Limitations on regular languages

Pumping Lemma

If L is a regular language, then there exists an integer $p \geq 1$ such that for any $w \in L$ with $|w| \geq p, w$ can be divided into 3 strings, $w=x y z$ such that:

1. $\forall i \geq 0, x y^{i} z \in L$
2. $|y|>0$
3. $|x y| \leq p$

Limitations on regular languages

Pumping Lemma

If L is a regular language, then there exists an integer $p \geq 1$ such that for any $w \in L$ with $|w| \geq p, w$ can be divided into 3 strings, $w=x y z$ such that:

1. $\forall i \geq 0, x y^{i} z \in L$
2. $|y|>0$
3. $|x y| \leq p$

Since L is regular, \exists DFA M that recognizes L.

Limitations on regular languages

Pumping Lemma

If L is a regular language, then there exists an integer $p \geq 1$ such that for any $w \in L$ with $|w| \geq p, w$ can be divided into 3 strings, $w=x y z$ such that:

1. $\forall i \geq 0, x y^{i} z \in L$
2. $|y|>0$
3. $|x y| \leq p$

Since L is regular, \exists DFA M that recognizes L. Let p to be the number of states in M. For $w=w_{1}, \ldots, w_{n}$, let q_{0}, \ldots, q_{n} be the sequence of states that lead from start to accept on string w.

Limitations on regular languages

Pumping Lemma

If L is a regular language, then there exists an integer $p \geq 1$ such that for any $w \in L$ with $|w| \geq p, w$ can be divided into 3 strings, $w=x y z$ such that:

1. $\forall i \geq 0, x y^{i} z \in L$
2. $|y|>0$
3. $|x y| \leq p$

Since L is regular, \exists DFA M that recognizes L. Let p to be the number of states in M. For $w=w_{1}, \ldots, w_{n}$, let q_{0}, \ldots, q_{n} be the sequence of states that lead from start to accept on string w. Because $n>p$, some state must repeat in this sequence. Let q^{*} be the first to repeat.

Limitations on regular languages

Pumping Lemma

If L is a regular language, then there exists an integer $p \geq 1$ such that for any $w \in L$ with $|w| \geq p, w$ can be divided into 3 strings, $w=x y z$ such that:

1. $\forall i \geq 0, x y^{i} z \in L$
2. $|y|>0$
3. $|x y| \leq p$

Since L is regular, \exists DFA M that recognizes L. Let p to be the number of states in M. For $w=w_{1}, \ldots, w_{n}$, let q_{0}, \ldots, q_{n} be the sequence of states that lead from start to accept on string w. Because $n>p$, some state must repeat in this sequence. Let q^{*} be the first to repeat. Let s be the index of first appearance of q^{*}, t be the index of the first repetition of q^{*}.

Limitations on regular languages

Pumping Lemma

If L is a regular language, then there exists an integer $p \geq 1$ such that for any $w \in L$ with $|w| \geq p, w$ can be divided into 3 strings, $w=x y z$ such that:

1. $\forall i \geq 0, x y^{i} z \in L$
2. $|y|>0$
3. $|x y| \leq p$

Since L is regular, \exists DFA M that recognizes L. Let p to be the number of states in M. For $w=w_{1}, \ldots, w_{n}$, let q_{0}, \ldots, q_{n} be the sequence of states that lead from start to accept on string w.
Because $n>p$, some state must repeat in this sequence. Let q^{*} be the first to repeat. Let s be the index of first appearance of q^{*}, t be the index of the first repetition of q^{*}. Let $x=w_{1} \cdots w_{s}, y=w_{s+1} \cdots w_{t}$, and $z=w_{t+1} \cdots w_{n}$.

Limitations on regular languages

Pumping Lemma

If L is a regular language, then there exists an integer $p \geq 1$ such that for any $w \in L$ with $|w| \geq p, w$ can be divided into 3 strings, $w=x y z$ such that:

1. $\forall i \geq 0, x y^{i} z \in L$
2. $|y|>0$
3. $|x y| \leq p$

Since L is regular, \exists DFA M that recognizes L. Let p to be the number of states in M. For $w=w_{1}, \ldots, w_{n}$, let q_{0}, \ldots, q_{n} be the sequence of states that lead from start to accept on string w. Because $n>p$, some state must repeat in this sequence. Let q^{*} be the first to repeat. Let s be the index of first appearance of q^{*}, t be the index of the first repetition of q^{*}. Let $x=w_{1} \cdots w_{s}, y=w_{s+1} \cdots w_{t}$, and $z=w_{t+1} \cdots w_{n}$.

Limitations on regular languages

Pumping Lemma

If L is a regular language, then there exists an integer $p \geq 1$ such that for any $w \in L$ with $|w| \geq p, w$ can be divided into 3 strings, $w=x y z$ such that:

1. $\forall i \geq 0, x y^{i} z \in L$
2. $|y|>0$
3. $|x y| \leq p$

Since L is regular, \exists DFA M that recognizes L. Let p to be the number of states in M. For $w=w_{1}, \ldots, w_{n}$, let q_{0}, \ldots, q_{n} be the sequence of states that lead from start to accept on string w. Because $n>p$, some state must repeat in this sequence. Let q^{*} be the first to repeat. Let s be the index of first appearance of q^{*}, t be the index of the first repetition of q^{*}. Let $x=w_{1} \cdots w_{s}, y=w_{s+1} \cdots w_{t}$, and $z=w_{t+1} \cdots w_{n}$.

Limitations on regular languages

Pumping Lemma

If L is a regular language, then there exists an integer $p \geq 1$ such that for any $w \in L$ with $|w| \geq p, w$ can be divided into 3 strings, $w=x y z$ such that:

1. $\forall i \geq 0, x y^{i} z \in L$
2. $|y|>0$
3. $|x y| \leq p$

Since L is regular, \exists DFA M that recognizes L. Let p to be the number of states in M. For $w=w_{1}, \ldots, w_{n}$, let q_{0}, \ldots, q_{n} be the sequence of states that lead from start to accept on string w. Because $n>p$, some state must repeat in this sequence. Let q^{*} be the first to repeat. Let s be the index of first appearance of q^{*}, t be the index of the first repetition of q^{*}. Let $x=w_{1} \cdots w_{s}, y=w_{s+1} \cdots w_{t}$, and $z=w_{t+1} \cdots w_{n}$.
To see that property 3 is satisfied: recall, t is the first repetition. If $t>p$, we must have more than p states.

Limitations on regular languages

Pumping Lemma

If L is a regular language, then there exists an integer $p \geq 1$ such that for any $w \in L$ with $|w| \geq p, w$ can be divided into 3 strings, $w=x y z$ such that:

1. $\forall i \geq 0, x y^{i} z \in L$
2. $|y|>0$
3. $|x y| \leq p$

Theorem

The language $L=\left\{a^{n} b^{n} \mid n \geq 0\right\}$ is not regular.

Limitations on regular languages

Pumping Lemma

If L is a regular language, then there exists an integer $p \geq 1$ such that for any $w \in L$ with $|w| \geq p, w$ can be divided into 3 strings, $w=x y z$ such that:

1. $\forall i \geq 0, x y^{i} z \in L$
2. $|y|>0$
3. $|x y| \leq p$

Theorem

The language $L=\left\{a^{n} b^{n} \mid n \geq 0\right\}$ is not regular.
Our lemma says:
$\exists p: \forall w \in L:|w| \geq p: \exists x, y, z$ s.t. all 3 properties are satsified

Limitations on regular languages

Pumping Lemma

If L is a regular language, then there exists an integer $p \geq 1$ such that for any $w \in L$ with $|w| \geq p, w$ can be divided into 3 strings, $w=x y z$ such that:

1. $\forall i \geq 0, x y^{i} z \in L$
2. $|y|>0$
3. $|x y| \leq p$

Theorem

The language $L=\left\{a^{n} b^{n} \mid n \geq 0\right\}$ is not regular.
Our lemma says:
$\exists p: \forall w \in L:|w| \geq p: \exists x, y, z$ s.t. all 3 properties are satsified We want to show:
$\neg(\exists p: \forall w \in L:|w| \geq p: \exists x, y, z$ s.t. all 3 properties are satsified)

Limitations on regular languages

Pumping Lemma

If L is a regular language, then there exists an integer $p \geq 1$ such that for any $w \in L$ with $|w| \geq p, w$ can be divided into 3 strings, $w=x y z$ such that:

1. $\forall i \geq 0, x y^{i} z \in L$
2. $|y|>0$
3. $|x y| \leq p$

Theorem

The language $L=\left\{a^{n} b^{n} \mid n \geq 0\right\}$ is not regular.
Our lemma says:
$\exists p: \forall w \in L:|w| \geq p: \exists x, y, z$ s.t. all 3 properties are satsified We want to show:
$\neg(\exists p: \forall w \in L:|w| \geq p: \exists x, y, z$ s.t. all 3 properties are satsified)
$\equiv \forall p: \exists w \in L:|w| \geq p: \forall x, y, z$ s.t. NOT all 3 properties are satsified

Limitations on regular languages

Pumping Lemma

If L is a regular language, then there exists an integer $p \geq 1$ such that for any $w \in L$ with $|w| \geq p, w$ can be divided into 3 strings, $w=x y z$ such that:

1. $\forall i \geq 0, x y^{i} z \in L$
2. $|y|>0$
3. $|x y| \leq p$

Theorem

The language $L=\left\{a^{n} b^{n} \mid n \geq 0\right\}$ is not regular.
Our lemma says:
$\exists p: \forall w \in L:|w| \geq p: \exists x, y, z$ s.t. all 3 properties are satsified We want to show:
$\neg(\exists p: \forall w \in L:|w| \geq p: \exists x, y, z$ s.t. all 3 properties are satsified)
$\equiv \forall p: \exists w \in L:|w| \geq p: \forall x, y, z$ s.t. NOT all 3 properties are satsified Assume $p \geq 1$ (towards \forall introduction)

Limitations on regular languages

Pumping Lemma

If L is a regular language, then there exists an integer $p \geq 1$ such that for any $w \in L$ with $|w| \geq p, w$ can be divided into 3 strings, $w=x y z$ such that:

1. $\forall i \geq 0, x y^{i} z \in L$
2. $|y|>0$
3. $|x y| \leq p$

Theorem

The language $L=\left\{a^{n} b^{n} \mid n \geq 0\right\}$ is not regular.
Our lemma says:
$\exists p: \forall w \in L:|w| \geq p: \exists x, y, z$ s.t. all 3 properties are satsified We want to show:
$\neg(\exists p: \forall w \in L:|w| \geq p: \exists x, y, z$ s.t. all 3 properties are satsified)
$\equiv \forall p: \exists w \in L:|w| \geq p: \forall x, y, z$ s.t. NOT all 3 properties are satsified
Assume $p \geq 1$ (towards \forall introduction)
Let $w=a^{p} b^{p}$

Limitations on regular languages

Pumping Lemma

If L is a regular language, then there exists an integer $p \geq 1$ such that for any $w \in L$ with $|w| \geq p, w$ can be divided into 3 strings, $w=x y z$ such that:

1. $\forall i \geq 0, x y^{i} z \in L$
2. $|y|>0$
3. $|x y| \leq p$

Theorem

The language $L=\left\{a^{n} b^{n} \mid n \geq 0\right\}$ is not regular.
Our lemma says:
$\exists p: \forall w \in L:|w| \geq p: \exists x, y, z$ s.t. all 3 properties are satsified
We want to show:
$\neg(\exists p: \forall w \in L:|w| \geq p: \exists x, y, z$ s.t. all 3 properties are satsified)
$\equiv \forall p: \exists w \in L:|w| \geq p: \forall x, y, z$ s.t. NOT all 3 properties are satsified
Assume $p \geq 1$ (towards \forall introduction)
Let $w=a^{p} b^{p}$
Claim: $\forall x, y, z, w$ violates (at least) one of the 3 properties.

Limitations on regular languages

Pumping Lemma

If L is a regular language, then there exists an integer $p \geq 1$ such that for any $w \in L$ with $|w| \geq p, w$ can be divided into 3 strings, $w=x y z$ such that:

1. $\forall i \geq 0, x y^{i} z \in L$
2. $|y|>0$
3. $|x y| \leq p$

Theorem

The language $L=\left\{a^{n} b^{n} \mid n \geq 0\right\}$ is not regular.
Our lemma says:
$\exists p: \forall w \in L:|w| \geq p: \exists x, y, z$ s.t. all 3 properties are satsified
We want to show:
$\neg(\exists p: \forall w \in L:|w| \geq p: \exists x, y, z$ s.t. all 3 properties are satsified)
$\equiv \forall p: \exists w \in L:|w| \geq p: \forall x, y, z$ s.t. NOT all 3 properties are satsified
Assume $p \geq 1$ (towards \forall introduction)
Let $w=a^{p} b^{p}$
Claim: $\forall x, y, z, w$ violates (at least) one of the 3 properties. If property 3 is violated, we're done.
Suppose property 3 is not violated.

Limitations on regular languages

Pumping Lemma

If L is a regular language, then there exists an integer $p \geq 1$ such that for any $w \in L$ with $|w| \geq p, w$ can be divided into 3 strings, $w=x y z$ such that:

1. $\forall i \geq 0, x y^{i} z \in L$
2. $|y|>0$
3. $|x y| \leq p$

Theorem

The language $L=\left\{a^{n} b^{n} \mid n \geq 0\right\}$ is not regular.
Our lemma says:
$\exists p: \forall w \in L:|w| \geq p: \exists x, y, z$ s.t. all 3 properties are satsified
We want to show:
$\neg(\exists p: \forall w \in L:|w| \geq p: \exists x, y, z$ s.t. all 3 properties are satsified)
$\equiv \forall p: \exists w \in L:|w| \geq p: \forall x, y, z$ s.t. NOT all 3 properties are satsified
Assume $p \geq 1$ (towards \forall introduction)
Let $w=a^{p} b^{p}$
Claim: $\forall x, y, z, w$ violates (at least) one of the 3 properties.
If property 3 is violated, we're done.
Suppose property 3 is not violated.
If property 2 is violated, we're done.
Suppose property 2 is not violated.

Limitations on regular languages

Pumping Lemma

If L is a regular language, then there exists an integer $p \geq 1$ such that for any $w \in L$ with $|w| \geq p, w$ can be divided into 3 strings, $w=x y z$ such that:

1. $\forall i \geq 0, x y^{i} z \in L$
2. $|y|>0$
3. $|x y| \leq p$

Theorem

The language $L=\left\{a^{n} b^{n} \mid n \geq 0\right\}$ is not regular.
Our lemma says:
$\exists p: \forall w \in L:|w| \geq p: \exists x, y, z$ s.t. all 3 properties are satsified
We want to show:
$\neg(\exists p: \forall w \in L:|w| \geq p: \exists x, y, z$ s.t. all 3 properties are satsified)
$\equiv \forall p: \exists w \in L:|w| \geq p: \forall x, y, z$ s.t. NOT all 3 properties are satsified
Assume $p \geq 1$ (towards \forall introduction)
Let $w=a^{p} b^{p}$
Claim: $\forall x, y, z, w$ violates (at least) one of the 3 properties.
If property 3 is violated, we're done.
Suppose property 3 is not violated.
If property 2 is violated, we're done.
Suppose property 2 is not violated.
Then $y \in\left\{a a^{j}\right\}_{j=0}^{p-1} . \forall i \geq 0: x y^{i} z \notin L$.

Limitations on regular languages

Pumping Lemma

If L is a regular language, then there exists an integer $p \geq 1$ such that for any $w \in L$ with $|w| \geq p, w$ can be divided into 3 strings, $w=x y z$ such that:

1. $\forall i \geq 0, x y^{i} z \in L$
2. $|y|>0$
3. $|x y| \leq p$

Theorem

The language L of "balanced parenthesis" over $\Sigma=\{$ '(', ')' $\}$ is not regular.

Limitations on regular languages

Pumping Lemma

If L is a regular language, then there exists an integer $p \geq 1$ such that for any $w \in L$ with $|w| \geq p, w$ can be divided into 3 strings, $w=x y z$ such that:

1. $\forall i \geq 0, x y^{i} z \in L$
2. $|y|>0$
3. $|x y| \leq p$

Theorem

The language L of "balanced parenthesis" over $\Sigma=\{$ (', ' ')' $\}$ is not regular.
Examples of strings in the language: $((()))()()$ and ()$(()())$

Limitations on regular languages

Pumping Lemma

If L is a regular language, then there exists an integer $p \geq 1$ such that for any $w \in L$ with $|w| \geq p, w$ can be divided into 3 strings, $w=x y z$ such that:

1. $\forall i \geq 0, x y^{i} z \in L$
2. $|y|>0$
3. $|x y| \leq p$

Theorem

The language L of "balanced parenthesis" over $\Sigma=\{$ '(', ')' $\}$ is not regular.
Our lemma says:
$\exists p: \forall w \in L:|w| \geq p: \exists x, y, z$ s.t. all 3 properties are satsified

Limitations on regular languages

Pumping Lemma

If L is a regular language, then there exists an integer $p \geq 1$ such that for any $w \in L$ with $|w| \geq p, w$ can be divided into 3 strings, $w=x y z$ such that:

1. $\forall i \geq 0, x y^{i} z \in L$
2. $|y|>0$
3. $|x y| \leq p$

Theorem

The language L of "balanced parenthesis" over $\Sigma=\{$ ('(', ')' $\}$ is not regular.
Our lemma says:
$\exists p: \forall w \in L:|w| \geq p: \exists x, y, z$ s.t. all 3 properties are satsified We want to show:
$\neg(\exists p: \forall w \in L:|w| \geq p: \exists x, y, z$ s.t. all 3 properties are satsified)

Limitations on regular languages

Pumping Lemma

If L is a regular language, then there exists an integer $p \geq 1$ such that for any $w \in L$ with $|w| \geq p, w$ can be divided into 3 strings, $w=x y z$ such that:

1. $\forall i \geq 0, x y^{i} z \in L$
2. $|y|>0$
3. $|x y| \leq p$

Theorem

The language L of "balanced parenthesis" over $\Sigma=\{$ ('(', ')' $\}$ is not regular.
Our lemma says:
$\exists p: \forall w \in L:|w| \geq p: \exists x, y, z$ s.t. all 3 properties are satsified We want to show:
$\neg(\exists p: \forall w \in L:|w| \geq p: \exists x, y, z$ s.t. all 3 properties are satsified)
$\equiv \forall p: \exists w \in L:|w| \geq p: \forall x, y, z$ s.t. NOT all 3 properties are satsified

Limitations on regular languages

Pumping Lemma

If L is a regular language, then there exists an integer $p \geq 1$ such that for any $w \in L$ with $|w| \geq p, w$ can be divided into 3 strings, $w=x y z$ such that:

1. $\forall i \geq 0, x y^{i} z \in L$
2. $|y|>0$
3. $|x y| \leq p$

Theorem

The language L of "balanced parenthesis" over $\Sigma=\{$ '(', ')' $\}$ is not regular.
Our lemma says:
$\exists p: \forall w \in L:|w| \geq p: \exists x, y, z$ s.t. all 3 properties are satsified We want to show:
$\neg(\exists p: \forall w \in L:|w| \geq p: \exists x, y, z$ s.t. all 3 properties are satsified)
$\equiv \forall p: \exists w \in L:|w| \geq p: \forall x, y, z$ s.t. NOT all 3 properties are satsified Assume $p \geq 1$ (towards \forall introduction)

Limitations on regular languages

Pumping Lemma

If L is a regular language, then there exists an integer $p \geq 1$ such that for any $w \in L$ with $|w| \geq p, w$ can be divided into 3 strings, $w=x y z$ such that:

1. $\forall i \geq 0, x y^{i} z \in L$
2. $|y|>0$
3. $|x y| \leq p$

Theorem

The language L of "balanced parenthesis" over $\Sigma=\{$ ('(', ')' $\}$ is not regular.
Our lemma says:
$\exists p: \forall w \in L:|w| \geq p: \exists x, y, z$ s.t. all 3 properties are satsified
We want to show:
$\neg(\exists p: \forall w \in L:|w| \geq p: \exists x, y, z$ s.t. all 3 properties are satsified)
$\equiv \forall p: \exists w \in L:|w| \geq p: \forall x, y, z$ s.t. NOT all 3 properties are satsified
Assume $p \geq 1$ (towards \forall introduction)
Let $w=\underbrace{(((\cdots((())) \cdots)))}_{p \text { times }} \underbrace{) \cdots)}_{p \text { times }}$

Limitations on regular languages

Pumping Lemma

If L is a regular language, then there exists an integer $p \geq 1$ such that for any $w \in L$ with $|w| \geq p, w$ can be divided into 3 strings, $w=x y z$ such that:

1. $\forall i \geq 0, x y^{i} z \in L$
2. $|y|>0$
3. $|x y| \leq p$

Theorem

The language L of "balanced parenthesis" over $\Sigma=\{$ '(', ')' $\}$ is not regular.
Our lemma says:
$\exists p: \forall w \in L:|w| \geq p: \exists x, y, z$ s.t. all 3 properties are satsified
We want to show:
$\neg(\exists p: \forall w \in L:|w| \geq p: \exists x, y, z$ s.t. all 3 properties are satsified)
$\equiv \forall p: \exists w \in L:|w| \geq p: \forall x, y, z$ s.t. NOT all 3 properties are satsified
Assume $p \geq 1$ (towards \forall introduction)
Let $w=\underbrace{(((\cdots((())) \cdots)))}_{p \text { times }}$
Claim: $\forall x, y, z, w$ violates (at least) one of the 3 properties.

Limitations on regular languages

Pumping Lemma

If L is a regular language, then there exists an integer $p \geq 1$ such that for any $w \in L$ with $|w| \geq p, w$ can be divided into 3 strings, $w=x y z$ such that:

1. $\forall i \geq 0, x y^{i} z \in L$
2. $|y|>0$
3. $|x y| \leq p$

Theorem

The language L of "balanced parenthesis" over $\Sigma=\{$ '(', ')' $\}$ is not regular.
Our lemma says:
$\exists p: \forall w \in L:|w| \geq p: \exists x, y, z$ s.t. all 3 properties are satsified
We want to show:
$\neg(\exists p: \forall w \in L:|w| \geq p: \exists x, y, z$ s.t. all 3 properties are satsified)
$\equiv \forall p: \exists w \in L:|w| \geq p: \forall x, y, z$ s.t. NOT all 3 properties are satsified
Assume $p \geq 1$ (towards \forall introduction)
Let $w=\underbrace{(((\cdots((())) \cdots)))}_{p \text { times }}$
Claim: $\forall x, y, z, w$ violates (at least) one of the 3 properties.
Assume properties 2 and 3 are satisfied.

Limitations on regular languages

Pumping Lemma

If L is a regular language, then there exists an integer $p \geq 1$ such that for any $w \in L$ with $|w| \geq p, w$ can be divided into 3 strings, $w=x y z$ such that:

1. $\forall i \geq 0, x y^{i} z \in L$
2. $|y|>0$
3. $|x y| \leq p$

Theorem

The language L of "balanced parenthesis" over $\Sigma=\{$ '(', ')' $\}$ is not regular.
Our lemma says:
$\exists p: \forall w \in L:|w| \geq p: \exists x, y, z$ s.t. all 3 properties are satsified
We want to show:
$\neg(\exists p: \forall w \in L:|w| \geq p: \exists x, y, z$ s.t. all 3 properties are satsified)
$\equiv \forall p: \exists w \in L:|w| \geq p: \forall x, y, z$ s.t. NOT all 3 properties are satsified
Assume $p \geq 1$ (towards \forall introduction)
Let $w=\underbrace{(((\cdots((())) \cdots)))}_{p \text { times }} \underbrace{) \cdots \cdots}_{p \text { times }}$
Claim: $\forall x, y, z, w$ violates (at least) one of the 3 properties.
Assume properties 2 and 3 are satisfied.
Then $y \in\left\{\left(\left(^{j}\right\}_{j=0}^{p-1} . \forall i \geq 0: x y^{i} z \notin L\right.\right.$.

Limitations on regular languages

Pumping Lemma

If L is a regular language, then there exists an integer $p \geq 1$ such that for any $w \in L$ with $|w| \geq p, w$ can be divided into 3 strings, $w=x y z$ such that:

1. $\forall i \geq 0, x y^{i} z \in L$
2. $|y|>0$
3. $|x y| \leq p$

Theorem

The language L of "balanced parenthesis" over $\Sigma=\{$ '(', ')' $\}$ is not regular.
We want to show:
$\forall p: \exists w \in L:|w| \geq p: \forall x, y, z$ s.t. NOT all 3 properties are satsified Assume $p \geq 1$ (towards \forall introduction)
Wrong answer:
Let $w=\underbrace{()()() \cdots()()()}_{p \text { times }}$

Limitations on regular languages

Pumping Lemma

If L is a regular language, then there exists an integer $p \geq 1$ such that for any $w \in L$ with $|w| \geq p, w$ can be divided into 3 strings, $w=x y z$ such that:

1. $\forall i \geq 0, x y^{i} z \in L$
2. $|y|>0$
3. $|x y| \leq p$

Theorem

The language L of "balanced parenthesis" over $\Sigma=\{$ '(', ')' $\}$ is not regular.
We want to show:
$\forall p: \exists w \in L:|w| \geq p: \forall x, y, z$ s.t. NOT all 3 properties are satsified Assume $p \geq 1$ (towards \forall introduction)
Wrong answer:
Let $w=\underbrace{()()() \cdots()()()}_{p \text { times }}$
Claim: $\forall x, y, z, w$ violates (at least) one of the 3 properties.

Limitations on regular languages

Pumping Lemma

If L is a regular language, then there exists an integer $p \geq 1$ such that for any $w \in L$ with $|w| \geq p, w$ can be divided into 3 strings, $w=x y z$ such that:

1. $\forall i \geq 0, x y^{i} z \in L$
2. $|y|>0$
3. $|x y| \leq p$

Theorem

The language L of "balanced parenthesis" over $\Sigma=\{$ '(', ')' $\}$ is not regular.
We want to show:
$\forall p: \exists w \in L:|w| \geq p: \forall x, y, z$ s.t. NOT all 3 properties are satsified Assume $p \geq 1$ (towards \forall introduction)
Wrong answer:
Let $w=\underbrace{()()() \cdots()()()}_{p \text { times }}$
Claim: $\forall x, y, z, w$ violates (at least) one of the 3 properties.
Assume properties 2 and 3 are satisfied.

Limitations on regular languages

Pumping Lemma

If L is a regular language, then there exists an integer $p \geq 1$ such that for any $w \in L$ with $|w| \geq p, w$ can be divided into 3 strings, $w=x y z$ such that:

1. $\forall i \geq 0, x y^{i} z \in L$
2. $|y|>0$
3. $|x y| \leq p$

Theorem

The language L of "balanced parenthesis" over $\Sigma=\{$ '(', ')' $\}$ is not regular.
We want to show:
$\forall p: \exists w \in L:|w| \geq p: \forall x, y, z$ s.t. NOT all 3 properties are satsified Assume $p \geq 1$ (towards \forall introduction)
Wrong answer:
Let $w=\underbrace{()()() \cdots()()()}_{p \text { times }}$
Claim: $\forall x, y, z, w$ violates (at least) one of the 3 properties.
Assume properties 2 and 3 are satisfied.
If $y=(), x y^{i} z \in L$.

Limitations on regular languages

Pumping Lemma

If L is a regular language, then there exists an integer $p \geq 1$ such that for any $w \in L$ with $|w| \geq p, w$ can be divided into 3 strings, $w=x y z$ such that:

1. $\forall i \geq 0, x y^{i} z \in L$
2. $|y|>0$
3. $|x y| \leq p$

Theorem

The language L of "balanced parenthesis" over $\Sigma=\{$ '(', ')' $\}$ is not regular.
We want to show:
$\forall p: \exists w \in L:|w| \geq p: \forall x, y, z$ s.t. NOT all 3 properties are satsified
Assume $p \geq 1$ (towards \forall introduction)
Wrong answer:
Let $w=\underbrace{()()() \cdots()()()}_{p \text { times }}$
Claim: $\forall x, y, z, w$ violates (at least) one of the 3 properties.
Assume properties 2 and 3 are satisfied.
If $y=(), x y^{i} z \in L$.
$\neg \forall x, y, z: \forall i \geq 0: x y^{i} z \notin L$.

