Propositions

Propositions are statements, that are either True or False. $5>3$, Fish \subset Mammals

Propositions

Propositions are statements, that are either True or False.
$5>3$, Fish \subset Mammals
logical constants: $\mathcal{B}=\{$ True, False $\}$

Propositions

Propositions are statements, that are either True or False.
$5>3$, Fish \subset Mammals
logical constants: $\mathcal{B}=\{$ True, False $\}$
logical variables: variable that can take on either True or False.

Propositions

Propositions are statements, that are either True or False.
$5>3$, Fish \subset Mammals
logical constants: $\mathcal{B}=\{$ True, False $\}$
logical variables: variable that can take on either True or False.
logical operators (or functions): \wedge, \vee, \neg

Propositions

Propositions are statements, that are either True or False.
$5>3$, Fish \subset Mammals
logical constants: $\mathcal{B}=\{$ True, False $\}$
logical variables: variable that can take on either True or False.
logical operators (or functions): \wedge, \vee, \neg
$\wedge: \mathcal{B} \times \mathcal{B} \rightarrow \mathcal{B}$

Propositions

Propositions are statements, that are either True or False.
$5>3$, Fish \subset Mammals
logical constants: $\mathcal{B}=\{$ True, False $\}$
logical variables: variable that can take on either True or False.
logical operators (or functions): \wedge, \vee, \neg
$\wedge: \mathcal{B} \times \mathcal{B} \rightarrow \mathcal{B}$
$\wedge($ True, True $)=$ True.

Propositions

Propositions are statements, that are either True or False.
$5>3$, Fish \subset Mammals
logical constants: $\mathcal{B}=\{$ True, False $\}$
logical variables: variable that can take on either True or False.
logical operators (or functions): \wedge, \vee, \neg
$\wedge: \mathcal{B} \times \mathcal{B} \rightarrow \mathcal{B}$
$\wedge($ True, True $)=$ True.

Syntactic structure of a proposition

1. Each of the logical constants is a proposition
2. Logical variables are propositions
3. If α and β are propositions, then so are $(\alpha \wedge \beta),(\alpha \vee \beta)$ and $\neg \alpha$.
4. Nothing else is a proposition.

Propositions

Propositions are statements, that are either True or False.
$5>3$, Fish \subset Mammals
logical constants: $\mathcal{B}=\{$ True, False $\}$
logical variables: variable that can take on either True or False.
logical operators (or functions): \wedge, \vee, \neg
$\wedge: \mathcal{B} \times \mathcal{B} \rightarrow \mathcal{B}$
$\wedge($ True, True $)=$ True.

Syntactic structure of a proposition

1. Each of the logical constants is a proposition
2. Logical variables are propositions
3. If α and β are propositions, then so are $(\alpha \wedge \beta),(\alpha \vee \beta)$ and $\neg \alpha$.
4. Nothing else is a proposition.

Example (item 3) If $\alpha=p$ and $\beta=(q \wedge r)$, then $(\alpha \vee \beta)$ becomes $(p \vee(q \wedge r))$.

Propositions

Propositions are statements, that are either True or False.
$5>3$, Fish \subset Mammals
logical constants: $\mathcal{B}=\{$ True, False $\}$
logical variables: variable that can take on either True or False.
logical operators (or functions): \wedge, \vee, \neg
$\wedge: \mathcal{B} \times \mathcal{B} \rightarrow \mathcal{B}$
$\wedge($ True, True $)=$ True.

Syntactic structure of a proposition

1. Each of the logical constants is a proposition
2. Logical variables are propositions
3. If α and β are propositions, then so are $(\alpha \wedge \beta),(\alpha \vee \beta)$ and $\neg \alpha$.
4. Nothing else is a proposition.

Example (item 3) If $\alpha=p$ and $\beta=(q \wedge r)$, then $(\alpha \vee \beta)$ becomes $(p \vee(q \wedge r))$.
\neg has precedence over \wedge which has precedence over \vee :
So, $\neg p \vee q \wedge r$ is the same as $(\neg p) \vee(q \wedge r)$.
(But we'll use parenthesis to avoid confusion.)

Expression Trees and Truth Tables

Equivalence

Two propositions are equivalent, if they have the same truth table.
That is, for every variable state, the propositions have the same "output"

Equivalence

Two propositions are equivalent, if they have the same truth table.
That is, for every variable state, the propositions have the same "output" $\neg(p \vee q) \equiv \neg p \wedge \neg q$

Equivalence

Two propositions are equivalent, if they have the same truth table.
That is, for every variable state, the propositions have the same "output"
$\neg(p \vee q) \equiv \neg p \wedge \neg q$
Intuitively: Left side says "it is not the case that p or q is true."
Right side says " p is false and q is false."

Equivalence

Two propositions are equivalent, if they have the same truth table.
That is, for every variable state, the propositions have the same "output"
$\neg(p \vee q) \equiv \neg p \wedge \neg q$
Intuitively: Left side says "it is not the case that p or q is true."
Right side says " p is false and q is false."

p	q	$p \vee q$	$\neg(p \vee q)$	$\neg p$	$\neg q$	$\neg p \wedge \neg q$
False	False	False	True	True	True	True
False	True	True	False	True	False	False
True	False	True	False	False	True	False
True	True	True	False	False	False	False

Equivalence

Two propositions are equivalent, if they have the same truth table.
That is, for every variable state, the propositions have the same "output"
$\neg(p \vee q) \equiv \neg p \wedge \neg q$
Intuitively: Left side says "it is not the case that p or q is true."
Right side says " p is false and q is false."

p	q	$p \vee q$	$\neg(p \vee q)$	$\neg p$	$\neg q$	$\neg p \wedge \neg q$
False	False	False	True	True	True	True
False	True	True	False	True	False	False
True	False	True	False	False	True	False
True	True	True	False	False	False	False

" \equiv " is different from "="

Equivalence

Two propositions are equivalent, if they have the same truth table.
That is, for every variable state, the propositions have the same "output"
$\neg(p \vee q) \equiv \neg p \wedge \neg q$
Intuitively: Left side says "it is not the case that p or q is true."
Right side says " p is false and q is false."

p	q	$p \vee q$	$\neg(p \vee q)$	$\neg p$	$\neg q$	$\neg p \wedge \neg q$
False	False	False	True	True	True	True
False	True	True	False	True	False	False
True	False	True	False	False	True	False
True	True	True	False	False	False	False

" \equiv " is different from " $=$ "
Consider $3 x+2=11$. Is this true for every "state" of x ?

Equivalence

Two propositions are equivalent, if they have the same truth table.
That is, for every variable state, the propositions have the same "output"
$\neg(p \vee q) \equiv \neg p \wedge \neg q$
Intuitively: Left side says "it is not the case that p or q is true."
Right side says " p is false and q is false."

p	q	$p \vee q$	$\neg(p \vee q)$	$\neg p$	$\neg q$	$\neg p \wedge \neg q$
False	False	False	True	True	True	True
False	True	True	False	True	False	False
True	False	True	False	False	True	False
True	True	True	False	False	False	False

" \equiv " is different from " $=$ "
Consider $3 x+2=11$. Is this true for every "state" of x ? NO! Only when $x=3$.

Equivalence

Two propositions are equivalent, if they have the same truth table.
That is, for every variable state, the propositions have the same "output"
$\neg(p \vee q) \equiv \neg p \wedge \neg q$
Intuitively: Left side says "it is not the case that p or q is true."
Right side says " p is false and q is false."

p	q	$p \vee q$	$\neg(p \vee q)$	$\neg p$	$\neg q$	$\neg p \wedge \neg q$
False	False	False	True	True	True	True
False	True	True	False	True	False	False
True	False	True	False	False	True	False
True	True	True	False	False	False	False

" \equiv " is different from " $=$ "
Consider $3 x+2=11$. Is this true for every "state" of x ? NO! Only when $x=3$.
Consider $3 x+2=11 \equiv 3 x=9$.

Law of negation:
$\neg \neg \alpha \equiv \alpha$
Combining a variable with itself:

$\alpha \vee \neg \alpha \equiv$ TRUE	Excluded middle
$\alpha \wedge \neg \alpha \equiv$ FALSE	Contradiction
$\alpha \vee \alpha \equiv \alpha$	Idempotence of \vee
$\alpha \wedge \alpha \equiv \alpha$	Idempotence of \wedge

Properties of constants:
$\alpha \vee$ TRUE \equiv TRUE
$\alpha \vee$ FALSE $\equiv \alpha$
$\alpha \wedge$ TRUE $\equiv \alpha$
$\alpha \wedge$ FALSE \equiv FALSE

Law of negation:

$$
\neg \neg \alpha \equiv \alpha
$$

Combining a variable with itself:

$$
\begin{array}{ll}
\alpha \vee \neg \alpha \equiv \text { TRUE } & \text { Excluded middle } \\
\alpha \wedge \neg \alpha \equiv \text { FALSE } & \text { Contradiction } \\
\alpha \vee \alpha \equiv \alpha & \text { Idempotence of } \vee \\
\alpha \wedge \alpha \equiv \alpha & \text { Idempotence of } \wedge
\end{array}
$$

Properties of constants:

$$
\begin{aligned}
& \alpha \vee \text { TRUE } \equiv \text { TRUE } \\
& \alpha \vee \text { FALSE } \equiv \alpha \\
& \alpha \wedge \text { TRUE } \equiv \alpha \\
& \alpha \wedge \text { FALSE } \equiv \text { FALSE }
\end{aligned}
$$

Commutativity:

$$
\begin{aligned}
& \alpha \wedge \beta \equiv \beta \wedge \alpha \\
& \alpha \vee \beta \equiv \beta \vee \alpha
\end{aligned}
$$

Associativity:

$$
\begin{aligned}
& \alpha \vee(\beta \vee \gamma) \equiv(\alpha \vee \beta) \vee \gamma \\
& \alpha \wedge(\beta \wedge \gamma) \equiv(\alpha \wedge \beta) \wedge \gamma
\end{aligned}
$$

Distributivity:

$$
\begin{aligned}
& \alpha \vee(\beta \wedge \gamma) \equiv(\alpha \vee \beta) \wedge(\alpha \vee \gamma) \\
& \alpha \wedge(\beta \vee \gamma) \equiv(\alpha \wedge \beta) \vee(\alpha \wedge \gamma)
\end{aligned}
$$

DeMorgan's Laws:

$$
\begin{aligned}
& \neg(\alpha \wedge \beta) \equiv \neg \alpha \vee \neg \beta \\
& \neg(\alpha \vee \beta) \equiv \neg \alpha \wedge \neg \beta
\end{aligned}
$$

Subsumption:

$$
\alpha \wedge(\alpha \vee \beta) \equiv \alpha
$$

$$
\alpha \vee(\alpha \wedge \beta) \equiv \alpha
$$

Using Equivalence Laws

Given the following equivalence laws:
$\alpha \vee(\alpha \wedge \beta) \equiv \alpha$
(2nd Subsumption)
$\alpha \wedge \alpha \equiv \alpha$ (Idempotence of \wedge)
$\alpha \wedge(\beta \vee \gamma) \equiv(\alpha \wedge \beta) \vee(\alpha \wedge \gamma)$
(2nd Distributivity)

Using Equivalence Laws

Given the following equivalence laws:

$$
\begin{array}{ll}
\alpha \vee(\alpha \wedge \beta) \equiv \alpha & \text { (2nd Subsumption) } \\
\alpha \wedge \alpha \equiv \alpha & \text { (Idempotence of } \wedge) \\
\alpha \wedge(\beta \vee \gamma) \equiv(\alpha \wedge \beta) \vee(\alpha \wedge \gamma) & (\text { 2nd Distributivity) }
\end{array}
$$

We'll prove the 1st Subsumption law: $\alpha \wedge(\alpha \vee \beta) \equiv \alpha$

Using Equivalence Laws

Given the following equivalence laws:

$$
\begin{array}{ll}
\alpha \vee(\alpha \wedge \beta) \equiv \alpha & \text { (2nd Subsumption) } \\
\alpha \wedge \alpha \equiv \alpha & \text { (Idempotence of } \wedge) \\
\alpha \wedge(\beta \vee \gamma) \equiv(\alpha \wedge \beta) \vee(\alpha \wedge \gamma) & (\text { 2nd Distributivity) }
\end{array}
$$

We'll prove the 1st Subsumption law: $\alpha \wedge(\alpha \vee \beta) \equiv \alpha$
$\alpha \wedge(\alpha \vee \beta) \equiv(\alpha \wedge \alpha) \vee(\alpha \wedge \beta)$
(By Distributivity)

Using Equivalence Laws

Given the following equivalence laws:

$$
\begin{array}{ll}
\alpha \vee(\alpha \wedge \beta) \equiv \alpha & \text { (2nd Subsumption) } \\
\alpha \wedge \alpha \equiv \alpha & \text { (Idempotence of } \wedge) \\
\alpha \wedge(\beta \vee \gamma) \equiv(\alpha \wedge \beta) \vee(\alpha \wedge \gamma) & (\text { 2nd Distributivity) }
\end{array}
$$

We'll prove the 1st Subsumption law: $\alpha \wedge(\alpha \vee \beta) \equiv \alpha$

$$
\begin{array}{rlrl}
\alpha \wedge(\alpha \vee \beta) & \equiv(\alpha \wedge \alpha) \vee(\alpha \wedge \beta) & & \text { (By Distributivity) } \\
& \equiv \alpha \vee(\alpha \wedge \beta) & \text { (By Idempotence) }
\end{array}
$$

Using Equivalence Laws

Given the following equivalence laws:

$$
\begin{array}{ll}
\alpha \vee(\alpha \wedge \beta) \equiv \alpha & \text { (2nd Subsumption) } \\
\alpha \wedge \alpha \equiv \alpha & \text { (Idempotence of } \wedge) \\
\alpha \wedge(\beta \vee \gamma) \equiv(\alpha \wedge \beta) \vee(\alpha \wedge \gamma) & \text { (2nd Distributivity) }
\end{array}
$$

We'll prove the 1st Subsumption law: $\alpha \wedge(\alpha \vee \beta) \equiv \alpha$

$$
\begin{aligned}
\alpha \wedge(\alpha \vee \beta) & \equiv(\alpha \wedge \alpha) \vee(\alpha \wedge \beta) & & \text { (By Distributivity) } \\
& \equiv \alpha \vee(\alpha \wedge \beta) & & \text { (By Idempotence) } \\
& \equiv \alpha & & \text { (By Subsumption) }
\end{aligned}
$$

Using Equivalence Laws

Given the following equivalence laws:

$$
\begin{array}{ll}
\alpha \vee(\alpha \wedge \beta) \equiv \alpha & \text { (2nd Subsumption) } \\
\alpha \wedge \alpha \equiv \alpha & \text { (Idempotence of } \wedge) \\
\alpha \wedge(\beta \vee \gamma) \equiv(\alpha \wedge \beta) \vee(\alpha \wedge \gamma) & \text { (2nd Distributivity) }
\end{array}
$$

We'll prove the 1st Subsumption law: $\alpha \wedge(\alpha \vee \beta) \equiv \alpha$

$$
\begin{aligned}
\alpha \wedge(\alpha \vee \beta) & \equiv(\alpha \wedge \alpha) \vee(\alpha \wedge \beta) & & \text { (By Distributivity) } \\
& \equiv \alpha \vee(\alpha \wedge \beta) & & \text { (By Idempotence) } \\
& \equiv \alpha & & \text { (By Subsumption) }
\end{aligned}
$$

Let's prove: $\neg((p \wedge q) \vee r) \equiv(\neg p \vee \neg q) \wedge \neg r$

Using Equivalence Laws

Given the following equivalence laws:

$$
\begin{array}{ll}
\alpha \vee(\alpha \wedge \beta) \equiv \alpha & \text { (2nd Subsumption) } \\
\alpha \wedge \alpha \equiv \alpha & \text { (Idempotence of } \wedge) \\
\alpha \wedge(\beta \vee \gamma) \equiv(\alpha \wedge \beta) \vee(\alpha \wedge \gamma) & \text { (2nd Distributivity) }
\end{array}
$$

We'll prove the 1st Subsumption law: $\alpha \wedge(\alpha \vee \beta) \equiv \alpha$

$$
\begin{aligned}
\alpha \wedge(\alpha \vee \beta) & \equiv(\alpha \wedge \alpha) \vee(\alpha \wedge \beta) & & \text { (By Distributivity) } \\
& \equiv \alpha \vee(\alpha \wedge \beta) & & \text { (By Idempotence) } \\
& \equiv \alpha & & \text { (By Subsumption) }
\end{aligned}
$$

Let's prove: $\neg((p \wedge q) \vee r) \equiv(\neg p \vee \neg q) \wedge \neg r$

$$
\neg((p \wedge q) \vee r) \equiv \neg(p \wedge q) \wedge \neg r
$$

Using Equivalence Laws
Given the following equivalence laws:

$$
\begin{array}{ll}
\alpha \vee(\alpha \wedge \beta) \equiv \alpha & \text { (2nd Subsumption) } \\
\alpha \wedge \alpha \equiv \alpha & \text { (Idempotence of } \wedge) \\
\alpha \wedge(\beta \vee \gamma) \equiv(\alpha \wedge \beta) \vee(\alpha \wedge \gamma) & \text { (2nd Distributivity) }
\end{array}
$$

We'll prove the 1st Subsumption law: $\alpha \wedge(\alpha \vee \beta) \equiv \alpha$

$$
\begin{aligned}
\alpha \wedge(\alpha \vee \beta) & \equiv(\alpha \wedge \alpha) \vee(\alpha \wedge \beta) & & \text { (By Distributivity) } \\
& \equiv \alpha \vee(\alpha \wedge \beta) & & \text { (By Idempotence) } \\
& \equiv \alpha & & \text { (By Subsumption) }
\end{aligned}
$$

Let's prove: $\neg((p \wedge q) \vee r) \equiv(\neg p \vee \neg q) \wedge \neg r$

$$
\begin{aligned}
\neg((p \wedge q) \vee r) & \equiv \neg(p \wedge q) \wedge \neg r \\
& \equiv(\neg p \vee \neg q) \wedge \neg r
\end{aligned}
$$

Two Important Functions

Consider the following function on two logical variables:

Two Important Functions

Consider the following function on two logical variables:

If I tell you the function evaluates to True:

Two Important Functions

Consider the following function on two logical variables:

If I tell you the function evaluates to True:

- what do you know about p and q ?

Two Important Functions

Consider the following function on two logical variables:

If I tell you the function evaluates to True:

- what do you know about p and q ?
- If I also tell you that p is True, what do you know about q ?

Two Important Functions

Consider the following function on two logical variables:

If I tell you the function evaluates to True:

- what do you know about p and q ?
- If I also tell you that p is True, what do you know about q ?
- If I also tell you that p is False, what do you know about q ?

Two Important Functions

Consider the following function on two logical variables:
q
p

If I tell you the function evaluates to True:

- what do you know about p and q ?
- If I also tell you that p is True, what do you know about q ?
- If I also tell you that p is False, what do you know about q ?

This is called the implication function:
$p \rightarrow q$

Two Important Functions

Consider the following function on two logical variables:

Two Important Functions

Consider the following function on two logical variables:

Two Important Functions

Consider the following function on two logical variables:

- what do you know about p and q ?

Two Important Functions

Consider the following function on two logical variables:
q
p

If I tell you the function evaluates to True:

- what do you know about p and q ?
- If I also tell you that p is True, what do you know about q ?

Two Important Functions

Consider the following function on two logical variables:
q
p

If I tell you the function evaluates to True:

- what do you know about p and q ?
- If I also tell you that p is True, what do you know about q ?
- If I also tell you that p is False, what do you know about q ?

Two Important Functions

Consider the following function on two logical variables:
q
p

If I tell you the function evaluates to True:

- what do you know about p and q ?
- If I also tell you that p is True, what do you know about q ?
- If I also tell you that p is False, what do you know about q ?
- If I also tell you that q is True, what do you know about p ?

Two Important Functions

Consider the following function on two logical variables:
q
p

If I tell you the function evaluates to True:

- what do you know about p and q ?
- If I also tell you that p is True, what do you know about q ?
- If I also tell you that p is False, what do you know about q ?
- If I also tell you that q is True, what do you know about p ?

This is called the bi-conditional function:
$p \leftrightarrow q$

Three New Equivalence Laws

Conditional Law: $\quad p \rightarrow q \equiv \neg p \vee q$
Biconditional Law: $\quad p \leftrightarrow q \equiv(p \rightarrow q) \wedge(q \rightarrow p)$
Contrapositive Law: $\quad p \rightarrow q \equiv \neg q \rightarrow \neg p$

p	q	$p \leftrightarrow q$	$p \rightarrow q$	$q \rightarrow p$	$(p \rightarrow q) \wedge(q \rightarrow p)$
F	F				
F	T				
T	F				
T	T				

Three New Equivalence Laws

Conditional Law: $\quad p \rightarrow q \equiv \neg p \vee q$
Biconditional Law: $\quad p \leftrightarrow q \equiv(p \rightarrow q) \wedge(q \rightarrow p)$
Contrapositive Law: $\quad p \rightarrow q \equiv \neg q \rightarrow \neg p$

p	q	$p \leftrightarrow q$	$p \rightarrow q$	$q \rightarrow p$	$(p \rightarrow q) \wedge(q \rightarrow p)$
F	F	T			
F	T				
T	F				
T	T				

Three New Equivalence Laws

Conditional Law: $\quad p \rightarrow q \equiv \neg p \vee q$
Biconditional Law: $\quad p \leftrightarrow q \equiv(p \rightarrow q) \wedge(q \rightarrow p)$
Contrapositive Law: $\quad p \rightarrow q \equiv \neg q \rightarrow \neg p$

p	q	$p \leftrightarrow q$	$p \rightarrow q$	$q \rightarrow p$	$(p \rightarrow q) \wedge(q \rightarrow p)$
F	F	T	T		
F	T				
T	F				
T	T				

Three New Equivalence Laws

Conditional Law: $\quad p \rightarrow q \equiv \neg p \vee q$
Biconditional Law: $\quad p \leftrightarrow q \equiv(p \rightarrow q) \wedge(q \rightarrow p)$
Contrapositive Law: $\quad p \rightarrow q \equiv \neg q \rightarrow \neg p$

p	q	$p \leftrightarrow q$	$p \rightarrow q$	$q \rightarrow p$	$(p \rightarrow q) \wedge(q \rightarrow p)$
F	F	T	T	T	
F	T				
T	F				
T	T				

Three New Equivalence Laws

Conditional Law: $\quad p \rightarrow q \equiv \neg p \vee q$
Biconditional Law: $\quad p \leftrightarrow q \equiv(p \rightarrow q) \wedge(q \rightarrow p)$
Contrapositive Law: $\quad p \rightarrow q \equiv \neg q \rightarrow \neg p$

p	q	$p \leftrightarrow q$	$p \rightarrow q$	$q \rightarrow p$	$(p \rightarrow q) \wedge(q \rightarrow p)$
F	F	T	T	T	T
F	T				
T	F				
T	T				

Three New Equivalence Laws

Conditional Law: $\quad p \rightarrow q \equiv \neg p \vee q$
Biconditional Law: $\quad p \leftrightarrow q \equiv(p \rightarrow q) \wedge(q \rightarrow p)$
Contrapositive Law: $\quad p \rightarrow q \equiv \neg q \rightarrow \neg p$

p	q	$p \leftrightarrow q$	$p \rightarrow q$	$q \rightarrow p$	$(p \rightarrow q) \wedge(q \rightarrow p)$
F	F	T	T	T	T
F	T	F			
T	F				
T	T				

Three New Equivalence Laws

Conditional Law: $\quad p \rightarrow q \equiv \neg p \vee q$
Biconditional Law: $\quad p \leftrightarrow q \equiv(p \rightarrow q) \wedge(q \rightarrow p)$
Contrapositive Law: $\quad p \rightarrow q \equiv \neg q \rightarrow \neg p$

p	q	$p \leftrightarrow q$	$p \rightarrow q$	$q \rightarrow p$	$(p \rightarrow q) \wedge(q \rightarrow p)$
F	F	T	T	T	T
F	T	F	T		
T	F				
T	T				

Three New Equivalence Laws

Conditional Law: $\quad p \rightarrow q \equiv \neg p \vee q$
Biconditional Law: $\quad p \leftrightarrow q \equiv(p \rightarrow q) \wedge(q \rightarrow p)$
Contrapositive Law: $\quad p \rightarrow q \equiv \neg q \rightarrow \neg p$

p	q	$p \leftrightarrow q$	$p \rightarrow q$	$q \rightarrow p$	$(p \rightarrow q) \wedge(q \rightarrow p)$
F	F	T	T	T	T
F	T	F	T	F	
T	F				
T	T				

Three New Equivalence Laws

Conditional Law: $\quad p \rightarrow q \equiv \neg p \vee q$
Biconditional Law: $\quad p \leftrightarrow q \equiv(p \rightarrow q) \wedge(q \rightarrow p)$
Contrapositive Law: $\quad p \rightarrow q \equiv \neg q \rightarrow \neg p$

p	q	$p \leftrightarrow q$	$p \rightarrow q$	$q \rightarrow p$	$(p \rightarrow q) \wedge(q \rightarrow p)$
F	F	T	T	T	T
F	T	F	T	F	F
T	F				
T	T				

Three New Equivalence Laws

Conditional Law: $\quad p \rightarrow q \equiv \neg p \vee q$
Biconditional Law: $\quad p \leftrightarrow q \equiv(p \rightarrow q) \wedge(q \rightarrow p)$
Contrapositive Law: $\quad p \rightarrow q \equiv \neg q \rightarrow \neg p$

p	q	$p \leftrightarrow q$	$p \rightarrow q$	$q \rightarrow p$	$(p \rightarrow q) \wedge(q \rightarrow p)$
F	F	T	T	T	T
F	T	F	T	F	F
T	F	F			
T	T				

Three New Equivalence Laws

Conditional Law: $\quad p \rightarrow q \equiv \neg p \vee q$
Biconditional Law: $\quad p \leftrightarrow q \equiv(p \rightarrow q) \wedge(q \rightarrow p)$
Contrapositive Law: $\quad p \rightarrow q \equiv \neg q \rightarrow \neg p$

p	q	$p \leftrightarrow q$	$p \rightarrow q$	$q \rightarrow p$	$(p \rightarrow q) \wedge(q \rightarrow p)$
F	F	T	T	T	T
F	T	F	T	F	F
T	F	F	F		
T	T				

Three New Equivalence Laws

Conditional Law: $\quad p \rightarrow q \equiv \neg p \vee q$
Biconditional Law: $\quad p \leftrightarrow q \equiv(p \rightarrow q) \wedge(q \rightarrow p)$
Contrapositive Law: $\quad p \rightarrow q \equiv \neg q \rightarrow \neg p$

p	q	$p \leftrightarrow q$	$p \rightarrow q$	$q \rightarrow p$	$(p \rightarrow q) \wedge(q \rightarrow p)$
F	F	T	T	T	T
F	T	F	T	F	F
T	F	F	F	T	
T	T				

Three New Equivalence Laws

Conditional Law: $\quad p \rightarrow q \equiv \neg p \vee q$
Biconditional Law: $\quad p \leftrightarrow q \equiv(p \rightarrow q) \wedge(q \rightarrow p)$
Contrapositive Law: $\quad p \rightarrow q \equiv \neg q \rightarrow \neg p$

p	q	$p \leftrightarrow q$	$p \rightarrow q$	$q \rightarrow p$	$(p \rightarrow q) \wedge(q \rightarrow p)$
F	F	T	T	T	T
F	T	F	T	F	F
T	F	F	F	T	F
T	T				

Three New Equivalence Laws

Conditional Law: $\quad p \rightarrow q \equiv \neg p \vee q$
Biconditional Law: $\quad p \leftrightarrow q \equiv(p \rightarrow q) \wedge(q \rightarrow p)$
Contrapositive Law: $\quad p \rightarrow q \equiv \neg q \rightarrow \neg p$

p	q	$p \leftrightarrow q$	$p \rightarrow q$	$q \rightarrow p$	$(p \rightarrow q) \wedge(q \rightarrow p)$
F	F	T	T	T	T
F	T	F	T	F	F
T	F	F	F	T	F
T	T	T			

Three New Equivalence Laws

Conditional Law: $\quad p \rightarrow q \equiv \neg p \vee q$
Biconditional Law: $\quad p \leftrightarrow q \equiv(p \rightarrow q) \wedge(q \rightarrow p)$
Contrapositive Law: $\quad p \rightarrow q \equiv \neg q \rightarrow \neg p$

p	q	$p \leftrightarrow q$	$p \rightarrow q$	$q \rightarrow p$	$(p \rightarrow q) \wedge(q \rightarrow p)$
F	F	T	T	T	T
F	T	F	T	F	F
T	F	F	F	T	F
T	T	T	T		

Three New Equivalence Laws

Conditional Law: $\quad p \rightarrow q \equiv \neg p \vee q$
Biconditional Law: $\quad p \leftrightarrow q \equiv(p \rightarrow q) \wedge(q \rightarrow p)$
Contrapositive Law: $\quad p \rightarrow q \equiv \neg q \rightarrow \neg p$

p	q	$p \leftrightarrow q$	$p \rightarrow q$	$q \rightarrow p$	$(p \rightarrow q) \wedge(q \rightarrow p)$
F	F	T	T	T	T
F	T	F	T	F	F
T	F	F	F	T	F
T	T	T	T	T	

Three New Equivalence Laws

Conditional Law: $\quad p \rightarrow q \equiv \neg p \vee q$
Biconditional Law: $\quad p \leftrightarrow q \equiv(p \rightarrow q) \wedge(q \rightarrow p)$
Contrapositive Law: $\quad p \rightarrow q \equiv \neg q \rightarrow \neg p$

p	q	$p \leftrightarrow q$	$p \rightarrow q$	$q \rightarrow p$	$(p \rightarrow q) \wedge(q \rightarrow p)$
F	F	T	T	T	T
F	T	F	T	F	F
T	F	F	F	T	F
T	T	T	T	T	T

Three New Equivalence Laws

Conditional Law: $\quad p \rightarrow q \equiv \neg p \vee q$
Biconditional Law: $\quad p \leftrightarrow q \equiv(p \rightarrow q) \wedge(q \rightarrow p)$
Contrapositive Law: $\quad p \rightarrow q \equiv \neg q \rightarrow \neg p$
A nice derivation:

Three New Equivalence Laws

Conditional Law: $\quad p \rightarrow q \equiv \neg p \vee q$
Biconditional Law: $\quad p \leftrightarrow q \equiv(p \rightarrow q) \wedge(q \rightarrow p)$
Contrapositive Law: $\quad p \rightarrow q \equiv \neg q \rightarrow \neg p$
A nice derivation:

$$
p \leftrightarrow q \equiv(p \rightarrow q) \wedge(q \rightarrow p)
$$

Three New Equivalence Laws

Conditional Law: $\quad p \rightarrow q \equiv \neg p \vee q$
Biconditional Law: $\quad p \leftrightarrow q \equiv(p \rightarrow q) \wedge(q \rightarrow p)$
Contrapositive Law: $\quad p \rightarrow q \equiv \neg q \rightarrow \neg p$
A nice derivation:

$$
\begin{aligned}
p \leftrightarrow q & \equiv(p \rightarrow q) \wedge(q \rightarrow p) \\
& \equiv(\neg p \vee q) \wedge(\neg q \vee p)
\end{aligned}
$$

Three New Equivalence Laws
Conditional Law:
Biconditional Law:

$$
p \leftrightarrow q \equiv(p \rightarrow q) \wedge(q \rightarrow p)
$$

Contrapositive Law:

$$
p \rightarrow q \equiv \neg p \vee q
$$

A nice derivation:

$$
\begin{aligned}
p \leftrightarrow q & \equiv(p \rightarrow q) \wedge(q \rightarrow p) \\
& \equiv(\neg p \vee q) \wedge(\neg q \vee p) \\
& \equiv(\neg p \wedge \neg q) \vee(\neg p \wedge p) \vee(q \wedge \neg q) \vee(q \wedge p)
\end{aligned}
$$

Three New Equivalence Laws

Conditional Law: $\quad p \rightarrow q \equiv \neg p \vee q$
Biconditional Law: $\quad p \leftrightarrow q \equiv(p \rightarrow q) \wedge(q \rightarrow p)$
Contrapositive Law: $\quad p \rightarrow q \equiv \neg q \rightarrow \neg p$
A nice derivation:

$$
\begin{aligned}
p \leftrightarrow q & \equiv(p \rightarrow q) \wedge(q \rightarrow p) \\
& \equiv(\neg p \vee q) \wedge(\neg q \vee p) \\
& \equiv(\neg p \wedge \neg q) \vee(\neg p \wedge p) \vee(q \wedge \neg q) \vee(q \wedge p) \\
& \equiv(\neg p \wedge \neg q) \vee \text { False } \vee \text { False } \vee(q \wedge p)
\end{aligned}
$$

Three New Equivalence Laws

Conditional Law: $\quad p \rightarrow q \equiv \neg p \vee q$
Biconditional Law: $\quad p \leftrightarrow q \equiv(p \rightarrow q) \wedge(q \rightarrow p)$
Contrapositive Law: $\quad p \rightarrow q \equiv \neg q \rightarrow \neg p$
A nice derivation:

$$
\begin{aligned}
p \leftrightarrow q & \equiv(p \rightarrow q) \wedge(q \rightarrow p) \\
& \equiv(\neg p \vee q) \wedge(\neg q \vee p) \\
& \equiv(\neg p \wedge \neg q) \vee(\neg p \wedge p) \vee(q \wedge \neg q) \vee(q \wedge p) \\
& \equiv(\neg p \wedge \neg q) \vee \text { False } \vee \text { False } \vee(q \wedge p) \\
& \equiv(\neg p \wedge \neg q) \vee(q \wedge p)
\end{aligned}
$$

Satisfiability, and Tautologies

We say that proposition p is:

- satisfiable, if there exists a state for which p is True.

Satisfiability, and Tautologies

We say that proposition p is:

- satisfiable, if there exists a state for which p is True.
- unsatisfiable, if for all states, p is False.

Satisfiability, and Tautologies

We say that proposition p is:

- satisfiable, if there exists a state for which p is True.
- unsatisfiable, if for all states, p is False.
- a tautology, if for all states p is True.

Satisfiability, and Tautologies

We say that proposition p is:

- satisfiable, if there exists a state for which p is True.
- unsatisfiable, if for all states, p is False.
- a tautology, if for all states p is True.

Example: $q \rightarrow(p \rightarrow q)$ is a tautology.

Satisfiability, and Tautologies

We say that proposition p is:

- satisfiable, if there exists a state for which p is True.
- unsatisfiable, if for all states, p is False.
- a tautology, if for all states p is True.

Example: $q \rightarrow(p \rightarrow q)$ is a tautology.

q	p	$p \rightarrow q$	$q \rightarrow(p \rightarrow q)$
F	F	T	T
F	T	F	T
T	F	T	T
T	T	T	T

