Pumping Lemma

If L is a regular language, then there exists an integer $p \ge 1$ such that for any $w \in L$ with $|w| \ge p$, w can be divided into 3 strings, w = xyz such that:

1. $\forall i \ge 0, xy^i z \in L$ 2. |y| > 03. $|xy| \le p$

Pumping Lemma

If L is a regular language, then there exists an integer $p \ge 1$ such that for any $w \in L$ with $|w| \ge p$, w can be divided into 3 strings, w = xyz such that:

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

1. $\forall i \ge 0, xy^i z \in L$ 2. |y| > 03. $|xy| \le p$

Since L is regular, \exists DFA M that recognizes L.

Pumping Lemma

If L is a regular language, then there exists an integer $p \ge 1$ such that for any $w \in L$ with $|w| \ge p$, w can be divided into 3 strings, w = xyz such that:

1. $\forall i \ge 0, xy^i z \in L$ 2. |y| > 03. $|xy| \le p$

Since L is regular, \exists DFA M that recognizes L.

Let p to be the number of states in M. For $w = w_1, \ldots, w_n$, let q_0, \ldots, q_n be the sequence of states that lead from start to accept on string w.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Pumping Lemma

If L is a regular language, then there exists an integer $p \ge 1$ such that for any $w \in L$ with $|w| \ge p$, w can be divided into 3 strings, w = xyz such that:

1. $\forall i \ge 0, xy^i z \in L$ 2. |y| > 03. $|xy| \le p$

Since L is regular, \exists DFA M that recognizes L.

Let p to be the number of states in M. For $w = w_1, \ldots, w_n$, let q_0, \ldots, q_n be the sequence of states that lead from start to accept on string w.

Because n > p, some state must repeat in this sequence. Let q^* be the first to repeat.

Pumping Lemma

If L is a regular language, then there exists an integer $p \ge 1$ such that for any $w \in L$ with $|w| \ge p$, w can be divided into 3 strings, w = xyz such that:

- 1. $\forall i \geq 0, xy^i z \in L$ 2. |y| > 0
- 3. $|xy| \leq p$

Since L is regular, \exists DFA M that recognizes L.

Let p to be the number of states in M. For $w = w_1, \ldots, w_n$, let q_0, \ldots, q_n be the sequence of states that lead from start to accept on string w.

Because n > p, some state must repeat in this sequence. Let q^* be the first to repeat. Let s be the index of first appearance of q^* , t be the index of the first repetition of q^* .

Pumping Lemma

If L is a regular language, then there exists an integer $p \ge 1$ such that for any $w \in L$ with $|w| \ge p$, w can be divided into 3 strings, w = xyz such that:

- 1. $\forall i \geq 0, xy^i z \in L$ 2. |y| > 0
- 3. $|xy| \leq p$

Since L is regular, \exists DFA M that recognizes L.

Let p to be the number of states in M. For $w = w_1, \ldots, w_n$, let q_0, \ldots, q_n be the sequence of states that lead from start to accept on string w.

Because n > p, some state must repeat in this sequence. Let q^* be the first to repeat. Let s be the index of first appearance of q^* , t be the index of the first repetition of q^* . Let $x = w_1 \cdots w_s$, $y = w_{s+1} \cdots w_t$, and $z = w_{t+1} \cdots w_n$.

Pumping Lemma

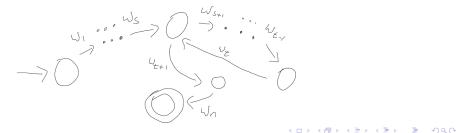
If L is a regular language, then there exists an integer $p \ge 1$ such that for any $w \in L$ with $|w| \ge p$, w can be divided into 3 strings, w = xyz such that:

1. $\forall i \ge 0, xy^i z \in L$ 2. |y| > 03. $|xy| \le p$

Since L is regular, \exists DFA M that recognizes L.

Let p to be the number of states in M. For $w = w_1, \ldots, w_n$, let q_0, \ldots, q_n be the sequence of states that lead from start to accept on string w.

Because n > p, some state must repeat in this sequence. Let q^* be the first to repeat. Let s be the index of first appearance of q^* , t be the index of the first repetition of q^* . Let $x = w_1 \cdots w_s$, $y = w_{s+1} \cdots w_t$, and $z = w_{t+1} \cdots w_n$.



Pumping Lemma

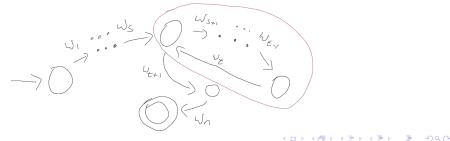
If L is a regular language, then there exists an integer $p \ge 1$ such that for any $w \in L$ with $|w| \ge p$, w can be divided into 3 strings, w = xyz such that:

1. $\forall i \ge 0, xy^i z \in L$ 2. |y| > 03. $|xy| \le p$

Since L is regular, \exists DFA M that recognizes L.

Let p to be the number of states in M. For $w = w_1, \ldots, w_n$, let q_0, \ldots, q_n be the sequence of states that lead from start to accept on string w.

Because n > p, some state must repeat in this sequence. Let q^* be the first to repeat. Let s be the index of first appearance of q^* , t be the index of the first repetition of q^* . Let $x = w_1 \cdots w_s$, $y = w_{s+1} \cdots w_t$, and $z = w_{t+1} \cdots w_n$.



Pumping Lemma

If L is a regular language, then there exists an integer $p \ge 1$ such that for any $w \in L$ with $|w| \ge p$, w can be divided into 3 strings, w = xyz such that:

- 1. $\forall i \geq 0, xy^i z \in L$
- **2**. |y| > 0
- 3. $|xy| \leq p$

Since L is regular, \exists DFA M that recognizes L.

Let p to be the number of states in M. For $w = w_1, \ldots, w_n$, let q_0, \ldots, q_n be the sequence of states that lead from start to accept on string w.

Because n > p, some state must repeat in this sequence. Let q^* be the first to repeat. Let s be the index of first appearance of q^* , t be the index of the first repetition of q^* . Let $x = w_1 \cdots w_s$, $y = w_{s+1} \cdots w_t$, and $z = w_{t+1} \cdots w_n$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

To see that property 3 is satisfied: recall, t is the first repetition. If t > p, we must have more than p states.

Pumping Lemma

If L is a regular language, then there exists an integer $p \ge 1$ such that for any $w \in L$ with $|w| \ge p$, w can be divided into 3 strings, w = xyz such that:

- 1. $\forall i \geq 0, xy^i z \in L$
- **2**. |y| > 0
- 3. $|xy| \leq p$

Theorem

The language $L = \{a^n b^n | n \ge 0\}$ is not regular.

Pumping Lemma

If L is a regular language, then there exists an integer $p \ge 1$ such that for any $w \in L$ with $|w| \ge p$, w can be divided into 3 strings, w = xyz such that:

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- 1. $\forall i \geq 0, xy^i z \in L$
- **2**. |y| > 0
- 3. $|xy| \leq p$

Theorem

The language $L = \{a^n b^n | n \ge 0\}$ is not regular.

Our lemma says: $\exists p: \forall w \in L: |w| \ge p: \exists x, y, z \text{ s.t. all 3 properties are satsified}$

Pumping Lemma

If L is a regular language, then there exists an integer $p \ge 1$ such that for any $w \in L$ with $|w| \ge p$, w can be divided into 3 strings, w = xyz such that:

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

- 1. $\forall i \geq 0, xy^i z \in L$
- **2**. |y| > 0
- 3. $|xy| \leq p$

Theorem

The language $L = \{a^n b^n | n \ge 0\}$ is not regular.

Our lemma says: $\exists p: \forall w \in L: |w| \ge p: \exists x, y, z \text{ s.t. all 3 properties are satsified}$ We want to show: $\neg(\exists p: \forall w \in L: |w| \ge p: \exists x, y, z \text{ s.t. all 3 properties are satsified})$

Pumping Lemma

If L is a regular language, then there exists an integer $p \ge 1$ such that for any $w \in L$ with $|w| \ge p$, w can be divided into 3 strings, w = xyz such that:

- 1. $\forall i \geq 0, xy^i z \in L$
- **2**. |y| > 0
- 3. $|xy| \leq p$

Theorem

The language $L = \{a^n b^n | n \ge 0\}$ is not regular.

Our lemma says:

 $\exists p : \forall w \in L : |w| \ge p : \exists x, y, z \text{ s.t. all 3 properties are satsified}$ We want to show: $\neg(\exists p : \forall w \in L : |w| > p : \exists x, y, z \text{ s.t. all 3 properties are satsified})$

 $\equiv \forall p: \exists w \in L: |w| \geq p: \forall x, y, z \text{ s.t. NOT all 3 properties are satsified}$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Pumping Lemma

If L is a regular language, then there exists an integer $p \ge 1$ such that for any $w \in L$ with $|w| \ge p$, w can be divided into 3 strings, w = xyz such that:

- 1. $\forall i \geq 0, xy^i z \in L$
- **2**. |y| > 0
- 3. $|xy| \leq p$

Theorem

The language $L = \{a^n b^n | n \ge 0\}$ is not regular.

Our lemma says: $\exists p: \forall w \in L: |w| \ge p: \exists x, y, z \text{ s.t. all 3 properties are satsified}$ We want to show: $\neg(\exists p: \forall w \in L: |w| \ge p: \exists x, y, z \text{ s.t. all 3 properties are satsified})$ $\equiv \forall p: \exists w \in L: |w| \ge p: \forall x, y, z \text{ s.t. NOT all 3 properties are satsified}$ Assume $p \ge 1$ (towards \forall introduction)

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

Pumping Lemma

If L is a regular language, then there exists an integer $p \ge 1$ such that for any $w \in L$ with $|w| \ge p$, w can be divided into 3 strings, w = xyz such that:

- 1. $\forall i \geq 0, xy^i z \in L$
- **2**. |y| > 0
- 3. $|xy| \leq p$

Theorem

The language $L = \{a^n b^n | n \ge 0\}$ is not regular.

Our lemma says: $\exists p: \forall w \in L: |w| \geq p: \exists x, y, z \text{ s.t. all 3 properties are satsified}$ We want to show: $\neg(\exists p: \forall w \in L: |w| \geq p: \exists x, y, z \text{ s.t. all 3 properties are satsified})$ $\equiv \forall p: \exists w \in L: |w| \geq p: \forall x, y, z \text{ s.t. NOT all 3 properties are satsified}$ Assume $p \geq 1$ (towards \forall introduction) Let $w = a^p b^p$

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

Pumping Lemma

If L is a regular language, then there exists an integer $p \ge 1$ such that for any $w \in L$ with $|w| \ge p$, w can be divided into 3 strings, w = xyz such that:

- 1. $\forall i \geq 0, xy^i z \in L$
- **2**. |y| > 0
- 3. $|xy| \leq p$

Theorem

The language $L = \{a^n b^n | n \ge 0\}$ is not regular.

Our lemma says: $\exists p: \forall w \in L: |w| \ge p: \exists x, y, z \text{ s.t. all 3 properties are satsified}$ We want to show: $\neg(\exists p: \forall w \in L: |w| \ge p: \exists x, y, z \text{ s.t. all 3 properties are satsified})$ $\equiv \forall p: \exists w \in L: |w| \ge p: \forall x, y, z \text{ s.t. NOT all 3 properties are satsified}$ Assume $p \ge 1$ (towards \forall introduction) Let $w = a^p b^p$ Claim: $\forall x, y, z, w$ violates (at least) one of the 3 properties.

Pumping Lemma

If L is a regular language, then there exists an integer $p \ge 1$ such that for any $w \in L$ with $|w| \ge p$, w can be divided into 3 strings, w = xyz such that:

- 1. $\forall i \geq 0, xy^i z \in L$
- **2**. |y| > 0
- 3. $|xy| \leq p$

Theorem

The language $L = \{a^n b^n | n \ge 0\}$ is not regular.

Our lemma says: $\exists p: \forall w \in L: |w| \geq p: \exists x, y, z \text{ s.t. all 3 properties are satsified}$ We want to show: $\neg(\exists p: \forall w \in L: |w| \geq p: \exists x, y, z \text{ s.t. all 3 properties are satsified})$ $\equiv \forall p: \exists w \in L: |w| \geq p: \forall x, y, z \text{ s.t. NOT all 3 properties are satsified}$ Assume $p \geq 1$ (towards \forall introduction) Let $w = a^p b^p$ Claim: $\forall x, y, z, w$ violates (at least) one of the 3 properties. If property 3 is violated, we're done. Suppose property 3 is not violated.

Pumping Lemma

If L is a regular language, then there exists an integer $p \ge 1$ such that for any $w \in L$ with $|w| \ge p$, w can be divided into 3 strings, w = xyz such that:

- 1. $\forall i \geq 0, xy^i z \in L$
- **2**. |y| > 0
- 3. $|xy| \leq p$

Theorem

The language $L = \{a^n b^n | n \ge 0\}$ is not regular.

Our lemma says: $\exists p: \forall w \in L: |w| \geq p: \exists x, y, z \text{ s.t. all 3 properties are satsified}$ We want to show: $\neg(\exists p: \forall w \in L: |w| \geq p: \exists x, y, z \text{ s.t. all 3 properties are satsified}) \equiv \forall p: \exists w \in L: |w| \geq p: \forall x, y, z \text{ s.t. NOT all 3 properties are satsified}$ Assume $p \geq 1$ (towards \forall introduction) Let $w = a^p b^p$ Claim: $\forall x, y, z, w$ violates (at least) one of the 3 properties. If property 3 is violated, we're done. Suppose property 3 is not violated. If property 2 is not violated.

Pumping Lemma

If L is a regular language, then there exists an integer $p \ge 1$ such that for any $w \in L$ with $|w| \ge p$, w can be divided into 3 strings, w = xyz such that:

- 1. $\forall i \geq 0, xy^i z \in L$
- **2**. |y| > 0
- 3. $|xy| \leq p$

Theorem

The language $L = \{a^n b^n | n \ge 0\}$ is not regular.

Our lemma says: $\exists p: \forall w \in L: |w| \ge p: \exists x, y, z \text{ s.t. all 3 properties are satsified}$ We want to show: $\neg(\exists p: \forall w \in L: |w| \ge p: \exists x, y, z \text{ s.t. all 3 properties are satsified})$ $\equiv \forall p: \exists w \in L: |w| \ge p: \forall x, y, z \text{ s.t. NOT all 3 properties are satsified}$ Assume $p \ge 1$ (towards \forall introduction) Let $w = a^p b^p$ Claim: $\forall x, y, z, w$ violates (at least) one of the 3 properties. If property 3 is violated, we're done. Suppose property 3 is not violated. If property 2 is violated, we're done. Suppose property 2 is not violated. Then $y \in \{aa^j\}_{j=0}^{p-1}$. $\forall i \ge 0: xy^i z \notin L$.

Pumping Lemma

If L is a regular language, then there exists an integer $p \ge 1$ such that for any $w \in L$ with $|w| \ge p$, w can be divided into 3 strings, w = xyz such that:

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- $\begin{array}{ll} 1. & \forall i \geq 0, xy^i z \in L \\ 2. & |y| > 0 \end{array}$
- 3. $|xy| \leq p$

Theorem

The language L of "balanced parenthesis" over $\Sigma = \{ (', ')' \}$ is not regular.

Pumping Lemma

If L is a regular language, then there exists an integer $p\geq 1$ such that for any $w\in L$ with $|w|\geq p,~w$ can be divided into 3 strings, w=xyz such that:

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- 1. $\forall i \geq 0, xy^i z \in L$ 2. |y| > 02. $|mu| \leq n$
- 3. $|xy| \leq p$

Theorem

The language L of "balanced parenthesis" over $\Sigma = \{ (', ')' \}$ is not regular.

Examples of strings in the language: ((()))()() and ()(()())

Pumping Lemma

If L is a regular language, then there exists an integer $p \ge 1$ such that for any $w \in L$ with $|w| \ge p$, w can be divided into 3 strings, w = xyz such that:

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- 1. $\forall i \geq 0, xy^i z \in L$ 2. |y| > 0
- 3. $|xy| \leq p$

Theorem

The language L of "balanced parenthesis" over $\Sigma = \{ (', ')' \}$ is not regular.

Our lemma says: $\exists p: \forall w \in L: |w| \geq p: \exists x, y, z \text{ s.t. all 3 properties are satsified}$

Pumping Lemma

If L is a regular language, then there exists an integer $p \ge 1$ such that for any $w \in L$ with $|w| \ge p$, w can be divided into 3 strings, w = xyz such that:

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- 1. $\forall i \geq 0, xy^i z \in L$
- 2. |y| > 0
- 3. $|xy| \leq p$

Theorem

The language L of "balanced parenthesis" over $\Sigma = \{ (', ')' \}$ is not regular.

Our lemma says: $\exists p: \forall w \in L: |w| \ge p: \exists x, y, z \text{ s.t. all 3 properties are satsified}$ We want to show: $\neg(\exists p: \forall w \in L: |w| \ge p: \exists x, y, z \text{ s.t. all 3 properties are satsified})$

Pumping Lemma

If L is a regular language, then there exists an integer $p \ge 1$ such that for any $w \in L$ with $|w| \ge p$, w can be divided into 3 strings, w = xyz such that:

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- 1. $\forall i \geq 0, xy^i z \in L$
- **2**. |y| > 0
- 3. $|xy| \leq p$

Theorem

The language L of "balanced parenthesis" over $\Sigma = \{ (', ')' \}$ is not regular.

Our lemma says: $\exists p: \forall w \in L: |w| \ge p: \exists x, y, z \text{ s.t. all 3 properties are satsified}$ We want to show: $\neg(\exists p: \forall w \in L: |w| \ge p: \exists x, y, z \text{ s.t. all 3 properties are satsified})$ $\equiv \forall p: \exists w \in L: |w| \ge p: \forall x, y, z \text{ s.t. NOT all 3 properties are satsified}$

Pumping Lemma

If L is a regular language, then there exists an integer $p \ge 1$ such that for any $w \in L$ with $|w| \ge p$, w can be divided into 3 strings, w = xyz such that:

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- 1. $\forall i \geq 0, xy^i z \in L$
- **2**. |y| > 0
- 3. $|xy| \leq p$

Theorem

The language L of "balanced parenthesis" over $\Sigma = \{ (', ')' \}$ is not regular.

Our lemma says: $\exists p: \forall w \in L: |w| \ge p: \exists x, y, z \text{ s.t. all 3 properties are satsified}$ We want to show: $\neg(\exists p: \forall w \in L: |w| \ge p: \exists x, y, z \text{ s.t. all 3 properties are satsified})$ $\equiv \forall p: \exists w \in L: |w| \ge p: \forall x, y, z \text{ s.t. NOT all 3 properties are satsified}$ Assume $p \ge 1$ (towards \forall introduction)

Pumping Lemma

If L is a regular language, then there exists an integer $p \ge 1$ such that for any $w \in L$ with $|w| \ge p$, w can be divided into 3 strings, w = xyz such that:

- 1. $\forall i \geq 0, xy^i z \in L$
- **2**. |y| > 0
- 3. $|xy| \leq p$

Theorem

The language L of "balanced parenthesis" over $\Sigma = \{ (', ')' \}$ is not regular.

Our lemma says: $\exists p: \forall w \in L: |w| \ge p: \exists x, y, z \text{ s.t. all 3 properties are satsified}$ We want to show: $\neg(\exists p: \forall w \in L: |w| \ge p: \exists x, y, z \text{ s.t. all 3 properties are satsified})$ $\equiv \forall p: \exists w \in L: |w| \ge p: \forall x, y, z \text{ s.t. NOT all 3 properties are satsified}$ Assume $p \ge 1$ (towards \forall introduction) Let $w = \underbrace{((\cdots ((())) \cdots)))}_{p \text{ times}}$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Pumping Lemma

If L is a regular language, then there exists an integer $p \ge 1$ such that for any $w \in L$ with $|w| \ge p$, w can be divided into 3 strings, w = xyz such that:

- 1. $\forall i \geq 0, xy^i z \in L$
- **2**. |y| > 0
- 3. $|xy| \leq p$

Theorem

The language L of "balanced parenthesis" over $\Sigma = \{ (', ')' \}$ is not regular.

Our lemma says:

 $\exists p : \forall w \in L : |w| \ge p : \exists x, y, z \text{ s.t. all 3 properties are satsified}$ We want to show: $\neg (\exists p : \forall w \in L : |w| \ge p : \exists x, y, z \text{ s.t. all 3 properties are satsified})$

 $= \forall p : \exists w \in L : |w| \ge p : \exists x, y, z \text{ s.t. NOT all 3 properties are satisfied}$ Assume $p \ge 1$ (towards \forall introduction) Let $w = (((\cdots ((())) \cdots)))$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

p times p timesClaim: $\forall x, y, z, w \text{ violates (at least) one of the 3 properties.}$

Pumping Lemma

If L is a regular language, then there exists an integer $p \ge 1$ such that for any $w \in L$ with $|w| \ge p$, w can be divided into 3 strings, w = xyz such that:

- 1. $\forall i \geq 0, xy^i z \in L$
- **2**. |y| > 0
- 3. $|xy| \leq p$

Theorem

The language L of "balanced parenthesis" over $\Sigma = \{ (', ')' \}$ is not regular.

Our lemma says:

 $\begin{array}{l} \exists p: \forall w \in L: |w| \geq p: \exists x, y, z \text{ s.t. all 3 properties are satsified} \\ \text{We want to show:} \\ \neg(\exists p: \forall w \in L: |w| \geq p: \exists x, y, z \text{ s.t. all 3 properties are satsified}) \\ \equiv \forall p: \exists w \in L: |w| \geq p: \forall x, y, z \text{ s.t. NOT all 3 properties are satsified} \\ \text{Assume } p \geq 1 \text{ (towards }\forall \text{ introduction}) \\ \text{Let } w = \underbrace{(((\cdots ((())) \cdots)))}_{p \text{ times}} p \text{ times} \end{array}$

Claim: $\forall x, y, z, w$ violates (at least) one of the 3 properties. Assume properties 2 and 3 are satisfied.

Pumping Lemma

If L is a regular language, then there exists an integer $p \ge 1$ such that for any $w \in L$ with $|w| \ge p$, w can be divided into 3 strings, w = xyz such that:

- 1. $\forall i \geq 0, xy^i z \in L$
- **2**. |y| > 0
- 3. $|xy| \leq p$

Theorem

The language L of "balanced parenthesis" over $\Sigma = \{ (', ')' \}$ is not regular.

Our lemma says:

 $\begin{array}{l} \exists p: \forall w \in L: |w| \geq p: \exists x, y, z \text{ s.t. all 3 properties are satsified} \\ \text{We want to show:} \\ \neg(\exists p: \forall w \in L: |w| \geq p: \exists x, y, z \text{ s.t. all 3 properties are satsified}) \\ \equiv \forall p: \exists w \in L: |w| \geq p: \forall x, y, z \text{ s.t. NOT all 3 properties are satsified} \\ \text{Assume } p \geq 1 \text{ (towards }\forall \text{ introduction}) \\ \text{Let } w = \underbrace{(((\cdots ((())) \cdots)))}_{p \text{ times}} \\ \text{Claim: } \forall x, y, z, w \text{ violates (at least) one of the 3 properties.} \\ \text{Assume properties 2 and 3 are satisfied.} \\ \text{Then } y \in \{((j^{3})_{j=0}^{p-1}, \forall i \geq 0: xy^{i}z \notin L. \\ \end{array} \right.$

Pumping Lemma

If L is a regular language, then there exists an integer $p \ge 1$ such that for any $w \in L$ with $|w| \ge p$, w can be divided into 3 strings, w = xyz such that:

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- 1. $\forall i \geq 0, xy^i z \in L$
- **2**. |y| > 0
- 3. $|xy| \leq p$

Theorem

The language L of "balanced parenthesis" over $\Sigma = \{ (', ')' \}$ is not regular.

We want to show: $\forall p : \exists w \in L : |w| \ge p : \forall x, y, z \text{ s.t. NOT all 3 properties are satisfied}$ Assume $p \ge 1$ (towards \forall introduction) Wrong answer: Let $w = \underbrace{()()() \cdots ()()()}_{p \text{ times}}$

Pumping Lemma

If L is a regular language, then there exists an integer $p \ge 1$ such that for any $w \in L$ with $|w| \ge p$, w can be divided into 3 strings, w = xyz such that:

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- 1. $\forall i \geq 0, xy^i z \in L$
- **2**. |y| > 0
- 3. $|xy| \leq p$

Theorem

The language L of "balanced parenthesis" over $\Sigma = \{ (', ')' \}$ is not regular.

We want to show: $\forall p : \exists w \in L : |w| \ge p : \forall x, y, z \text{ s.t. NOT all 3 properties are satisfied}$ Assume $p \ge 1$ (towards \forall introduction) Wrong answer: Let $w = \underbrace{()()() \cdots ()()()}_{n \text{ times}}$

Claim: $\forall x, y, z, w$ violates (at least) one of the 3 properties.

Pumping Lemma

If L is a regular language, then there exists an integer $p \ge 1$ such that for any $w \in L$ with $|w| \ge p$, w can be divided into 3 strings, w = xyz such that:

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- 1. $\forall i \geq 0, xy^i z \in L$
- **2**. |y| > 0
- 3. $|xy| \leq p$

Theorem

The language L of "balanced parenthesis" over $\Sigma = \{ (', ')' \}$ is not regular.

We want to show: $\forall p: \exists w \in L: |w| \geq p: \forall x, y, z \text{ s.t. NOT all 3 properties are satsified}$ Assume $p \geq 1$ (towards \forall introduction) Wrong answer: Let $w = \underbrace{()()()\cdots()()()}_{p \text{ times}}$ Claim: $\forall x, y, z, w$ violates (at least) one of the 3 properties.

Assume properties 2 and 3 are satisfied.

Pumping Lemma

If L is a regular language, then there exists an integer $p \ge 1$ such that for any $w \in L$ with $|w| \ge p$, w can be divided into 3 strings, w = xyz such that:

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- 1. $\forall i \geq 0, xy^i z \in L$
- **2**. |y| > 0
- 3. $|xy| \leq p$

Theorem

The language L of "balanced parenthesis" over $\Sigma = \{ (', ')' \}$ is not regular.

We want to show: $\forall p : \exists w \in L : |w| \geq p : \forall x, y, z \text{ s.t. NOT all 3 properties are satsified}$ Assume $p \geq 1$ (towards \forall introduction) Wrong answer: Let $w = \underbrace{()()() \cdots ()()()}_{p \text{ times}}$ Claim: $\forall x, y, z, w$ violates (at least) one of the 3 properties. Assume properties 2 and 3 are satisfied. If $y = (), xy^i z \in L$.

Pumping Lemma

If L is a regular language, then there exists an integer $p \ge 1$ such that for any $w \in L$ with $|w| \ge p$, w can be divided into 3 strings, w = xyz such that:

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- 1. $\forall i \geq 0, xy^i z \in L$
- **2**. |y| > 0
- 3. $|xy| \leq p$

Theorem

The language L of "balanced parenthesis" over $\Sigma = \{ (', ')' \}$ is not regular.

We want to show: $\forall p : \exists w \in L : |w| \geq p : \forall x, y, z \text{ s.t. NOT all 3 properties are satsified}$ Assume $p \geq 1$ (towards \forall introduction) Wrong answer: Let $w = \underbrace{()()() \cdots ()()()}_{p \text{ times}}$ Claim: $\forall x, y, z, w$ violates (at least) one of the 3 properties. Assume properties 2 and 3 are satisfied. If $y = (), xy^i z \in L$. $\neg \forall x, y, z : \forall i \geq 0 : xy^i z \notin L$.