Propositions are statements, that are either True or False. 5 > 3, Fish \subset Mammals

Propositions are statements, that are either True or False. 5 > 3, Fish \subset Mammals logical constants: $\mathcal{B} = \{\text{True}, \text{False}\}$

Propositions are statements, that are either True or False.

5 > 3, Fish \subset Mammals logical constants: $\mathcal{B} = \{$ True, False $\}$ logical variables: variable that can take on either True or False.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Propositions are statements, that are either True or False.

5 > 3, Fish \subset Mammals logical constants: $\mathcal{B} = \{$ True, False $\}$ logical variables: variable that can take on either True or False. logical operators (or functions): \land, \lor, \neg

Propositions are statements, that are either True or False. 5 > 3, Fish \subset Mammals logical constants: $\mathcal{B} = \{\text{True}, \text{False}\}$ logical variables: variable that can take on either True or False. logical operators (or functions): \land, \lor, \neg $\land : \mathcal{B} \times \mathcal{B} \rightarrow \mathcal{B}$

Propositions are statements, that are either True or False.

 $\begin{array}{l} 5>3, \mbox{ Fish }\subset \mbox{ Mammals} \\ \mbox{ logical constants: } \mathcal{B} = \{\mbox{ True, False}\} \\ \mbox{ logical variables: variable that can take on either True or False. } \\ \mbox{ logical operators (or functions): } \land, \lor, \neg \\ \land : \mathcal{B} \times \mathcal{B} \rightarrow \mathcal{B} \\ \land (\mbox{ True, True}) = \mbox{ True. } \end{array}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

Propositions are statements, that are either True or False. 5 > 3, Fish \subset Mammals logical constants: $\mathcal{B} = \{\text{True}, \text{False}\}$ logical variables: variable that can take on either True or False. logical operators (or functions): \land, \lor, \neg $\land : \mathcal{B} \times \mathcal{B} \rightarrow \mathcal{B}$ $\land (\text{True}, \text{True}) = \text{True}.$

Syntactic structure of a proposition

- 1. Each of the logical constants is a proposition
- 2. Logical variables are propositions
- 3. If α and β are propositions, then so are $(\alpha \land \beta), (\alpha \lor \beta)$ and $\neg \alpha$.

4. Nothing else is a proposition.

Propositions are statements, that are either True or False. 5 > 3, Fish \subset Mammals logical constants: $\mathcal{B} = \{\text{True}, \text{False}\}$ logical variables: variable that can take on either True or False. logical operators (or functions): \land, \lor, \neg $\land : \mathcal{B} \times \mathcal{B} \rightarrow \mathcal{B}$ $\land (\text{True}, \text{True}) = \text{True}.$

Syntactic structure of a proposition

- 1. Each of the logical constants is a proposition
- 2. Logical variables are propositions
- 3. If α and β are propositions, then so are $(\alpha \land \beta), (\alpha \lor \beta)$ and $\neg \alpha$.
- 4. Nothing else is a proposition.

Example (item 3) If $\alpha = p$ and $\beta = (q \wedge r)$, then $(\alpha \lor \beta)$ becomes $(p \lor (q \land r))$.

Propositions are statements, that are either True or False. 5 > 3, Fish \subset Mammals logical constants: $\mathcal{B} = \{\text{True}, \text{False}\}$ logical variables: variable that can take on either True or False. logical operators (or functions): \land, \lor, \neg $\land : \mathcal{B} \times \mathcal{B} \rightarrow \mathcal{B}$ $\land (\text{True}, \text{True}) = \text{True}.$

Syntactic structure of a proposition

- 1. Each of the logical constants is a proposition
- 2. Logical variables are propositions
- 3. If α and β are propositions, then so are $(\alpha \land \beta), (\alpha \lor \beta)$ and $\neg \alpha$.
- 4. Nothing else is a proposition.

Example (item 3) If $\alpha = p$ and $\beta = (q \wedge r)$, then $(\alpha \lor \beta)$ becomes $(p \lor (q \land r))$.

 \neg has precedence over \land which has precedence over \lor : So, $\neg p \lor q \land r$ is the same as $(\neg p) \lor (q \land r)$. (But we'll use parenthesis to avoid confusion.)

Expression Trees and Truth Tables

		~	~	n A a	$(p \land q) \lor r)$	$\neg((p \land q) \lor r)$
	р	q	1	$p \wedge q$	(, ,	$\neg((p \land q) \lor r)$
	False	False	False	False	False	True
	False	False	True	False	True	False
	False	True	False	False	False	True
ble:	False	True	True	False	True	False
	True	False	False	False	False	True
	True	False	True	False	True	False
	True	True	False	True	True	False
	True	True	True	True	True	False

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Truth Table

Two propositions are equivalent, if they have the same truth table. That is, for every variable state, the propositions have the same "output"

Two propositions are equivalent, if they have the same truth table. That is, for every variable state, the propositions have the same "output" $\neg(p \lor q) \equiv \neg p \land \neg q$

Two propositions are equivalent, if they have the same truth table. That is, for every variable state, the propositions have the same "output" $\neg(p \lor q) \equiv \neg p \land \neg q$ Intuitively: Left side says "it is **not** the case that *p* **or** *q* is true." Right side says "*p* is false **and** *q* is false."

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Two propositions are equivalent, if they have the same truth table. That is, for every variable state, the propositions have the same "output" $\neg(p \lor q) \equiv \neg p \land \neg q$

Intuitively: Left side says "it is **not** the case that p or q is true."

p	q	$p \lor q$	$\neg(p \lor q)$	$\neg p$	$\neg q$	$ eg p \land eg q$
False	False	False	True	True	True	True
False	True	True	False	True	False	False
True	False	True	False	False	True	False
True	True	True	False	False	False	False

Right side says "p is false and q is false."

Two propositions are equivalent, if they have the same truth table. That is, for every variable state, the propositions have the same "output" $\neg(p \lor q) \equiv \neg p \land \neg q$

Intuitively: Left side says "it is **not** the case that p or q is true."

р	q	$p \lor q$	$\neg(p \lor q)$	$\neg p$	$\neg q$	$ eg p \land eg q$
False	False	False	True	True	True	True
False	True	True	False	True	False	False
True	False	True	False	False	True	False
True	True	True	False	False	False	False

Right side says "p is false and q is false."

"": is different from "="

Two propositions are equivalent, if they have the same truth table. That is, for every variable state, the propositions have the same "output" $\neg(p \lor q) \equiv \neg p \land \neg q$

Intuitively: Left side says "it is **not** the case that p or q is true."

р	q	$p \lor q$	$\neg(p \lor q)$	$\neg p$	$\neg q$	$ eg p \land eg q$
False	False	False	True	True	True	True
False	True	True	False	True	False	False
True	False	True	False	False	True	False
True	True	True	False	False	False	False

Right side says "p is false and q is false."

" \equiv " is different from "="

Consider 3x + 2 = 11. Is this true for every "state" of x?

Two propositions are equivalent, if they have the same truth table. That is, for every variable state, the propositions have the same "output" $\neg(p \lor q) \equiv \neg p \land \neg q$

Intuitively: Left side says "it is **not** the case that p or q is true."

р	q	$p \lor q$	$ eg(p \lor q)$	$\neg p$	$\neg q$	$ eg p \land eg q$
False	False	False	True	True	True	True
False	True	True	False	True	False	False
True	False	True	False	False	True	False
True	True	True	False	False	False	False

Right side says "p is false and q is false."

" \equiv " is different from "="

Consider 3x + 2 = 11. Is this true for every "state" of x? NO! Only when x = 3.

Two propositions are equivalent, if they have the same truth table. That is, for every variable state, the propositions have the same "output" $\neg(p \lor q) \equiv \neg p \land \neg q$

Intuitively: Left side says "it is **not** the case that p or q is true."

р	q	$p \lor q$	$\neg(p \lor q)$	$\neg p$	$\neg q$	$ eg p \land eg q$
False	False	False	True	True	True	True
False	True	True	False	True	False	False
True	False	True	False	False	True	False
True	True	True	False	False	False	False

Right side says "p is false and q is false."

" \equiv " is different from "="

Consider 3x + 2 = 11. Is this true for every "state" of x? NO! Only when x = 3. Consider $3x + 2 = 11 \equiv 3x = 9$.

Law of negation:

 $\neg \neg \alpha \equiv \alpha$

Combining a variable with itself:

$\alpha \lor \neg \alpha \equiv \text{TRUE}$	Excluded middle
$\alpha \land \neg \alpha \equiv \text{FALSE}$	Contradiction
$\alpha \vee \alpha \equiv \alpha$	Idempotence of \vee
$\alpha \wedge \alpha \equiv \alpha$	Idempotence of \land

Properties of constants:

 $\begin{array}{l} \alpha \lor \mathrm{TRUE} \equiv \mathrm{TRUE} \\ \alpha \lor \mathrm{FALSE} \equiv \alpha \\ \alpha \land \mathrm{TRUE} \equiv \alpha \\ \alpha \land \mathrm{FALSE} \equiv \mathrm{FALSE} \end{array}$

Law of negation:

 $\neg \neg \alpha \equiv \alpha$

Combining a variable with itself:

$\alpha \lor \neg \alpha \equiv \text{TRUE}$	Excluded middle
$\alpha \land \neg \alpha \equiv \text{FALSE}$	Contradiction
$\alpha \vee \alpha \equiv \alpha$	Idempotence of \vee
$\alpha \wedge \alpha \equiv \alpha$	Idempotence of \land

Properties of constants:

 $\begin{array}{l} \alpha \lor \mathrm{TRUE} \equiv \mathrm{TRUE} \\ \alpha \lor \mathrm{FALSE} \equiv \alpha \\ \alpha \land \mathrm{TRUE} \equiv \alpha \\ \alpha \land \mathrm{FALSE} \equiv \mathrm{FALSE} \end{array}$

Commutativity:

 $\begin{array}{l} \alpha \land \beta \equiv \beta \land \alpha \\ \alpha \lor \beta \equiv \beta \lor \alpha \end{array}$

Associativity:

 $\begin{array}{l} \alpha \lor (\beta \lor \gamma) \equiv (\alpha \lor \beta) \lor \gamma \\ \alpha \land (\beta \land \gamma) \equiv (\alpha \land \beta) \land \gamma \end{array}$

Distributivity:

 $\begin{array}{l} \alpha \lor (\beta \land \gamma) \equiv (\alpha \lor \beta) \land (\alpha \lor \gamma) \\ \alpha \land (\beta \lor \gamma) \equiv (\alpha \land \beta) \lor (\alpha \land \gamma) \end{array}$

DeMorgan's Laws:

$$\neg (\alpha \land \beta) \equiv \neg \alpha \lor \neg \beta$$
$$\neg (\alpha \lor \beta) \equiv \neg \alpha \land \neg \beta$$

Subsumption:

 $\begin{array}{l} \alpha \wedge (\alpha \vee \beta) \equiv \alpha \\ \alpha \vee (\alpha \wedge \beta) \equiv \alpha \end{array}$

Given the following equivalence laws:

 $\begin{array}{ll} \alpha \lor (\alpha \land \beta) \equiv \alpha & (\text{2nd Subsumption}) \\ \alpha \land \alpha \equiv \alpha & (\text{Idempotence of } \land) \\ \alpha \land (\beta \lor \gamma) \equiv (\alpha \land \beta) \lor (\alpha \land \gamma) & (\text{2nd Distributivity}) \end{array}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Given the following equivalence laws:

$\alpha \lor (\alpha \land \beta) \equiv \alpha$	(2nd Subsumption)
$\alpha \wedge \alpha \equiv \alpha$	(Idempotence of \land)
$\alpha \land (\beta \lor \gamma) \equiv (\alpha \land \beta) \lor (\alpha \land \gamma)$	(2nd Distributivity)

We'll prove the 1st Subsumption law: $\alpha \land (\alpha \lor \beta) \equiv \alpha$

Given the following equivalence laws:

 $\begin{array}{ll} \alpha \lor (\alpha \land \beta) \equiv \alpha & (\text{2nd Subsumption}) \\ \alpha \land \alpha \equiv \alpha & (\text{Idempotence of } \land) \\ \alpha \land (\beta \lor \gamma) \equiv (\alpha \land \beta) \lor (\alpha \land \gamma) & (\text{2nd Distributivity}) \end{array}$

We'll prove the 1st Subsumption law: $\alpha \land (\alpha \lor \beta) \equiv \alpha$

 $\alpha \wedge (\alpha \vee \beta) \equiv (\alpha \wedge \alpha) \vee (\alpha \wedge \beta)$ (By Distributivity)

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Given the following equivalence laws:

 $\begin{array}{ll} \alpha \lor (\alpha \land \beta) \equiv \alpha & (\text{2nd Subsumption}) \\ \alpha \land \alpha \equiv \alpha & (\text{Idempotence of } \land) \\ \alpha \land (\beta \lor \gamma) \equiv (\alpha \land \beta) \lor (\alpha \land \gamma) & (\text{2nd Distributivity}) \end{array}$

We'll prove the 1st Subsumption law: $\alpha \land (\alpha \lor \beta) \equiv \alpha$

$\alpha \wedge (\alpha \vee \beta) \equiv (\alpha \wedge \alpha) \vee (\alpha \wedge \beta)$	(By Distributivity)
$\equiv \alpha \lor (\alpha \land \beta)$	(By Idempotence)

Given the following equivalence laws:

 $\begin{array}{ll} \alpha \lor (\alpha \land \beta) \equiv \alpha & (\text{2nd Subsumption}) \\ \alpha \land \alpha \equiv \alpha & (\text{Idempotence of } \land) \\ \alpha \land (\beta \lor \gamma) \equiv (\alpha \land \beta) \lor (\alpha \land \gamma) & (\text{2nd Distributivity}) \end{array}$

We'll prove the 1st Subsumption law: $\alpha \land (\alpha \lor \beta) \equiv \alpha$

$\alpha \wedge (\alpha \lor \beta) \equiv (\alpha \land \alpha) \lor (\alpha \land \beta)$	(By Distributivity)
$\equiv \alpha \lor (\alpha \land \beta)$	(By Idempotence)
$\equiv \alpha$	(By Subsumption)

Given the following equivalence laws:

 $\begin{array}{ll} \alpha \lor (\alpha \land \beta) \equiv \alpha & (\text{2nd Subsumption}) \\ \alpha \land \alpha \equiv \alpha & (\text{Idempotence of } \land) \\ \alpha \land (\beta \lor \gamma) \equiv (\alpha \land \beta) \lor (\alpha \land \gamma) & (\text{2nd Distributivity}) \end{array}$

We'll prove the 1st Subsumption law: $\alpha \land (\alpha \lor \beta) \equiv \alpha$

$\alpha \wedge (\alpha \vee \beta) \equiv (\alpha \wedge \alpha) \vee (\alpha \wedge \beta)$	(By Distributivity)
$\equiv \alpha \lor (\alpha \land \beta)$	(By Idempotence)
$\equiv \alpha$	(By Subsumption)

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Let's prove: $\neg((p \land q) \lor r) \equiv (\neg p \lor \neg q) \land \neg r$

Given the following equivalence laws:

 $\begin{array}{ll} \alpha \lor (\alpha \land \beta) \equiv \alpha & (2nd \ {\rm Subsumption}) \\ \alpha \land \alpha \equiv \alpha & ({\rm Idempotence \ of \ }) \\ \alpha \land (\beta \lor \gamma) \equiv (\alpha \land \beta) \lor (\alpha \land \gamma) & (2nd \ {\rm Distributivity}) \end{array}$

We'll prove the 1st Subsumption law: $\alpha \land (\alpha \lor \beta) \equiv \alpha$

$\alpha \wedge (\alpha \vee \beta) \equiv (\alpha \wedge \alpha) \vee (\alpha \wedge \beta)$	(By Distributivity)
$\equiv \alpha \lor (\alpha \land \beta)$	(By Idempotence)
$\equiv \alpha$	(By Subsumption)

Let's prove: $\neg((p \land q) \lor r) \equiv (\neg p \lor \neg q) \land \neg r$

 $\neg((p \land q) \lor r) \equiv \neg(p \land q) \land \neg r$

Given the following equivalence laws:

 $\begin{array}{ll} \alpha \lor (\alpha \land \beta) \equiv \alpha & (\text{2nd Subsumption}) \\ \alpha \land \alpha \equiv \alpha & (\text{Idempotence of } \land) \\ \alpha \land (\beta \lor \gamma) \equiv (\alpha \land \beta) \lor (\alpha \land \gamma) & (\text{2nd Distributivity}) \end{array}$

We'll prove the 1st Subsumption law: $\alpha \land (\alpha \lor \beta) \equiv \alpha$

$lpha \wedge (lpha ee eta) \equiv (lpha \wedge lpha) \lor (lpha \wedge eta)$	(By Distributivity)
$\equiv \alpha \lor (\alpha \land \beta)$	(By Idempotence)
$\equiv \alpha$	(By Subsumption)

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Let's prove: $\neg((p \land q) \lor r) \equiv (\neg p \lor \neg q) \land \neg r$

$$eglinetity \neg ((p \land q) \lor r) \equiv \neg (p \land q) \land \neg r \\ \equiv (\neg p \lor \neg q) \land \neg r$$

Consider the following function on two logical variables:

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Consider the following function on two logical variables:

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

If I tell you the function evaluates to True:

Consider the following function on two logical variables:

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

If I tell you the function evaluates to True:

what do you know about p and q?

Consider the following function on two logical variables:

If I tell you the function evaluates to True:

- what do you know about p and q?
- If I also tell you that p is True, what do you know about q?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Consider the following function on two logical variables:

If I tell you the function evaluates to True:

- what do you know about p and q?
- ▶ If I also tell you that *p* is True, what do you know about *q*?
- ▶ If I also tell you that p is False, what do you know about q?

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Consider the following function on two logical variables:

If I tell you the function evaluates to True:

- what do you know about p and q?
- ▶ If I also tell you that *p* is True, what do you know about *q*?
- ▶ If I also tell you that *p* is False, what do you know about *q*?

This is called the *implication* function:

p
ightarrow q

Consider the following function on two logical variables:

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Consider the following function on two logical variables:

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

If I tell you the function evaluates to True:

Consider the following function on two logical variables:

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

If I tell you the function evaluates to True:

what do you know about p and q?

Consider the following function on two logical variables:

If I tell you the function evaluates to True:

- what do you know about p and q?
- If I also tell you that p is True, what do you know about q?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

Consider the following function on two logical variables:

If I tell you the function evaluates to True:

- what do you know about p and q?
- If I also tell you that p is True, what do you know about q?
- ▶ If I also tell you that p is False, what do you know about q?

Consider the following function on two logical variables:

If I tell you the function evaluates to True:

- what do you know about p and q?
- If I also tell you that p is True, what do you know about q?
- ▶ If I also tell you that p is False, what do you know about q?
- ▶ If I also tell you that q is True, what do you know about p?

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□

Consider the following function on two logical variables:

If I tell you the function evaluates to True:

- what do you know about p and q?
- If I also tell you that p is True, what do you know about q?
- ▶ If I also tell you that p is False, what do you know about q?
- If I also tell you that q is True, what do you know about p?

This is called the *bi-conditional* function:

 $p \leftrightarrow q$

 $\begin{array}{lll} \mbox{Conditional Law:} & p \to q \equiv \neg p \lor q \\ \mbox{Biconditional Law:} & p \leftrightarrow q \equiv (p \to q) \land (q \to p) \\ \mbox{Contrapositive Law:} & p \to q \equiv \neg q \to \neg p \end{array}$

р	q	$p \leftrightarrow q$	p ightarrow q	q ightarrow p	$(p ightarrow q) \wedge (q ightarrow p)$
F	F				
F	Т				
Т	F				
Т	Т				

 $\begin{array}{lll} \mbox{Conditional Law:} & p \to q \equiv \neg p \lor q \\ \mbox{Biconditional Law:} & p \leftrightarrow q \equiv (p \to q) \land (q \to p) \\ \mbox{Contrapositive Law:} & p \to q \equiv \neg q \to \neg p \end{array}$

р	q	$p \leftrightarrow q$	p ightarrow q	q ightarrow p	$(p ightarrow q) \wedge (q ightarrow p)$
F	F	Т			
F	Т				
Т	F				
Т	Т				

 $\begin{array}{lll} \mbox{Conditional Law:} & p \to q \equiv \neg p \lor q \\ \mbox{Biconditional Law:} & p \leftrightarrow q \equiv (p \to q) \land (q \to p) \\ \mbox{Contrapositive Law:} & p \to q \equiv \neg q \to \neg p \end{array}$

р	q	$p \leftrightarrow q$	p ightarrow q	q ightarrow p	$(p ightarrow q) \wedge (q ightarrow p)$
F	F	Т	T		
F	Т				
Т	F				
Т	Т				

 $\begin{array}{lll} \mbox{Conditional Law:} & p \to q \equiv \neg p \lor q \\ \mbox{Biconditional Law:} & p \leftrightarrow q \equiv (p \to q) \land (q \to p) \\ \mbox{Contrapositive Law:} & p \to q \equiv \neg q \to \neg p \end{array}$

р	q	$p \leftrightarrow q$	p ightarrow q	q ightarrow p	$(p ightarrow q) \wedge (q ightarrow p)$
F	F	Т	T	Т	
F	Т				
Т	F				
Т	Т				

 $\begin{array}{lll} \mbox{Conditional Law:} & p \to q \equiv \neg p \lor q \\ \mbox{Biconditional Law:} & p \leftrightarrow q \equiv (p \to q) \land (q \to p) \\ \mbox{Contrapositive Law:} & p \to q \equiv \neg q \to \neg p \end{array}$

р	q	$p \leftrightarrow q$	p ightarrow q	q ightarrow p	$(p ightarrow q) \wedge (q ightarrow p)$
F	F	Т	T	Т	Т
F	Т				
Т	F				
Т	Т				

 $\begin{array}{lll} \mbox{Conditional Law:} & p \to q \equiv \neg p \lor q \\ \mbox{Biconditional Law:} & p \leftrightarrow q \equiv (p \to q) \land (q \to p) \\ \mbox{Contrapositive Law:} & p \to q \equiv \neg q \to \neg p \end{array}$

р	q	$p \leftrightarrow q$	$p \rightarrow q$	q ightarrow p	$(p ightarrow q) \wedge (q ightarrow p)$
F	F	Т	T	Т	Т
F	Т	F			
Т	F				
Т	Т				

 $\begin{array}{lll} \mbox{Conditional Law:} & p \to q \equiv \neg p \lor q \\ \mbox{Biconditional Law:} & p \leftrightarrow q \equiv (p \to q) \land (q \to p) \\ \mbox{Contrapositive Law:} & p \to q \equiv \neg q \to \neg p \end{array}$

р	q	$p \leftrightarrow q$	$p \rightarrow q$	q ightarrow p	$(p ightarrow q) \wedge (q ightarrow p)$
F	F	Т	T	Т	Т
F	Т	F	Т		
Т	F				
Т	Т				

 $\begin{array}{lll} \mbox{Conditional Law:} & p \to q \equiv \neg p \lor q \\ \mbox{Biconditional Law:} & p \leftrightarrow q \equiv (p \to q) \land (q \to p) \\ \mbox{Contrapositive Law:} & p \to q \equiv \neg q \to \neg p \end{array}$

р	q	$p \leftrightarrow q$	p ightarrow q	q ightarrow p	$(p ightarrow q) \wedge (q ightarrow p)$
F	F	Т	T	Т	Т
F	Т	F	Т	F	
Т	F				
Т	Т				

 $\begin{array}{lll} \mbox{Conditional Law:} & p \to q \equiv \neg p \lor q \\ \mbox{Biconditional Law:} & p \leftrightarrow q \equiv (p \to q) \land (q \to p) \\ \mbox{Contrapositive Law:} & p \to q \equiv \neg q \to \neg p \end{array}$

р	q	$p \leftrightarrow q$	p ightarrow q	q ightarrow p	$(p ightarrow q) \wedge (q ightarrow p)$
F	F	Т	T	Т	Т
F	Т	F	Т	F	F
Т	F				
Т	Т				

 $\begin{array}{lll} \mbox{Conditional Law:} & p \to q \equiv \neg p \lor q \\ \mbox{Biconditional Law:} & p \leftrightarrow q \equiv (p \to q) \land (q \to p) \\ \mbox{Contrapositive Law:} & p \to q \equiv \neg q \to \neg p \end{array}$

p	q	$p \leftrightarrow q$	$p \rightarrow q$	q ightarrow p	$(p ightarrow q) \wedge (q ightarrow p)$
F	F	Т	T	Т	Т
F	Т	F	Т	F	F
Т	F	F			
Т	Т				

 $\begin{array}{lll} \mbox{Conditional Law:} & p \to q \equiv \neg p \lor q \\ \mbox{Biconditional Law:} & p \leftrightarrow q \equiv (p \to q) \land (q \to p) \\ \mbox{Contrapositive Law:} & p \to q \equiv \neg q \to \neg p \end{array}$

p	q	$p \leftrightarrow q$	p ightarrow q	q ightarrow p	$(p ightarrow q) \wedge (q ightarrow p)$
F	F	Т	T	Т	Т
F	Т	F	Т	F	F
Т	F	F	F		
Т	Т				

 $\begin{array}{lll} \mbox{Conditional Law:} & p \to q \equiv \neg p \lor q \\ \mbox{Biconditional Law:} & p \leftrightarrow q \equiv (p \to q) \land (q \to p) \\ \mbox{Contrapositive Law:} & p \to q \equiv \neg q \to \neg p \end{array}$

p	q	$p \leftrightarrow q$	p ightarrow q	q ightarrow p	$(p ightarrow q) \wedge (q ightarrow p)$
F	F	Т	T	Т	Т
F	Т	F	Т	F	F
Т	F	F	F	Т	
Т	Т				

 $\begin{array}{lll} \mbox{Conditional Law:} & p \to q \equiv \neg p \lor q \\ \mbox{Biconditional Law:} & p \leftrightarrow q \equiv (p \to q) \land (q \to p) \\ \mbox{Contrapositive Law:} & p \to q \equiv \neg q \to \neg p \end{array}$

p	q	$p \leftrightarrow q$	p ightarrow q	q ightarrow p	$(p ightarrow q) \wedge (q ightarrow p)$
F	F	Т	T	Т	Т
F	Т	F	Т	F	F
Т	F	F	F	Т	F
Т	Т				

 $\begin{array}{lll} \mbox{Conditional Law:} & p \to q \equiv \neg p \lor q \\ \mbox{Biconditional Law:} & p \leftrightarrow q \equiv (p \to q) \land (q \to p) \\ \mbox{Contrapositive Law:} & p \to q \equiv \neg q \to \neg p \end{array}$

p	q	$p \leftrightarrow q$	p ightarrow q	q ightarrow p	$(p ightarrow q) \wedge (q ightarrow p)$
F	F	Т	T	Т	Т
F	Т	F	Т	F	F
Т	F	F	F	Т	F
Т	Т	Т			

 $\begin{array}{lll} \mbox{Conditional Law:} & p \to q \equiv \neg p \lor q \\ \mbox{Biconditional Law:} & p \leftrightarrow q \equiv (p \to q) \land (q \to p) \\ \mbox{Contrapositive Law:} & p \to q \equiv \neg q \to \neg p \end{array}$

p	q	$p \leftrightarrow q$	p ightarrow q	q ightarrow p	$(p ightarrow q) \wedge (q ightarrow p)$
F	F	Т	T	Т	Т
F	Т	F	Т	F	F
Т	F	F	F	Т	F
Т	Т	Т	Т		

 $\begin{array}{lll} \mbox{Conditional Law:} & p \to q \equiv \neg p \lor q \\ \mbox{Biconditional Law:} & p \leftrightarrow q \equiv (p \to q) \land (q \to p) \\ \mbox{Contrapositive Law:} & p \to q \equiv \neg q \to \neg p \end{array}$

p	q	$p \leftrightarrow q$	p ightarrow q	q ightarrow p	$(p ightarrow q) \wedge (q ightarrow p)$
F	F	Т	T	Т	Т
F	Т	F	Т	F	F
Т	F	F	F	Т	F
Т	Т	Т	Т	Т	

 $\begin{array}{lll} \mbox{Conditional Law:} & p \to q \equiv \neg p \lor q \\ \mbox{Biconditional Law:} & p \leftrightarrow q \equiv (p \to q) \land (q \to p) \\ \mbox{Contrapositive Law:} & p \to q \equiv \neg q \to \neg p \end{array}$

p	q	$p \leftrightarrow q$	p ightarrow q	q ightarrow p	$(p ightarrow q) \wedge (q ightarrow p)$
F	F	Т	T	Т	Т
F	Т	F	Т	F	F
Т	F	F	F	Т	F
Т	Т	Т	Т	Т	Т

 $\begin{array}{lll} \mbox{Conditional Law:} & p \to q \equiv \neg p \lor q \\ \mbox{Biconditional Law:} & p \leftrightarrow q \equiv (p \to q) \land (q \to p) \\ \mbox{Contrapositive Law:} & p \to q \equiv \neg q \to \neg p \end{array}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

A nice derivation:

 $\begin{array}{lll} \mbox{Conditional Law:} & p \to q \equiv \neg p \lor q \\ \mbox{Biconditional Law:} & p \leftrightarrow q \equiv (p \to q) \land (q \to p) \\ \mbox{Contrapositive Law:} & p \to q \equiv \neg q \to \neg p \end{array}$

A nice derivation:

 $p \leftrightarrow q \equiv (p
ightarrow q) \wedge (q
ightarrow p)$

 $\begin{array}{lll} \mbox{Conditional Law:} & p \to q \equiv \neg p \lor q \\ \mbox{Biconditional Law:} & p \leftrightarrow q \equiv (p \to q) \land (q \to p) \\ \mbox{Contrapositive Law:} & p \to q \equiv \neg q \to \neg p \end{array}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

A nice derivation:

$$p \leftrightarrow q \equiv (p
ightarrow q) \wedge (q
ightarrow p) \ \equiv (\neg p \lor q) \wedge (\neg q \lor p)$$

 $\begin{array}{lll} \mbox{Conditional Law:} & p \to q \equiv \neg p \lor q \\ \mbox{Biconditional Law:} & p \leftrightarrow q \equiv (p \to q) \land (q \to p) \\ \mbox{Contrapositive Law:} & p \to q \equiv \neg q \to \neg p \end{array}$

A nice derivation:

$$p \leftrightarrow q \equiv (p \rightarrow q) \land (q \rightarrow p)$$
$$\equiv (\neg p \lor q) \land (\neg q \lor p)$$
$$\equiv (\neg p \land \neg q) \lor (\neg p \land p) \lor (q \land \neg q) \lor (q \land p)$$

 $\begin{array}{lll} \mbox{Conditional Law:} & p \to q \equiv \neg p \lor q \\ \mbox{Biconditional Law:} & p \leftrightarrow q \equiv (p \to q) \land (q \to p) \\ \mbox{Contrapositive Law:} & p \to q \equiv \neg q \to \neg p \end{array}$

A nice derivation:

$$p \leftrightarrow q \equiv (p \rightarrow q) \land (q \rightarrow p)$$
$$\equiv (\neg p \lor q) \land (\neg q \lor p)$$
$$\equiv (\neg p \land \neg q) \lor (\neg p \land p) \lor (q \land \neg q) \lor (q \land p)$$
$$\equiv (\neg p \land \neg q) \lor \mathsf{False} \lor \mathsf{False} \lor (q \land p)$$

 $\begin{array}{lll} \mbox{Conditional Law:} & p \to q \equiv \neg p \lor q \\ \mbox{Biconditional Law:} & p \leftrightarrow q \equiv (p \to q) \land (q \to p) \\ \mbox{Contrapositive Law:} & p \to q \equiv \neg q \to \neg p \end{array}$

A nice derivation:

$$p \leftrightarrow q \equiv (p \rightarrow q) \land (q \rightarrow p)$$

$$\equiv (\neg p \lor q) \land (\neg q \lor p)$$

$$\equiv (\neg p \land \neg q) \lor (\neg p \land p) \lor (q \land \neg q) \lor (q \land p)$$

$$\equiv (\neg p \land \neg q) \lor \mathsf{False} \lor \mathsf{False} \lor (q \land p)$$

$$\equiv (\neg p \land \neg q) \lor (q \land p)$$

We say that proposition p is:

satisfiable, if there exists a state for which p is True.

We say that proposition p is:

satisfiable, if there exists a state for which p is True.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

unsatisfiable, if for all states, p is False.

We say that proposition p is:

satisfiable, if there exists a state for which p is True.

- unsatisfiable, if for all states, p is False.
- ▶ a *tautology*, if for all states *p* is True.

We say that proposition p is:

satisfiable, if there exists a state for which p is True.

- unsatisfiable, if for all states, p is False.
- ▶ a *tautology*, if for all states *p* is True.

Example: $q \rightarrow (p \rightarrow q)$ is a tautology.

We say that proposition p is:

satisfiable, if there exists a state for which p is True.

- unsatisfiable, if for all states, p is False.
- ▶ a *tautology*, if for all states *p* is True.

Example: $q \rightarrow (p \rightarrow q)$ is a tautology.

q	р	p ightarrow q	q ightarrow (p ightarrow q)
F	F	Т	Т
F	Т	F	Т
Т	F	Т	Т
Т	Т	Т	Т