $[\neg p \lor q]$ $[\neg p]$ assumption assumption [p]assumption $[\neg q]$ assumption False contradiction reduction to absurdity $\neg \neg q$ $\neg \neg$ elimination q \rightarrow introduction $egin{array}{c} p
ightarrow q \
eg p
ightarrow q) \ [q] \end{array}$ \rightarrow introduction assumption [p] assumption p
ightarrow q q
ightarrow (p
ightarrow q) $(\neg p \lor q)
ightarrow (p
ightarrow q)$ [p
ightarrow q] $p \lor - \neg$ q \rightarrow introduction \rightarrow introduction case analysis \rightarrow introduction assumption tautology [p] assumption $q \\ q \lor \neg p$ modus ponens ∨ introduction $p \rightarrow (q \lor \neg p)$ $[\neg p]$ $\neg p \lor q$ $\neg p \rightarrow (q \lor \neg p)$ $\neg p \lor q$ \rightarrow introduction assumption ∨ introduction \rightarrow introduction $(p \rightarrow q) \rightarrow (\neg p \lor q)$ \rightarrow introduction $(p \rightarrow q) \leftrightarrow (\neg p \lor q)$ \leftrightarrow introduction

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注目 のへ(?)

 $[\neg p \lor q]$ $[\neg p]$ assumption assumption [p]assumption $[\neg q]$ assumption False contradiction reduction to absurdity $\neg \neg q$ $\neg \neg$ elimination q \rightarrow introduction $egin{array}{c} p
ightarrow q \
eg p
ightarrow q) \ [q] \end{array}$ \rightarrow introduction assumption [p] assumption $p
ightarrow q (p
ightarrow q) \ q
ightarrow (p
ightarrow q) \ (
eg p \lor q)
ightarrow (p
ightarrow q) \ [p
ightarrow q] \ p \lor - p$ q \rightarrow introduction \rightarrow introduction case analysis \rightarrow introduction assumption tautology [p] assumption $q \\ q \lor \neg p$ modus ponens ∨ introduction $p \rightarrow (q \lor \neg p)$ $[\neg p]$ $\neg p \lor q$ $\neg p \rightarrow (q \lor \neg p)$ $\neg p \lor q$ \rightarrow introduction assumption ∨ introduction \rightarrow introduction case analysis $(p \rightarrow q) \rightarrow (\neg p \lor q)$ \rightarrow introduction $(p \rightarrow q) \leftrightarrow (\neg p \lor q)$ \leftrightarrow introduction

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで