Limitations on regular languages

Pumping Lemma

If L is a regular language, then there exists an integer $p \geq 1$ such that for any $w \in L$ with $|w| > p$, w can be divided into 3 strings, $w = xyz$ such that:

1. $\forall i \geq 0, xy^iz \in L$
2. $|y| > 0$
3. $|xy| \leq p$
Limitations on regular languages

Pumping Lemma

If \(L \) is a regular language, then there exists an integer \(p \geq 1 \) such that for any \(w \in L \) with \(|w| > p \), \(w \) can be divided into 3 strings, \(w = xyz \) such that:

1. \(\forall i \geq 0, xy^i z \in L \)
2. \(|y| > 0 \)
3. \(|xy| \leq p \)

Since \(L \) is regular, \(\exists \) DFA \(M \) that recognizes \(L \).
Limitations on regular languages

Pumping Lemma

If L is a regular language, then there exists an integer $p \geq 1$ such that for any $w \in L$ with $|w| > p$, w can be divided into 3 strings, $w = xyz$ such that:

1. $\forall i \geq 0, xy^iz \in L$
2. $|y| > 0$
3. $|xy| \leq p$

Since L is regular, \exists DFA M that recognizes L.
Let p to be the number of states in M. For $w = w_1, \ldots, w_n$, let q_0, \ldots, q_n be the sequence of states that lead from start to accept on string w.

Limitations on regular languages

Pumping Lemma

If L is a regular language, then there exists an integer $p \geq 1$ such that for any $w \in L$ with $|w| > p$, w can be divided into 3 strings, $w = xyz$ such that:

1. $\forall i \geq 0, xy^iz \in L$
2. $|y| > 0$
3. $|xy| \leq p$

Since L is regular, \exists DFA M that recognizes L.
Let p to be the number of states in M. For $w = w_1, \ldots, w_n$, let q_0, \ldots, q_n be the sequence of states that lead from start to accept on string w.
Because $n > p$, some state must repeat in this sequence. Let q^* be the first to repeat.
Limitations on regular languages

Pumping Lemma

If L is a regular language, then there exists an integer $p \geq 1$ such that for any $w \in L$ with $|w| > p$, w can be divided into 3 strings, $w = xyz$ such that:

1. $\forall i \geq 0, xy^iz \in L$
2. $|y| > 0$
3. $|xy| \leq p$

Since L is regular, \exists DFA M that recognizes L.
Let p to be the number of states in M. For $w = w_1, \ldots, w_n$, let q_0, \ldots, q_n be the sequence of states that lead from start to accept on string w.
Because $n > p$, some state must repeat in this sequence. Let q^* be the first to repeat.
Let s be the index of first appearance of q^*, t be the index of the first repetition of q^*.
Limitations on regular languages

Pumping Lemma

If L is a regular language, then there exists an integer $p \geq 1$ such that for any $w \in L$ with $|w| > p$, w can be divided into 3 strings, $w = xyz$ such that:

1. $\forall i \geq 0, xy^iz \in L$
2. $|y| > 0$
3. $|xy| \leq p$

Since L is regular, \exists DFA M that recognizes L.
Let p to be the number of states in M. For $w = w_1, \ldots, w_n$, let q_0, \ldots, q_n be the sequence of states that lead from start to accept on string w.
Because $n > p$, some state must repeat in this sequence. Let q^* be the first to repeat.
Let s be the index of first appearance of q^*, t be the index of the first repetition of q^*.
Let $x = w_1 \cdots w_s$, $y = w_{s+1} \cdots w_t$, and $z = w_{t+1} \cdots w_n$.
Limitations on regular languages

Pumping Lemma

If L is a regular language, then there exists an integer $p \geq 1$ such that for any $w \in L$ with $|w| > p$, w can be divided into 3 strings, $w = xyz$ such that:

1. $\forall i \geq 0, xy^i z \in L$
2. $|y| > 0$
3. $|xy| \leq p$

Since L is regular, \exists DFA M that recognizes L.

Let p to be the number of states in M. For $w = w_1, \ldots, w_n$, let q_0, \ldots, q_n be the sequence of states that lead from start to accept on string w.

Because $n > p$, some state must repeat in this sequence. Let q^* be the first to repeat. Let s be the index of first appearance of q^*, t be the index of the first repetition of q^*.

Let $x = w_1 \cdots w_s$, $y = w_{s+1} \cdots w_t$, and $z = w_{t+1} \cdots w_n$.
Limitations on regular languages

Pumping Lemma

If L is a regular language, then there exists an integer $p \geq 1$ such that for any $w \in L$ with $|w| > p$, w can be divided into 3 strings, $w = xyz$ such that:

1. $\forall i \geq 0, xy^iz \in L$
2. $|y| > 0$
3. $|xy| \leq p$

Since L is regular, \exists DFA M that recognizes L.
Let p to be the number of states in M. For $w = w_1, \ldots, w_n$, let q_0, \ldots, q_n be the sequence of states that lead from start to accept on string w.
Because $n > p$, some state must repeat in this sequence. Let q^* be the first to repeat.
Let s be the index of first appearance of q^*, t be the index of the first repetition of q^*.
Let $x = w_1 \cdots w_s$, $y = w_{s+1} \cdots w_t$, and $z = w_{t+1} \cdots w_n$.

[Diagram of DFA with states and transitions highlighted]
Limitations on regular languages

Pumping Lemma

If L is a regular language, then there exists an integer $p \geq 1$ such that for any $w \in L$ with $|w| > p$, w can be divided into 3 strings, $w = xyz$ such that:

1. $\forall i \geq 0, xy^i z \in L$
2. $|y| > 0$
3. $|xy| \leq p$

Since L is regular, \exists DFA M that recognizes L.
Let p to be the number of states in M. For $w = w_1, \ldots, w_n$, let q_0, \ldots, q_n be the sequence of states that lead from start to accept on string w.
Because $n > p$, some state must repeat in this sequence. Let q^* be the first to repeat. Let s be the index of first appearance of q^*, t be the index of the first repetition of q^*.
Let $x = w_1 \cdots w_s$, $y = w_{s+1} \cdots w_t$, and $z = w_{t+1} \cdots w_n$.
To see that property 3 is satisfied: recall, t is the first repetition. If $t > p$, we must have more than p states.
Limitations on regular languages

Pumping Lemma

If L is a regular language, then there exists an integer $p \geq 1$ such that for any $w \in L$ with $|w| > p$, w can be divided into 3 strings, $w = xyz$ such that:

1. $\forall i \geq 0, xy^iz \in L$
2. $|y| > 0$
3. $|xy| \leq p$

Theorem

The language $L = \{a^nb^n | n \geq 0\}$ is not regular.
Limitations on regular languages

Pumping Lemma

If L is a regular language, then there exists an integer $p \geq 1$ such that for any $w \in L$ with $|w| > p$, w can be divided into 3 strings, $w = xyz$ such that:

1. $\forall i \geq 0, xy^i z \in L$
2. $|y| > 0$
3. $|xy| \leq p$

Theorem

The language $L = \{a^n b^n | n \geq 0\}$ is not regular.

Our lemma says:

$\exists p : \forall w \in L : |w| > p : \exists x, y, z \text{ s.t. all 3 properties are satisfied}$
Limitations on regular languages

Pumping Lemma

If L is a regular language, then there exists an integer $p \geq 1$ such that for any $w \in L$ with $|w| > p$, w can be divided into 3 strings, $w = xyz$ such that:

1. $\forall i \geq 0, xy^i z \in L$
2. $|y| > 0$
3. $|xy| \leq p$

Theorem

The language $L = \{a^n b^n | n \geq 0\}$ is not regular.

Our lemma says:

$\exists p : \forall w \in L : |w| > p : \exists x, y, z$ s.t. all 3 properties are satisfied

We want to show:

$\neg (\exists p : \forall w \in L : |w| > p : \exists x, y, z$ s.t. all 3 properties are satisfied)
Pumping Lemma

If L is a regular language, then there exists an integer $p \geq 1$ such that for any $w \in L$ with $|w| > p$, w can be divided into 3 strings, $w = xyz$ such that:

1. $\forall i \geq 0, xy^iz \in L$
2. $|y| > 0$
3. $|xy| \leq p$

Theorem

The language $L = \{a^n b^n | n \geq 0\}$ is not regular.

Our lemma says:
$\exists p : \forall w \in L : |w| > p : \exists x, y, z \text{ s.t. all 3 properties are satisfied}$

We want to show:
$\neg (\exists p : \forall w \in L : |w| > p : \exists x, y, z \text{ s.t. all 3 properties are satisfied})$
$\equiv \forall p : \exists w \in L : |w| > p : \forall x, y, z \text{ s.t. NOT all 3 properties are satsified}$
Limitations on regular languages

Pumping Lemma

If L is a regular language, then there exists an integer $p \geq 1$ such that for any $w \in L$ with $|w| > p$, w can be divided into 3 strings, $w = xyz$ such that:

1. $\forall i \geq 0, xy^iz \in L$
2. $|y| > 0$
3. $|xy| \leq p$

Theorem

The language $L = \{a^n b^n | n \geq 0\}$ is not regular.

Our lemma says:
$\exists p : \forall w \in L : |w| > p : \exists x, y, z$ s.t. all 3 properties are satisfied

We want to show:
$\neg (\exists p : \forall w \in L : |w| > p : \exists x, y, z$ s.t. all 3 properties are satisfied)
$\equiv \forall p : \exists w \in L : |w| > p : \forall x, y, z$ s.t. NOT all 3 properties are satisfied

Assume $p \geq 1$ (towards \forall introduction)
Limitations on regular languages

Pumping Lemma

If L is a regular language, then there exists an integer $p \geq 1$ such that for any $w \in L$ with $|w| > p$, w can be divided into 3 strings, $w = xyz$ such that:

1. $\forall i \geq 0, xy^i z \in L$
2. $|y| > 0$
3. $|xy| \leq p$

Theorem

The language $L = \{a^n b^n | n \geq 0\}$ is not regular.

Our lemma says:

$\exists p : \forall w \in L : |w| > p : \exists x, y, z \text{ s.t. all 3 properties are satisfied}$

We want to show:

$\neg (\exists p : \forall w \in L : |w| > p : \exists x, y, z \text{ s.t. all 3 properties are satisfied})$

$\equiv \forall p : \exists w \in L : |w| > p : \forall x, y, z \text{ s.t. NOT all 3 properties are satisfied}$

Assume $p \geq 1$ (towards \forall introduction)

Let $w = a^p b^p$
Limitations on regular languages

Pumping Lemma

If L is a regular language, then there exists an integer $p \geq 1$ such that for any $w \in L$ with $|w| > p$, w can be divided into 3 strings, $w = xyz$ such that:

1. $\forall i \geq 0, xy^iz \in L$
2. $|y| > 0$
3. $|xy| \leq p$

Theorem

The language $L = \{a^n b^n | n \geq 0\}$ is not regular.

Our lemma says:
$\exists p : \forall w \in L : |w| > p : \exists x, y, z$ s.t. all 3 properties are satisfied

We want to show:
$\neg(\exists p : \forall w \in L : |w| > p : \exists x, y, z$ s.t. all 3 properties are satisfied)$

$\equiv \forall p : \exists w \in L : |w| > p : \forall x, y, z$ s.t. NOT all 3 properties are satisfied

Assume $p \geq 1$ (towards \forall introduction)
Let $w = a^p b^p$

Claim: $\forall x, y, z, w$ violates (at least) one of the 3 properties.
Limitations on regular languages

Pumping Lemma

If L is a regular language, then there exists an integer $p \geq 1$ such that for any $w \in L$ with $|w| > p$, w can be divided into 3 strings, $w = xyz$ such that:

1. $\forall i \geq 0, xy^iz \in L$
2. $|y| > 0$
3. $|xy| \leq p$

Theorem

The language $L = \{a^nb^n | n \geq 0\}$ is not regular.

Our lemma says:
$\exists p : \forall w \in L : |w| > p : \exists x, y, z$ s.t. all 3 properties are satisfied

We want to show:
$\neg(\exists p : \forall w \in L : |w| > p : \exists x, y, z$ s.t. all 3 properties are satisfied $) \\
\equiv \forall p : \exists w \in L : |w| > p : \forall x, y, z$ s.t. NOT all 3 properties are satisfied

Assume $p \geq 1$ (towards \forall introduction)
Let $w = a^pb^p$

Claim: $\forall x, y, z, w$ violates (at least) one of the 3 properties.
If property 3 is violated, we’re done.
Suppose property 3 is not violated.
Limitations on regular languages

Pumping Lemma

If L is a regular language, then there exists an integer $p \geq 1$ such that for any $w \in L$ with $|w| > p$, w can be divided into 3 strings, $w = xyz$ such that:

1. $\forall i \geq 0, xy^iz \in L$
2. $|y| > 0$
3. $|xy| \leq p$

Theorem

The language $L = \{a^nb^n | n \geq 0\}$ is not regular.

Our lemma says:
$\exists p : \forall w \in L : |w| > p : \exists x, y, z$ s.t. all 3 properties are satisfied

We want to show:
$\neg (\exists p : \forall w \in L : |w| > p : \exists x, y, z$ s.t. all 3 properties are satisfied)

$\equiv \forall p : \exists w \in L : |w| > p : \forall x, y, z$ s.t. NOT all 3 properties are satisfied

Assume $p \geq 1$ (towards \forall introduction)

Let $w = a^pb^p$

Claim: $\forall x, y, z$, w violates (at least) one of the 3 properties.

If property 3 is violated, we’re done.

Suppose property 3 is not violated.

If property 2 is violated, we’re done.

Suppose property 2 is not violated.
Limitations on regular languages

Pumping Lemma

If L is a regular language, then there exists an integer $p \geq 1$ such that for any $w \in L$ with $|w| > p$, w can be divided into 3 strings, $w = xyz$ such that:

1. $\forall i \geq 0, xy^i z \in L$
2. $|y| > 0$
3. $|xy| \leq p$

Theorem

The language $L = \{a^n b^n | n \geq 0\}$ is not regular.

Our lemma says:
$\exists p : \forall w \in L : |w| > p : \exists x, y, z \text{ s.t. all 3 properties are satisfied}$

We want to show:
$\neg (\exists p : \forall w \in L : |w| > p : \exists x, y, z \text{ s.t. all 3 properties are satisfied})$
$\equiv \forall p : \exists w \in L : |w| > p : \forall x, y, z \text{ s.t. NOT all 3 properties are satisfied}$

Assume $p \geq 1$ (towards \forall introduction)

Let $w = a^p b^p$

Claim: $\forall x, y, z, w$ violates (at least) one of the 3 properties.

If property 3 is violated, we’re done.
Suppose property 3 is not violated.
If property 2 is violated, we’re done.
Suppose property 2 is not violated.
Then $y = aa^*$. $\forall i \geq 0 : xy^i z \notin L$.
Limitations on regular languages

Pumping Lemma

If \(L \) is a regular language, then there exists an integer \(p \geq 1 \) such that for any \(w \in L \) with \(|w| > p \), \(w \) can be divided into 3 strings, \(w = xyz \) such that:

1. \(\forall i \geq 0, \ xy^i z \in L \)
2. \(|y| > 0 \)
3. \(|xy| \leq p \)

Theorem

The language \(L \) of “balanced parenthesis” over \(\Sigma = \{‘(’, ‘)’\} \) is not regular.
Limitations on regular languages

Pumping Lemma

If \(L \) is a regular language, then there exists an integer \(p \geq 1 \) such that for any \(w \in L \) with \(|w| > p \), \(w \) can be divided into 3 strings, \(w = xyz \) such that:

1. \(\forall i \geq 0, xy^i z \in L \)
2. \(|y| > 0 \)
3. \(|xy| \leq p \)

Theorem

The language \(L \) of “balanced parenthesis” over \(\Sigma = \{\(', ')\} \) is not regular.

Our lemma says:
\[\exists p : \forall w \in L : |w| > p : \exists x, y, z \text{ s.t. all 3 properties are satisfied} \]
Limitations on regular languages

Pumping Lemma

If L is a regular language, then there exists an integer $p \geq 1$ such that for any $w \in L$ with $|w| > p$, w can be divided into 3 strings, $w = xyz$ such that:

1. $\forall i \geq 0, xy^iz \in L$
2. $|y| > 0$
3. $|xy| \leq p$

Theorem

The language L of “balanced parenthesis” over $\Sigma = \{ (,) \}$ is not regular.

Our lemma says:

$\exists p : \forall w \in L : |w| > p : \exists x, y, z \text{ s.t. all 3 properties are satisfied}$

We want to show:

$\neg(\exists p : \forall w \in L : |w| > p : \exists x, y, z \text{ s.t. all 3 properties are satisfied})$
Limitations on regular languages

Pumping Lemma

If L is a regular language, then there exists an integer $p \geq 1$ such that for any $w \in L$ with $|w| > p$, w can be divided into 3 strings, $w = xyz$ such that:

1. $\forall i \geq 0, xy^i z \in L$
2. $|y| > 0$
3. $|xy| \leq p$

Theorem

The language L of “balanced parenthesis” over $\Sigma = \{\ '(', \ ')' \}$ is not regular.

Our lemma says:

$\exists p : \forall w \in L : |w| > p : \exists x, y, z \text{ s.t. all 3 properties are satisfied}$

We want to show:

$\neg (\exists p : \forall w \in L : |w| > p : \exists x, y, z \text{ s.t. all 3 properties are satisfied})$

$\equiv \forall p : \exists w \in L : |w| > p : \forall x, y, z \text{ s.t. NOT all 3 properties are satisfied}$
Limitations on regular languages

Pumping Lemma

If \(L \) is a regular language, then there exists an integer \(p \geq 1 \) such that for any \(w \in L \) with \(|w| > p \), \(w \) can be divided into 3 strings, \(w = xyz \) such that:

1. \(\forall i \geq 0, xy^i z \in L \)
2. \(|y| > 0 \)
3. \(|xy| \leq p \)

Theorem

The language \(L \) of “balanced parenthesis” over \(\Sigma = \{', ')'\} \) is not regular.

Our lemma says:
\[\exists p : \forall w \in L : |w| > p : \exists x, y, z \text{ s.t. all 3 properties are satsified} \]

We want to show:
\[\neg (\exists p : \forall w \in L : |w| > p : \exists x, y, z \text{ s.t. all 3 properties are satsified}) \]
\[\equiv \forall p : \exists w \in L : |w| > p : \forall x, y, z \text{ s.t. NOT all 3 properties are satsified} \]

Assume \(p \geq 1 \) (towards \(\forall \) introduction)
Limitations on regular languages

Pumping Lemma

If L is a regular language, then there exists an integer $p \geq 1$ such that for any $w \in L$ with $|w| > p$, w can be divided into 3 strings, $w = xyz$ such that:

1. $\forall i \geq 0, xy^i z \in L$
2. $|y| > 0$
3. $|xy| \leq p$

Theorem

The language L of “balanced parenthesis” over $\Sigma = \{('\(', ')')\}$ is not regular.

Our lemma says:
$\exists p : \forall w \in L : |w| > p : \exists x, y, z \text{ s.t. all 3 properties are satisfied}$

We want to show:
$\neg(\exists p : \forall w \in L : |w| > p : \exists x, y, z \text{ s.t. all 3 properties are satisfied})$

$\equiv \forall p : \exists w \in L : |w| > p : \forall x, y, z \text{ s.t. NOT all 3 properties are satisfied}$

Assume $p \geq 1$ (towards \forall introduction)

Let $w = (((((\ldots (\ldots))\ldots))\ldots))$

p times p times
Limitations on regular languages

Pumping Lemma

If L is a regular language, then there exists an integer $p \geq 1$ such that for any $w \in L$ with $|w| > p$, w can be divided into 3 strings, $w = xyz$ such that:

1. $\forall i \geq 0, xy^i z \in L$
2. $|y| > 0$
3. $|xy| \leq p$

Theorem

The language L of “balanced parenthesis” over $\Sigma = \{\('(', ')')\}$ is not regular.

Our lemma says:
$\exists p : \forall w \in L : |w| > p : \exists x, y, z \text{ s.t. all 3 properties are satsified}$

We want to show:
$\neg (\exists p : \forall w \in L : |w| > p : \exists x, y, z \text{ s.t. all 3 properties are satsified})$

$\equiv \forall p : \exists w \in L : |w| > p : \forall x, y, z \text{ s.t. NOT all 3 properties are satsified}$

Assume $p \geq 1$ (towards \forall introduction)

Let $w = (((\cdots (((()))\cdots)))$ $p \text{ times}$ $p \text{ times}$

Claim: $\forall x, y, z, w$ violates (at least) one of the 3 properties.
Limitations on regular languages

Pumping Lemma

If L is a regular language, then there exists an integer $p \geq 1$ such that for any $w \in L$ with $|w| > p$, w can be divided into 3 strings, $w = xyz$ such that:

1. $\forall i \geq 0, xy^i z \in L$
2. $|y| > 0$
3. $|xy| \leq p$

Theorem

The language L of “balanced parenthesis” over $\Sigma = \{('(', ')')\}$ is not regular.

Our lemma says:
$\exists p : \forall w \in L : |w| > p : \exists x, y, z$ s.t. all 3 properties are satisfied

We want to show:
$\neg(\exists p : \forall w \in L : |w| > p : \exists x, y, z$ s.t. all 3 properties are satisfied)
$\equiv \forall p : \exists w \in L : |w| > p : \forall x, y, z$ s.t. NOT all 3 properties are satisified

Assume $p \geq 1$ (towards \forall introduction)

Let $w = (((\cdots (((()\cdots))))\cdots)))$

Claim: $\forall x, y, z, w$ violates (at least) one of the 3 properties.
Assume properties 2 and 3 are satisfied.
Limitations on regular languages

Pumping Lemma

If L is a regular language, then there exists an integer $p \geq 1$ such that for any $w \in L$ with $|w| > p$, w can be divided into 3 strings, $w = xyz$ such that:

1. $\forall i \geq 0, xy^iz \in L$
2. $|y| > 0$
3. $|xy| \leq p$

Theorem

The language L of “balanced parenthesis” over $\Sigma = \{',\)\}$ is not regular.

Our lemma says:
$\exists p : \forall w \in L : |w| > p : \exists x, y, z \text{ s.t. all 3 properties are satisfied}$

We want to show:
$\neg(\exists p : \forall w \in L : |w| > p : \exists x, y, z \text{ s.t. all 3 properties are satisfied})$

$\equiv \forall p : \exists w \in L : |w| > p : \forall x, y, z \text{ s.t. NOT all 3 properties are satisfied}$

Assume $p \geq 1$ (towards \forall introduction)
Let $w = (((\cdots (((()\cdots))))\cdots)))$

p times p times

Claim: $\forall x, y, z, w$ violates (at least) one of the 3 properties.
Assume properties 2 and 3 are satisfied.
Then $y = ((*. \forall i \geq 0 : xy^iz \notin L.$
Limitations on regular languages

Pumping Lemma

If L is a regular language, then there exists an integer $p \geq 1$ such that for any $w \in L$ with $|w| > p$, w can be divided into 3 strings, $w = xyz$ such that:

1. $\forall i \geq 0, xy^iz \in L$
2. $|y| > 0$
3. $|xy| \leq p$

Theorem

The language L of “balanced parenthesis” over $\Sigma = \{\(',\)'\}$ is not regular.

We want to show:
$\forall p : \exists w \in L : |w| > p : \forall x, y, z \text{ s.t. NOT all 3 properties are satsified}$

Assume $p \geq 1$ (towards \forall introduction)

Wrong answer:
Let $w = \underbrace{(())(\cdots())()}_p$
Pumping Lemma

If L is a regular language, then there exists an integer $p \geq 1$ such that for any $w \in L$ with $|w| > p$, w can be divided into 3 strings, $w = xyz$ such that:

1. $\forall i \geq 0, xy^iz \in L$
2. $|y| > 0$
3. $|xy| \leq p$

Theorem

The language L of “balanced parenthesis” over $\Sigma = \{\('', ')\}$ is not regular.

We want to show:
$\forall p : \exists w \in L : |w| > p : \forall x, y, z$ s.t. NOT all 3 properties are satisfied
Assume $p \geq 1$ (towards \forall introduction)

Wrong answer:
Let $w = (())(\cdots())()$
p times

Claim: $\forall x, y, z, w$ violates (at least) one of the 3 properties.
Limitations on regular languages

Pumping Lemma

If L is a regular language, then there exists an integer $p \geq 1$ such that for any $w \in L$ with $|w| > p$, w can be divided into 3 strings, $w = xyz$ such that:

1. $\forall i \geq 0, xy^iz \in L$
2. $|y| > 0$
3. $|xy| \leq p$

Theorem

The language L of “balanced parenthesis” over $\Sigma = \{('(', ')')\}$ is not regular.

We want to show:
$\forall p : \exists w \in L : |w| > p : \forall x, y, z$ s.t. NOT all 3 properties are satisfied
Assume $p \geq 1$ (towards \forall introduction)
Wrong answer:
Let $w = (())() \cdots ()()$

p times
Claim: $\forall x, y, z, w$ violates (at least) one of the 3 properties.
Assume properties 2 and 3 are satisfied.
Limitations on regular languages

Pumping Lemma

If L is a regular language, then there exists an integer $p \geq 1$ such that for any $w \in L$ with $|w| > p$, w can be divided into 3 strings, $w = xyz$ such that:

1. $\forall i \geq 0, xy^i z \in L$
2. $|y| > 0$
3. $|xy| \leq p$

Theorem

The language L of “balanced parenthesis” over $\Sigma = \{\text{'}(, \text{'}\text{)}\}$ is not regular.

We want to show:

$\forall p : \exists w \in L : |w| > p : \forall x, y, z \text{ s.t. NOT all 3 properties are satisfied}

Assume $p \geq 1$ (towards \forall introduction)

Wrong answer:

Let $w = (())(()) \cdots (()) (())$

Claim: $\forall x, y, z, w$ violates (at least) one of the 3 properties.

Assume properties 2 and 3 are satisfied.

If $y = ((), xy^i z \in L.$
Limitations on regular languages

Pumping Lemma

If \(L \) is a regular language, then there exists an integer \(p \geq 1 \) such that for any \(w \in L \) with \(|w| > p \), \(w \) can be divided into 3 strings, \(w = xyz \) such that:

1. \(\forall i \geq 0, xy^i z \in L \)
2. \(|y| > 0 \)
3. \(|xy| \leq p \)

Theorem

The language \(L \) of “balanced parenthesis” over \(\Sigma = \{\('', '\')\} \) is not regular.

We want to show:

\(\forall p : \exists w \in L : |w| > p : \forall x, y, z \) s.t. NOT all 3 properties are satisfied

Assume \(p \geq 1 \) (towards \(\forall \) introduction)

Wrong answer:

Let \(w = ()() \cdots ()(()) \)

\(p \) times

Claim: \(\forall x, y, z, w \) violates (at least) one of the 3 properties.

Assume properties 2 and 3 are satisfied.

If \(y = () \), \(xy^i z \in L \).

\(\neg \forall x, y, z : \forall i \geq 0 : xy^i z \notin L \).