
Strings

Alphabet: An alphabet is a set of symbols. E.g.
Σ1 = {a, b, c, d, e, f, g, h, i, j, k, l,m, n, o, p, q, r, s, t, u, v, w, x, y, z}, or Σ2 = {0, 1}.

String: A string is a finite sequence of characters.
A string over some alphabet Σ is a finite sequence of characters from that alphabet.
Example: dog is a string over Σ1. So is doogle. 001010 is a string over Σ2.

Λ is a special string, called the empty string. It exists, regardless of the alphabet being
used.

Concatenation: The primary operator we use on strings is concatenation. This takes
two strings as input and outputs a new string. Because we use it so often, we don’t
bother with a symbol: the concatenation of strings x and y is written xy.
Example: dog concatenated with doogle is dogdoogle.
We use x2 = xx, xk = xxk−1, x0 = Λ

Length: The length of a string is the number characters in the string.
Example: |doogle| = 6. Example: |Λ| = 0

Strings

Alphabet: An alphabet is a set of symbols. E.g.
Σ1 = {a, b, c, d, e, f, g, h, i, j, k, l,m, n, o, p, q, r, s, t, u, v, w, x, y, z}, or Σ2 = {0, 1}.

String: A string is a finite sequence of characters.

A string over some alphabet Σ is a finite sequence of characters from that alphabet.
Example: dog is a string over Σ1. So is doogle. 001010 is a string over Σ2.

Λ is a special string, called the empty string. It exists, regardless of the alphabet being
used.

Concatenation: The primary operator we use on strings is concatenation. This takes
two strings as input and outputs a new string. Because we use it so often, we don’t
bother with a symbol: the concatenation of strings x and y is written xy.
Example: dog concatenated with doogle is dogdoogle.
We use x2 = xx, xk = xxk−1, x0 = Λ

Length: The length of a string is the number characters in the string.
Example: |doogle| = 6. Example: |Λ| = 0

Strings

Alphabet: An alphabet is a set of symbols. E.g.
Σ1 = {a, b, c, d, e, f, g, h, i, j, k, l,m, n, o, p, q, r, s, t, u, v, w, x, y, z}, or Σ2 = {0, 1}.

String: A string is a finite sequence of characters.
A string over some alphabet Σ is a finite sequence of characters from that alphabet.
Example: dog is a string over Σ1. So is doogle. 001010 is a string over Σ2.

Λ is a special string, called the empty string. It exists, regardless of the alphabet being
used.

Concatenation: The primary operator we use on strings is concatenation. This takes
two strings as input and outputs a new string. Because we use it so often, we don’t
bother with a symbol: the concatenation of strings x and y is written xy.
Example: dog concatenated with doogle is dogdoogle.
We use x2 = xx, xk = xxk−1, x0 = Λ

Length: The length of a string is the number characters in the string.
Example: |doogle| = 6. Example: |Λ| = 0

Strings

Alphabet: An alphabet is a set of symbols. E.g.
Σ1 = {a, b, c, d, e, f, g, h, i, j, k, l,m, n, o, p, q, r, s, t, u, v, w, x, y, z}, or Σ2 = {0, 1}.

String: A string is a finite sequence of characters.
A string over some alphabet Σ is a finite sequence of characters from that alphabet.
Example: dog is a string over Σ1. So is doogle. 001010 is a string over Σ2.

Λ is a special string, called the empty string. It exists, regardless of the alphabet being
used.

Concatenation: The primary operator we use on strings is concatenation. This takes
two strings as input and outputs a new string. Because we use it so often, we don’t
bother with a symbol: the concatenation of strings x and y is written xy.
Example: dog concatenated with doogle is dogdoogle.
We use x2 = xx, xk = xxk−1, x0 = Λ

Length: The length of a string is the number characters in the string.
Example: |doogle| = 6. Example: |Λ| = 0

Strings

Alphabet: An alphabet is a set of symbols. E.g.
Σ1 = {a, b, c, d, e, f, g, h, i, j, k, l,m, n, o, p, q, r, s, t, u, v, w, x, y, z}, or Σ2 = {0, 1}.

String: A string is a finite sequence of characters.
A string over some alphabet Σ is a finite sequence of characters from that alphabet.
Example: dog is a string over Σ1. So is doogle. 001010 is a string over Σ2.

Λ is a special string, called the empty string. It exists, regardless of the alphabet being
used.

Concatenation: The primary operator we use on strings is concatenation. This takes
two strings as input and outputs a new string. Because we use it so often, we don’t
bother with a symbol: the concatenation of strings x and y is written xy.

Example: dog concatenated with doogle is dogdoogle.
We use x2 = xx, xk = xxk−1, x0 = Λ

Length: The length of a string is the number characters in the string.
Example: |doogle| = 6. Example: |Λ| = 0

Strings

Alphabet: An alphabet is a set of symbols. E.g.
Σ1 = {a, b, c, d, e, f, g, h, i, j, k, l,m, n, o, p, q, r, s, t, u, v, w, x, y, z}, or Σ2 = {0, 1}.

String: A string is a finite sequence of characters.
A string over some alphabet Σ is a finite sequence of characters from that alphabet.
Example: dog is a string over Σ1. So is doogle. 001010 is a string over Σ2.

Λ is a special string, called the empty string. It exists, regardless of the alphabet being
used.

Concatenation: The primary operator we use on strings is concatenation. This takes
two strings as input and outputs a new string. Because we use it so often, we don’t
bother with a symbol: the concatenation of strings x and y is written xy.
Example: dog concatenated with doogle is dogdoogle.

We use x2 = xx, xk = xxk−1, x0 = Λ

Length: The length of a string is the number characters in the string.
Example: |doogle| = 6. Example: |Λ| = 0

Strings

Alphabet: An alphabet is a set of symbols. E.g.
Σ1 = {a, b, c, d, e, f, g, h, i, j, k, l,m, n, o, p, q, r, s, t, u, v, w, x, y, z}, or Σ2 = {0, 1}.

String: A string is a finite sequence of characters.
A string over some alphabet Σ is a finite sequence of characters from that alphabet.
Example: dog is a string over Σ1. So is doogle. 001010 is a string over Σ2.

Λ is a special string, called the empty string. It exists, regardless of the alphabet being
used.

Concatenation: The primary operator we use on strings is concatenation. This takes
two strings as input and outputs a new string. Because we use it so often, we don’t
bother with a symbol: the concatenation of strings x and y is written xy.
Example: dog concatenated with doogle is dogdoogle.
We use x2 = xx, xk = xxk−1, x0 = Λ

Length: The length of a string is the number characters in the string.
Example: |doogle| = 6. Example: |Λ| = 0

Strings

Alphabet: An alphabet is a set of symbols. E.g.
Σ1 = {a, b, c, d, e, f, g, h, i, j, k, l,m, n, o, p, q, r, s, t, u, v, w, x, y, z}, or Σ2 = {0, 1}.

String: A string is a finite sequence of characters.
A string over some alphabet Σ is a finite sequence of characters from that alphabet.
Example: dog is a string over Σ1. So is doogle. 001010 is a string over Σ2.

Λ is a special string, called the empty string. It exists, regardless of the alphabet being
used.

Concatenation: The primary operator we use on strings is concatenation. This takes
two strings as input and outputs a new string. Because we use it so often, we don’t
bother with a symbol: the concatenation of strings x and y is written xy.
Example: dog concatenated with doogle is dogdoogle.
We use x2 = xx, xk = xxk−1, x0 = Λ

Length: The length of a string is the number characters in the string.
Example: |doogle| = 6.

Example: |Λ| = 0

Strings

Alphabet: An alphabet is a set of symbols. E.g.
Σ1 = {a, b, c, d, e, f, g, h, i, j, k, l,m, n, o, p, q, r, s, t, u, v, w, x, y, z}, or Σ2 = {0, 1}.

String: A string is a finite sequence of characters.
A string over some alphabet Σ is a finite sequence of characters from that alphabet.
Example: dog is a string over Σ1. So is doogle. 001010 is a string over Σ2.

Λ is a special string, called the empty string. It exists, regardless of the alphabet being
used.

Concatenation: The primary operator we use on strings is concatenation. This takes
two strings as input and outputs a new string. Because we use it so often, we don’t
bother with a symbol: the concatenation of strings x and y is written xy.
Example: dog concatenated with doogle is dogdoogle.
We use x2 = xx, xk = xxk−1, x0 = Λ

Length: The length of a string is the number characters in the string.
Example: |doogle| = 6. Example: |Λ| = 0

Languages

Language: A language is a set of strings. It can be finite or infinite.
Example: {ab, bab, bbaab} is a language of size 3.

Example: L = {Λ, a, b, aa, ab, ba, bb}
Example: Σ = {0, 1,+}, L = {0 + 0, 0 + 1, 1 + 0, 1 + 1, 0 + 0 + 0, 0 + 0 + 1, . . .}
While a language may have infinite size, each string in the language has finite size.

Σ∗ is the language containing all possible strings over the alphabet Σ.
Example: Σ = {a, b}, Σ∗ = {Λ, a, b, aa, ab, ba, bb, aaa, . . .}
We sometimes write this as {a, b}∗

Σ = {a, b}, L1 = {a, aa}, L2 = {Λ, aa, ba}, L3 = {Λ, a, aa, aaa, . . .}
Language operators:
L1 ∪ L2 {a, aa,Λ, ba}
L1 ∩ L2 {aa}
L2 \ L1 {Λ, ba}
L1 \ L2 {a}
L̄ = Σ∗ \ L L̄3 = {b, ab, ba, bb, aab, aba, abb, baa, bab, bba, bbb . . .}
L1L2 = {xy | x ∈ L1 ∧ y ∈ L2} {a, aa, aaa, aba, aaaa, aaba}
L2L1 {a, aa, aaa, aaaa, baa, baaa}

L0 = {Λ} for any L
L2 = LL and Lk = LLk−1

L∗ =
∞⋃
i=0

Li

Languages

Language: A language is a set of strings. It can be finite or infinite.
Example: {ab, bab, bbaab} is a language of size 3.
Example: L = {Λ, a, b, aa, ab, ba, bb}

Example: Σ = {0, 1,+}, L = {0 + 0, 0 + 1, 1 + 0, 1 + 1, 0 + 0 + 0, 0 + 0 + 1, . . .}
While a language may have infinite size, each string in the language has finite size.

Σ∗ is the language containing all possible strings over the alphabet Σ.
Example: Σ = {a, b}, Σ∗ = {Λ, a, b, aa, ab, ba, bb, aaa, . . .}
We sometimes write this as {a, b}∗

Σ = {a, b}, L1 = {a, aa}, L2 = {Λ, aa, ba}, L3 = {Λ, a, aa, aaa, . . .}
Language operators:
L1 ∪ L2 {a, aa,Λ, ba}
L1 ∩ L2 {aa}
L2 \ L1 {Λ, ba}
L1 \ L2 {a}
L̄ = Σ∗ \ L L̄3 = {b, ab, ba, bb, aab, aba, abb, baa, bab, bba, bbb . . .}
L1L2 = {xy | x ∈ L1 ∧ y ∈ L2} {a, aa, aaa, aba, aaaa, aaba}
L2L1 {a, aa, aaa, aaaa, baa, baaa}

L0 = {Λ} for any L
L2 = LL and Lk = LLk−1

L∗ =
∞⋃
i=0

Li

Languages

Language: A language is a set of strings. It can be finite or infinite.
Example: {ab, bab, bbaab} is a language of size 3.
Example: L = {Λ, a, b, aa, ab, ba, bb}
Example: Σ = {0, 1,+}, L = {0 + 0, 0 + 1, 1 + 0, 1 + 1, 0 + 0 + 0, 0 + 0 + 1, . . .}

While a language may have infinite size, each string in the language has finite size.

Σ∗ is the language containing all possible strings over the alphabet Σ.
Example: Σ = {a, b}, Σ∗ = {Λ, a, b, aa, ab, ba, bb, aaa, . . .}
We sometimes write this as {a, b}∗

Σ = {a, b}, L1 = {a, aa}, L2 = {Λ, aa, ba}, L3 = {Λ, a, aa, aaa, . . .}
Language operators:
L1 ∪ L2 {a, aa,Λ, ba}
L1 ∩ L2 {aa}
L2 \ L1 {Λ, ba}
L1 \ L2 {a}
L̄ = Σ∗ \ L L̄3 = {b, ab, ba, bb, aab, aba, abb, baa, bab, bba, bbb . . .}
L1L2 = {xy | x ∈ L1 ∧ y ∈ L2} {a, aa, aaa, aba, aaaa, aaba}
L2L1 {a, aa, aaa, aaaa, baa, baaa}

L0 = {Λ} for any L
L2 = LL and Lk = LLk−1

L∗ =
∞⋃
i=0

Li

Languages

Language: A language is a set of strings. It can be finite or infinite.
Example: {ab, bab, bbaab} is a language of size 3.
Example: L = {Λ, a, b, aa, ab, ba, bb}
Example: Σ = {0, 1,+}, L = {0 + 0, 0 + 1, 1 + 0, 1 + 1, 0 + 0 + 0, 0 + 0 + 1, . . .}
While a language may have infinite size, each string in the language has finite size.

Σ∗ is the language containing all possible strings over the alphabet Σ.
Example: Σ = {a, b}, Σ∗ = {Λ, a, b, aa, ab, ba, bb, aaa, . . .}
We sometimes write this as {a, b}∗

Σ = {a, b}, L1 = {a, aa}, L2 = {Λ, aa, ba}, L3 = {Λ, a, aa, aaa, . . .}
Language operators:
L1 ∪ L2 {a, aa,Λ, ba}
L1 ∩ L2 {aa}
L2 \ L1 {Λ, ba}
L1 \ L2 {a}
L̄ = Σ∗ \ L L̄3 = {b, ab, ba, bb, aab, aba, abb, baa, bab, bba, bbb . . .}
L1L2 = {xy | x ∈ L1 ∧ y ∈ L2} {a, aa, aaa, aba, aaaa, aaba}
L2L1 {a, aa, aaa, aaaa, baa, baaa}

L0 = {Λ} for any L
L2 = LL and Lk = LLk−1

L∗ =
∞⋃
i=0

Li

Languages

Language: A language is a set of strings. It can be finite or infinite.
Example: {ab, bab, bbaab} is a language of size 3.
Example: L = {Λ, a, b, aa, ab, ba, bb}
Example: Σ = {0, 1,+}, L = {0 + 0, 0 + 1, 1 + 0, 1 + 1, 0 + 0 + 0, 0 + 0 + 1, . . .}
While a language may have infinite size, each string in the language has finite size.

Σ∗ is the language containing all possible strings over the alphabet Σ.

Example: Σ = {a, b}, Σ∗ = {Λ, a, b, aa, ab, ba, bb, aaa, . . .}
We sometimes write this as {a, b}∗

Σ = {a, b}, L1 = {a, aa}, L2 = {Λ, aa, ba}, L3 = {Λ, a, aa, aaa, . . .}
Language operators:
L1 ∪ L2 {a, aa,Λ, ba}
L1 ∩ L2 {aa}
L2 \ L1 {Λ, ba}
L1 \ L2 {a}
L̄ = Σ∗ \ L L̄3 = {b, ab, ba, bb, aab, aba, abb, baa, bab, bba, bbb . . .}
L1L2 = {xy | x ∈ L1 ∧ y ∈ L2} {a, aa, aaa, aba, aaaa, aaba}
L2L1 {a, aa, aaa, aaaa, baa, baaa}

L0 = {Λ} for any L
L2 = LL and Lk = LLk−1

L∗ =
∞⋃
i=0

Li

Languages

Language: A language is a set of strings. It can be finite or infinite.
Example: {ab, bab, bbaab} is a language of size 3.
Example: L = {Λ, a, b, aa, ab, ba, bb}
Example: Σ = {0, 1,+}, L = {0 + 0, 0 + 1, 1 + 0, 1 + 1, 0 + 0 + 0, 0 + 0 + 1, . . .}
While a language may have infinite size, each string in the language has finite size.

Σ∗ is the language containing all possible strings over the alphabet Σ.
Example: Σ = {a, b}, Σ∗ = {Λ, a, b, aa, ab, ba, bb, aaa, . . .}

We sometimes write this as {a, b}∗

Σ = {a, b}, L1 = {a, aa}, L2 = {Λ, aa, ba}, L3 = {Λ, a, aa, aaa, . . .}
Language operators:
L1 ∪ L2 {a, aa,Λ, ba}
L1 ∩ L2 {aa}
L2 \ L1 {Λ, ba}
L1 \ L2 {a}
L̄ = Σ∗ \ L L̄3 = {b, ab, ba, bb, aab, aba, abb, baa, bab, bba, bbb . . .}
L1L2 = {xy | x ∈ L1 ∧ y ∈ L2} {a, aa, aaa, aba, aaaa, aaba}
L2L1 {a, aa, aaa, aaaa, baa, baaa}

L0 = {Λ} for any L
L2 = LL and Lk = LLk−1

L∗ =
∞⋃
i=0

Li

Languages

Language: A language is a set of strings. It can be finite or infinite.
Example: {ab, bab, bbaab} is a language of size 3.
Example: L = {Λ, a, b, aa, ab, ba, bb}
Example: Σ = {0, 1,+}, L = {0 + 0, 0 + 1, 1 + 0, 1 + 1, 0 + 0 + 0, 0 + 0 + 1, . . .}
While a language may have infinite size, each string in the language has finite size.

Σ∗ is the language containing all possible strings over the alphabet Σ.
Example: Σ = {a, b}, Σ∗ = {Λ, a, b, aa, ab, ba, bb, aaa, . . .}
We sometimes write this as {a, b}∗

Σ = {a, b}, L1 = {a, aa}, L2 = {Λ, aa, ba}, L3 = {Λ, a, aa, aaa, . . .}
Language operators:
L1 ∪ L2 {a, aa,Λ, ba}
L1 ∩ L2 {aa}
L2 \ L1 {Λ, ba}
L1 \ L2 {a}
L̄ = Σ∗ \ L L̄3 = {b, ab, ba, bb, aab, aba, abb, baa, bab, bba, bbb . . .}
L1L2 = {xy | x ∈ L1 ∧ y ∈ L2} {a, aa, aaa, aba, aaaa, aaba}
L2L1 {a, aa, aaa, aaaa, baa, baaa}

L0 = {Λ} for any L
L2 = LL and Lk = LLk−1

L∗ =
∞⋃
i=0

Li

Languages

Language: A language is a set of strings. It can be finite or infinite.
Example: {ab, bab, bbaab} is a language of size 3.
Example: L = {Λ, a, b, aa, ab, ba, bb}
Example: Σ = {0, 1,+}, L = {0 + 0, 0 + 1, 1 + 0, 1 + 1, 0 + 0 + 0, 0 + 0 + 1, . . .}
While a language may have infinite size, each string in the language has finite size.

Σ∗ is the language containing all possible strings over the alphabet Σ.
Example: Σ = {a, b}, Σ∗ = {Λ, a, b, aa, ab, ba, bb, aaa, . . .}
We sometimes write this as {a, b}∗

Σ = {a, b}, L1 = {a, aa}, L2 = {Λ, aa, ba}, L3 = {Λ, a, aa, aaa, . . .}

Language operators:
L1 ∪ L2 {a, aa,Λ, ba}
L1 ∩ L2 {aa}
L2 \ L1 {Λ, ba}
L1 \ L2 {a}
L̄ = Σ∗ \ L L̄3 = {b, ab, ba, bb, aab, aba, abb, baa, bab, bba, bbb . . .}
L1L2 = {xy | x ∈ L1 ∧ y ∈ L2} {a, aa, aaa, aba, aaaa, aaba}
L2L1 {a, aa, aaa, aaaa, baa, baaa}

L0 = {Λ} for any L
L2 = LL and Lk = LLk−1

L∗ =
∞⋃
i=0

Li

Languages

Language: A language is a set of strings. It can be finite or infinite.
Example: {ab, bab, bbaab} is a language of size 3.
Example: L = {Λ, a, b, aa, ab, ba, bb}
Example: Σ = {0, 1,+}, L = {0 + 0, 0 + 1, 1 + 0, 1 + 1, 0 + 0 + 0, 0 + 0 + 1, . . .}
While a language may have infinite size, each string in the language has finite size.

Σ∗ is the language containing all possible strings over the alphabet Σ.
Example: Σ = {a, b}, Σ∗ = {Λ, a, b, aa, ab, ba, bb, aaa, . . .}
We sometimes write this as {a, b}∗

Σ = {a, b}, L1 = {a, aa}, L2 = {Λ, aa, ba}, L3 = {Λ, a, aa, aaa, . . .}
Language operators:

L1 ∪ L2 {a, aa,Λ, ba}
L1 ∩ L2 {aa}
L2 \ L1 {Λ, ba}
L1 \ L2 {a}
L̄ = Σ∗ \ L L̄3 = {b, ab, ba, bb, aab, aba, abb, baa, bab, bba, bbb . . .}
L1L2 = {xy | x ∈ L1 ∧ y ∈ L2} {a, aa, aaa, aba, aaaa, aaba}
L2L1 {a, aa, aaa, aaaa, baa, baaa}

L0 = {Λ} for any L
L2 = LL and Lk = LLk−1

L∗ =
∞⋃
i=0

Li

Languages

Language: A language is a set of strings. It can be finite or infinite.
Example: {ab, bab, bbaab} is a language of size 3.
Example: L = {Λ, a, b, aa, ab, ba, bb}
Example: Σ = {0, 1,+}, L = {0 + 0, 0 + 1, 1 + 0, 1 + 1, 0 + 0 + 0, 0 + 0 + 1, . . .}
While a language may have infinite size, each string in the language has finite size.

Σ∗ is the language containing all possible strings over the alphabet Σ.
Example: Σ = {a, b}, Σ∗ = {Λ, a, b, aa, ab, ba, bb, aaa, . . .}
We sometimes write this as {a, b}∗

Σ = {a, b}, L1 = {a, aa}, L2 = {Λ, aa, ba}, L3 = {Λ, a, aa, aaa, . . .}
Language operators:
L1 ∪ L2 {a, aa,Λ, ba}

L1 ∩ L2 {aa}
L2 \ L1 {Λ, ba}
L1 \ L2 {a}
L̄ = Σ∗ \ L L̄3 = {b, ab, ba, bb, aab, aba, abb, baa, bab, bba, bbb . . .}
L1L2 = {xy | x ∈ L1 ∧ y ∈ L2} {a, aa, aaa, aba, aaaa, aaba}
L2L1 {a, aa, aaa, aaaa, baa, baaa}

L0 = {Λ} for any L
L2 = LL and Lk = LLk−1

L∗ =
∞⋃
i=0

Li

Languages

Language: A language is a set of strings. It can be finite or infinite.
Example: {ab, bab, bbaab} is a language of size 3.
Example: L = {Λ, a, b, aa, ab, ba, bb}
Example: Σ = {0, 1,+}, L = {0 + 0, 0 + 1, 1 + 0, 1 + 1, 0 + 0 + 0, 0 + 0 + 1, . . .}
While a language may have infinite size, each string in the language has finite size.

Σ∗ is the language containing all possible strings over the alphabet Σ.
Example: Σ = {a, b}, Σ∗ = {Λ, a, b, aa, ab, ba, bb, aaa, . . .}
We sometimes write this as {a, b}∗

Σ = {a, b}, L1 = {a, aa}, L2 = {Λ, aa, ba}, L3 = {Λ, a, aa, aaa, . . .}
Language operators:
L1 ∪ L2 {a, aa,Λ, ba}
L1 ∩ L2 {aa}

L2 \ L1 {Λ, ba}
L1 \ L2 {a}
L̄ = Σ∗ \ L L̄3 = {b, ab, ba, bb, aab, aba, abb, baa, bab, bba, bbb . . .}
L1L2 = {xy | x ∈ L1 ∧ y ∈ L2} {a, aa, aaa, aba, aaaa, aaba}
L2L1 {a, aa, aaa, aaaa, baa, baaa}

L0 = {Λ} for any L
L2 = LL and Lk = LLk−1

L∗ =
∞⋃
i=0

Li

Languages

Language: A language is a set of strings. It can be finite or infinite.
Example: {ab, bab, bbaab} is a language of size 3.
Example: L = {Λ, a, b, aa, ab, ba, bb}
Example: Σ = {0, 1,+}, L = {0 + 0, 0 + 1, 1 + 0, 1 + 1, 0 + 0 + 0, 0 + 0 + 1, . . .}
While a language may have infinite size, each string in the language has finite size.

Σ∗ is the language containing all possible strings over the alphabet Σ.
Example: Σ = {a, b}, Σ∗ = {Λ, a, b, aa, ab, ba, bb, aaa, . . .}
We sometimes write this as {a, b}∗

Σ = {a, b}, L1 = {a, aa}, L2 = {Λ, aa, ba}, L3 = {Λ, a, aa, aaa, . . .}
Language operators:
L1 ∪ L2 {a, aa,Λ, ba}
L1 ∩ L2 {aa}
L2 \ L1 {Λ, ba}

L1 \ L2 {a}
L̄ = Σ∗ \ L L̄3 = {b, ab, ba, bb, aab, aba, abb, baa, bab, bba, bbb . . .}
L1L2 = {xy | x ∈ L1 ∧ y ∈ L2} {a, aa, aaa, aba, aaaa, aaba}
L2L1 {a, aa, aaa, aaaa, baa, baaa}

L0 = {Λ} for any L
L2 = LL and Lk = LLk−1

L∗ =
∞⋃
i=0

Li

Languages

Language: A language is a set of strings. It can be finite or infinite.
Example: {ab, bab, bbaab} is a language of size 3.
Example: L = {Λ, a, b, aa, ab, ba, bb}
Example: Σ = {0, 1,+}, L = {0 + 0, 0 + 1, 1 + 0, 1 + 1, 0 + 0 + 0, 0 + 0 + 1, . . .}
While a language may have infinite size, each string in the language has finite size.

Σ∗ is the language containing all possible strings over the alphabet Σ.
Example: Σ = {a, b}, Σ∗ = {Λ, a, b, aa, ab, ba, bb, aaa, . . .}
We sometimes write this as {a, b}∗

Σ = {a, b}, L1 = {a, aa}, L2 = {Λ, aa, ba}, L3 = {Λ, a, aa, aaa, . . .}
Language operators:
L1 ∪ L2 {a, aa,Λ, ba}
L1 ∩ L2 {aa}
L2 \ L1 {Λ, ba}
L1 \ L2 {a}

L̄ = Σ∗ \ L L̄3 = {b, ab, ba, bb, aab, aba, abb, baa, bab, bba, bbb . . .}
L1L2 = {xy | x ∈ L1 ∧ y ∈ L2} {a, aa, aaa, aba, aaaa, aaba}
L2L1 {a, aa, aaa, aaaa, baa, baaa}

L0 = {Λ} for any L
L2 = LL and Lk = LLk−1

L∗ =
∞⋃
i=0

Li

Languages

Language: A language is a set of strings. It can be finite or infinite.
Example: {ab, bab, bbaab} is a language of size 3.
Example: L = {Λ, a, b, aa, ab, ba, bb}
Example: Σ = {0, 1,+}, L = {0 + 0, 0 + 1, 1 + 0, 1 + 1, 0 + 0 + 0, 0 + 0 + 1, . . .}
While a language may have infinite size, each string in the language has finite size.

Σ∗ is the language containing all possible strings over the alphabet Σ.
Example: Σ = {a, b}, Σ∗ = {Λ, a, b, aa, ab, ba, bb, aaa, . . .}
We sometimes write this as {a, b}∗

Σ = {a, b}, L1 = {a, aa}, L2 = {Λ, aa, ba}, L3 = {Λ, a, aa, aaa, . . .}
Language operators:
L1 ∪ L2 {a, aa,Λ, ba}
L1 ∩ L2 {aa}
L2 \ L1 {Λ, ba}
L1 \ L2 {a}
L̄ = Σ∗ \ L L̄3 = {b, ab, ba, bb, aab, aba, abb, baa, bab, bba, bbb . . .}

L1L2 = {xy | x ∈ L1 ∧ y ∈ L2} {a, aa, aaa, aba, aaaa, aaba}
L2L1 {a, aa, aaa, aaaa, baa, baaa}

L0 = {Λ} for any L
L2 = LL and Lk = LLk−1

L∗ =
∞⋃
i=0

Li

Languages

Language: A language is a set of strings. It can be finite or infinite.
Example: {ab, bab, bbaab} is a language of size 3.
Example: L = {Λ, a, b, aa, ab, ba, bb}
Example: Σ = {0, 1,+}, L = {0 + 0, 0 + 1, 1 + 0, 1 + 1, 0 + 0 + 0, 0 + 0 + 1, . . .}
While a language may have infinite size, each string in the language has finite size.

Σ∗ is the language containing all possible strings over the alphabet Σ.
Example: Σ = {a, b}, Σ∗ = {Λ, a, b, aa, ab, ba, bb, aaa, . . .}
We sometimes write this as {a, b}∗

Σ = {a, b}, L1 = {a, aa}, L2 = {Λ, aa, ba}, L3 = {Λ, a, aa, aaa, . . .}
Language operators:
L1 ∪ L2 {a, aa,Λ, ba}
L1 ∩ L2 {aa}
L2 \ L1 {Λ, ba}
L1 \ L2 {a}
L̄ = Σ∗ \ L L̄3 = {b, ab, ba, bb, aab, aba, abb, baa, bab, bba, bbb . . .}
L1L2 = {xy | x ∈ L1 ∧ y ∈ L2} {a, aa, aaa, aba, aaaa, aaba}

L2L1 {a, aa, aaa, aaaa, baa, baaa}

L0 = {Λ} for any L
L2 = LL and Lk = LLk−1

L∗ =
∞⋃
i=0

Li

Languages

Language: A language is a set of strings. It can be finite or infinite.
Example: {ab, bab, bbaab} is a language of size 3.
Example: L = {Λ, a, b, aa, ab, ba, bb}
Example: Σ = {0, 1,+}, L = {0 + 0, 0 + 1, 1 + 0, 1 + 1, 0 + 0 + 0, 0 + 0 + 1, . . .}
While a language may have infinite size, each string in the language has finite size.

Σ∗ is the language containing all possible strings over the alphabet Σ.
Example: Σ = {a, b}, Σ∗ = {Λ, a, b, aa, ab, ba, bb, aaa, . . .}
We sometimes write this as {a, b}∗

Σ = {a, b}, L1 = {a, aa}, L2 = {Λ, aa, ba}, L3 = {Λ, a, aa, aaa, . . .}
Language operators:
L1 ∪ L2 {a, aa,Λ, ba}
L1 ∩ L2 {aa}
L2 \ L1 {Λ, ba}
L1 \ L2 {a}
L̄ = Σ∗ \ L L̄3 = {b, ab, ba, bb, aab, aba, abb, baa, bab, bba, bbb . . .}
L1L2 = {xy | x ∈ L1 ∧ y ∈ L2} {a, aa, aaa, aba, aaaa, aaba}
L2L1 {a, aa, aaa, aaaa, baa, baaa}

L0 = {Λ} for any L
L2 = LL and Lk = LLk−1

L∗ =
∞⋃
i=0

Li

Languages

Language: A language is a set of strings. It can be finite or infinite.
Example: {ab, bab, bbaab} is a language of size 3.
Example: L = {Λ, a, b, aa, ab, ba, bb}
Example: Σ = {0, 1,+}, L = {0 + 0, 0 + 1, 1 + 0, 1 + 1, 0 + 0 + 0, 0 + 0 + 1, . . .}
While a language may have infinite size, each string in the language has finite size.

Σ∗ is the language containing all possible strings over the alphabet Σ.
Example: Σ = {a, b}, Σ∗ = {Λ, a, b, aa, ab, ba, bb, aaa, . . .}
We sometimes write this as {a, b}∗

Σ = {a, b}, L1 = {a, aa}, L2 = {Λ, aa, ba}, L3 = {Λ, a, aa, aaa, . . .}
Language operators:
L1 ∪ L2 {a, aa,Λ, ba}
L1 ∩ L2 {aa}
L2 \ L1 {Λ, ba}
L1 \ L2 {a}
L̄ = Σ∗ \ L L̄3 = {b, ab, ba, bb, aab, aba, abb, baa, bab, bba, bbb . . .}
L1L2 = {xy | x ∈ L1 ∧ y ∈ L2} {a, aa, aaa, aba, aaaa, aaba}
L2L1 {a, aa, aaa, aaaa, baa, baaa}

L0 = {Λ} for any L

L2 = LL and Lk = LLk−1

L∗ =
∞⋃
i=0

Li

Languages

Language: A language is a set of strings. It can be finite or infinite.
Example: {ab, bab, bbaab} is a language of size 3.
Example: L = {Λ, a, b, aa, ab, ba, bb}
Example: Σ = {0, 1,+}, L = {0 + 0, 0 + 1, 1 + 0, 1 + 1, 0 + 0 + 0, 0 + 0 + 1, . . .}
While a language may have infinite size, each string in the language has finite size.

Σ∗ is the language containing all possible strings over the alphabet Σ.
Example: Σ = {a, b}, Σ∗ = {Λ, a, b, aa, ab, ba, bb, aaa, . . .}
We sometimes write this as {a, b}∗

Σ = {a, b}, L1 = {a, aa}, L2 = {Λ, aa, ba}, L3 = {Λ, a, aa, aaa, . . .}
Language operators:
L1 ∪ L2 {a, aa,Λ, ba}
L1 ∩ L2 {aa}
L2 \ L1 {Λ, ba}
L1 \ L2 {a}
L̄ = Σ∗ \ L L̄3 = {b, ab, ba, bb, aab, aba, abb, baa, bab, bba, bbb . . .}
L1L2 = {xy | x ∈ L1 ∧ y ∈ L2} {a, aa, aaa, aba, aaaa, aaba}
L2L1 {a, aa, aaa, aaaa, baa, baaa}

L0 = {Λ} for any L
L2 = LL and Lk = LLk−1

L∗ =
∞⋃
i=0

Li

Languages

Language: A language is a set of strings. It can be finite or infinite.
Example: {ab, bab, bbaab} is a language of size 3.
Example: L = {Λ, a, b, aa, ab, ba, bb}
Example: Σ = {0, 1,+}, L = {0 + 0, 0 + 1, 1 + 0, 1 + 1, 0 + 0 + 0, 0 + 0 + 1, . . .}
While a language may have infinite size, each string in the language has finite size.

Σ∗ is the language containing all possible strings over the alphabet Σ.
Example: Σ = {a, b}, Σ∗ = {Λ, a, b, aa, ab, ba, bb, aaa, . . .}
We sometimes write this as {a, b}∗

Σ = {a, b}, L1 = {a, aa}, L2 = {Λ, aa, ba}, L3 = {Λ, a, aa, aaa, . . .}
Language operators:
L1 ∪ L2 {a, aa,Λ, ba}
L1 ∩ L2 {aa}
L2 \ L1 {Λ, ba}
L1 \ L2 {a}
L̄ = Σ∗ \ L L̄3 = {b, ab, ba, bb, aab, aba, abb, baa, bab, bba, bbb . . .}
L1L2 = {xy | x ∈ L1 ∧ y ∈ L2} {a, aa, aaa, aba, aaaa, aaba}
L2L1 {a, aa, aaa, aaaa, baa, baaa}

L0 = {Λ} for any L
L2 = LL and Lk = LLk−1

L∗ =
∞⋃
i=0

Li

Languages

Example: L = {a, bb}

L0 = {Λ}
L1 = {a, bb}
L2 = {aa, abb, bba, bbbb}
L3 = {aaa, aabb, abba, abbbb, bbaa, bbabb, bbbba, bbbbbb}
L∗ = {Λ, a, bb, aa, abb, bba, bbbb, aaa, aabb, abba, abbb, bbaa, . . .}

extensional form: enumerate the strings. Only finite sets, or possibly use “ . . . ”
intensional form: specify the properties of the strings.
Informally: L = {x | x contains an equal number of as and bs }
Formally: L = {x | x ∈ {a, b}∗ ∧Na(x) = Nb(x)}, where Na(x) denotes the number
of as in string x.

Languages

Example: L = {a, bb}
L0 = {Λ}

L1 = {a, bb}
L2 = {aa, abb, bba, bbbb}
L3 = {aaa, aabb, abba, abbbb, bbaa, bbabb, bbbba, bbbbbb}
L∗ = {Λ, a, bb, aa, abb, bba, bbbb, aaa, aabb, abba, abbb, bbaa, . . .}

extensional form: enumerate the strings. Only finite sets, or possibly use “ . . . ”
intensional form: specify the properties of the strings.
Informally: L = {x | x contains an equal number of as and bs }
Formally: L = {x | x ∈ {a, b}∗ ∧Na(x) = Nb(x)}, where Na(x) denotes the number
of as in string x.

Languages

Example: L = {a, bb}
L0 = {Λ}
L1 = {a, bb}

L2 = {aa, abb, bba, bbbb}
L3 = {aaa, aabb, abba, abbbb, bbaa, bbabb, bbbba, bbbbbb}
L∗ = {Λ, a, bb, aa, abb, bba, bbbb, aaa, aabb, abba, abbb, bbaa, . . .}

extensional form: enumerate the strings. Only finite sets, or possibly use “ . . . ”
intensional form: specify the properties of the strings.
Informally: L = {x | x contains an equal number of as and bs }
Formally: L = {x | x ∈ {a, b}∗ ∧Na(x) = Nb(x)}, where Na(x) denotes the number
of as in string x.

Languages

Example: L = {a, bb}
L0 = {Λ}
L1 = {a, bb}
L2 = {aa, abb, bba, bbbb}

L3 = {aaa, aabb, abba, abbbb, bbaa, bbabb, bbbba, bbbbbb}
L∗ = {Λ, a, bb, aa, abb, bba, bbbb, aaa, aabb, abba, abbb, bbaa, . . .}

extensional form: enumerate the strings. Only finite sets, or possibly use “ . . . ”
intensional form: specify the properties of the strings.
Informally: L = {x | x contains an equal number of as and bs }
Formally: L = {x | x ∈ {a, b}∗ ∧Na(x) = Nb(x)}, where Na(x) denotes the number
of as in string x.

Languages

Example: L = {a, bb}
L0 = {Λ}
L1 = {a, bb}
L2 = {aa, abb, bba, bbbb}
L3 = {aaa, aabb, abba, abbbb, bbaa, bbabb, bbbba, bbbbbb}

L∗ = {Λ, a, bb, aa, abb, bba, bbbb, aaa, aabb, abba, abbb, bbaa, . . .}

extensional form: enumerate the strings. Only finite sets, or possibly use “ . . . ”
intensional form: specify the properties of the strings.
Informally: L = {x | x contains an equal number of as and bs }
Formally: L = {x | x ∈ {a, b}∗ ∧Na(x) = Nb(x)}, where Na(x) denotes the number
of as in string x.

Languages

Example: L = {a, bb}
L0 = {Λ}
L1 = {a, bb}
L2 = {aa, abb, bba, bbbb}
L3 = {aaa, aabb, abba, abbbb, bbaa, bbabb, bbbba, bbbbbb}
L∗ = {Λ, a, bb, aa, abb, bba, bbbb, aaa, aabb, abba, abbb, bbaa, . . .}

extensional form: enumerate the strings. Only finite sets, or possibly use “ . . . ”
intensional form: specify the properties of the strings.
Informally: L = {x | x contains an equal number of as and bs }
Formally: L = {x | x ∈ {a, b}∗ ∧Na(x) = Nb(x)}, where Na(x) denotes the number
of as in string x.

Languages

Example: L = {a, bb}
L0 = {Λ}
L1 = {a, bb}
L2 = {aa, abb, bba, bbbb}
L3 = {aaa, aabb, abba, abbbb, bbaa, bbabb, bbbba, bbbbbb}
L∗ = {Λ, a, bb, aa, abb, bba, bbbb, aaa, aabb, abba, abbb, bbaa, . . .}

extensional form: enumerate the strings.

Only finite sets, or possibly use “ . . . ”
intensional form: specify the properties of the strings.
Informally: L = {x | x contains an equal number of as and bs }
Formally: L = {x | x ∈ {a, b}∗ ∧Na(x) = Nb(x)}, where Na(x) denotes the number
of as in string x.

Languages

Example: L = {a, bb}
L0 = {Λ}
L1 = {a, bb}
L2 = {aa, abb, bba, bbbb}
L3 = {aaa, aabb, abba, abbbb, bbaa, bbabb, bbbba, bbbbbb}
L∗ = {Λ, a, bb, aa, abb, bba, bbbb, aaa, aabb, abba, abbb, bbaa, . . .}

extensional form: enumerate the strings. Only finite sets, or possibly use “ . . . ”

intensional form: specify the properties of the strings.
Informally: L = {x | x contains an equal number of as and bs }
Formally: L = {x | x ∈ {a, b}∗ ∧Na(x) = Nb(x)}, where Na(x) denotes the number
of as in string x.

Languages

Example: L = {a, bb}
L0 = {Λ}
L1 = {a, bb}
L2 = {aa, abb, bba, bbbb}
L3 = {aaa, aabb, abba, abbbb, bbaa, bbabb, bbbba, bbbbbb}
L∗ = {Λ, a, bb, aa, abb, bba, bbbb, aaa, aabb, abba, abbb, bbaa, . . .}

extensional form: enumerate the strings. Only finite sets, or possibly use “ . . . ”
intensional form: specify the properties of the strings.

Informally: L = {x | x contains an equal number of as and bs }
Formally: L = {x | x ∈ {a, b}∗ ∧Na(x) = Nb(x)}, where Na(x) denotes the number
of as in string x.

Languages

Example: L = {a, bb}
L0 = {Λ}
L1 = {a, bb}
L2 = {aa, abb, bba, bbbb}
L3 = {aaa, aabb, abba, abbbb, bbaa, bbabb, bbbba, bbbbbb}
L∗ = {Λ, a, bb, aa, abb, bba, bbbb, aaa, aabb, abba, abbb, bbaa, . . .}

extensional form: enumerate the strings. Only finite sets, or possibly use “ . . . ”
intensional form: specify the properties of the strings.
Informally: L = {x | x contains an equal number of as and bs }

Formally: L = {x | x ∈ {a, b}∗ ∧Na(x) = Nb(x)}, where Na(x) denotes the number
of as in string x.

Languages

Example: L = {a, bb}
L0 = {Λ}
L1 = {a, bb}
L2 = {aa, abb, bba, bbbb}
L3 = {aaa, aabb, abba, abbbb, bbaa, bbabb, bbbba, bbbbbb}
L∗ = {Λ, a, bb, aa, abb, bba, bbbb, aaa, aabb, abba, abbb, bbaa, . . .}

extensional form: enumerate the strings. Only finite sets, or possibly use “ . . . ”
intensional form: specify the properties of the strings.
Informally: L = {x | x contains an equal number of as and bs }
Formally: L = {x | x ∈ {a, b}∗ ∧Na(x) = Nb(x)}, where Na(x) denotes the number
of as in string x.

Now What?

Until now we’ve talked about how to prove things.

Now we’re going to start proving things about the nature of computation.

Central questions:

I How do we generate the strings of some language L?
I Note that many languages have infinite size, so we need to take a finite representation

of that language, and use it to construct all of the strings!
I A grammar for L gives a description of how to enumerate the strings of L

I How do we recognize the strings of a language?
I given some x and some description of a language L, how do we decide whether x ∈ L?
I An automaton for L is a simple machine that allows us to decide, given some x,

whether x ∈ L

We will see that there are different classes of language: some are easier to generate /
recognize than others.
L1 = {x | x ∈ {a}∗ and x contains an even number of symbols}
L2 = {x | x ∈ {a}∗ and x contains a prime number of symbols}

Now What?

Until now we’ve talked about how to prove things.
Now we’re going to start proving things about the nature of computation.

Central questions:

I How do we generate the strings of some language L?
I Note that many languages have infinite size, so we need to take a finite representation

of that language, and use it to construct all of the strings!
I A grammar for L gives a description of how to enumerate the strings of L

I How do we recognize the strings of a language?
I given some x and some description of a language L, how do we decide whether x ∈ L?
I An automaton for L is a simple machine that allows us to decide, given some x,

whether x ∈ L

We will see that there are different classes of language: some are easier to generate /
recognize than others.
L1 = {x | x ∈ {a}∗ and x contains an even number of symbols}
L2 = {x | x ∈ {a}∗ and x contains a prime number of symbols}

Now What?

Until now we’ve talked about how to prove things.
Now we’re going to start proving things about the nature of computation.

Central questions:

I How do we generate the strings of some language L?
I Note that many languages have infinite size, so we need to take a finite representation

of that language, and use it to construct all of the strings!
I A grammar for L gives a description of how to enumerate the strings of L

I How do we recognize the strings of a language?
I given some x and some description of a language L, how do we decide whether x ∈ L?
I An automaton for L is a simple machine that allows us to decide, given some x,

whether x ∈ L

We will see that there are different classes of language: some are easier to generate /
recognize than others.
L1 = {x | x ∈ {a}∗ and x contains an even number of symbols}
L2 = {x | x ∈ {a}∗ and x contains a prime number of symbols}

Now What?

Until now we’ve talked about how to prove things.
Now we’re going to start proving things about the nature of computation.

Central questions:

I How do we generate the strings of some language L?

I Note that many languages have infinite size, so we need to take a finite representation
of that language, and use it to construct all of the strings!

I A grammar for L gives a description of how to enumerate the strings of L
I How do we recognize the strings of a language?

I given some x and some description of a language L, how do we decide whether x ∈ L?
I An automaton for L is a simple machine that allows us to decide, given some x,

whether x ∈ L

We will see that there are different classes of language: some are easier to generate /
recognize than others.
L1 = {x | x ∈ {a}∗ and x contains an even number of symbols}
L2 = {x | x ∈ {a}∗ and x contains a prime number of symbols}

Now What?

Until now we’ve talked about how to prove things.
Now we’re going to start proving things about the nature of computation.

Central questions:

I How do we generate the strings of some language L?
I Note that many languages have infinite size, so we need to take a finite representation

of that language, and use it to construct all of the strings!

I A grammar for L gives a description of how to enumerate the strings of L
I How do we recognize the strings of a language?

I given some x and some description of a language L, how do we decide whether x ∈ L?
I An automaton for L is a simple machine that allows us to decide, given some x,

whether x ∈ L

We will see that there are different classes of language: some are easier to generate /
recognize than others.
L1 = {x | x ∈ {a}∗ and x contains an even number of symbols}
L2 = {x | x ∈ {a}∗ and x contains a prime number of symbols}

Now What?

Until now we’ve talked about how to prove things.
Now we’re going to start proving things about the nature of computation.

Central questions:

I How do we generate the strings of some language L?
I Note that many languages have infinite size, so we need to take a finite representation

of that language, and use it to construct all of the strings!
I A grammar for L gives a description of how to enumerate the strings of L

I How do we recognize the strings of a language?
I given some x and some description of a language L, how do we decide whether x ∈ L?
I An automaton for L is a simple machine that allows us to decide, given some x,

whether x ∈ L

We will see that there are different classes of language: some are easier to generate /
recognize than others.
L1 = {x | x ∈ {a}∗ and x contains an even number of symbols}
L2 = {x | x ∈ {a}∗ and x contains a prime number of symbols}

Now What?

Until now we’ve talked about how to prove things.
Now we’re going to start proving things about the nature of computation.

Central questions:

I How do we generate the strings of some language L?
I Note that many languages have infinite size, so we need to take a finite representation

of that language, and use it to construct all of the strings!
I A grammar for L gives a description of how to enumerate the strings of L

I How do we recognize the strings of a language?

I given some x and some description of a language L, how do we decide whether x ∈ L?
I An automaton for L is a simple machine that allows us to decide, given some x,

whether x ∈ L

We will see that there are different classes of language: some are easier to generate /
recognize than others.
L1 = {x | x ∈ {a}∗ and x contains an even number of symbols}
L2 = {x | x ∈ {a}∗ and x contains a prime number of symbols}

Now What?

Until now we’ve talked about how to prove things.
Now we’re going to start proving things about the nature of computation.

Central questions:

I How do we generate the strings of some language L?
I Note that many languages have infinite size, so we need to take a finite representation

of that language, and use it to construct all of the strings!
I A grammar for L gives a description of how to enumerate the strings of L

I How do we recognize the strings of a language?
I given some x and some description of a language L, how do we decide whether x ∈ L?

I An automaton for L is a simple machine that allows us to decide, given some x,
whether x ∈ L

We will see that there are different classes of language: some are easier to generate /
recognize than others.
L1 = {x | x ∈ {a}∗ and x contains an even number of symbols}
L2 = {x | x ∈ {a}∗ and x contains a prime number of symbols}

Now What?

Until now we’ve talked about how to prove things.
Now we’re going to start proving things about the nature of computation.

Central questions:

I How do we generate the strings of some language L?
I Note that many languages have infinite size, so we need to take a finite representation

of that language, and use it to construct all of the strings!
I A grammar for L gives a description of how to enumerate the strings of L

I How do we recognize the strings of a language?
I given some x and some description of a language L, how do we decide whether x ∈ L?
I An automaton for L is a simple machine that allows us to decide, given some x,

whether x ∈ L

We will see that there are different classes of language: some are easier to generate /
recognize than others.
L1 = {x | x ∈ {a}∗ and x contains an even number of symbols}
L2 = {x | x ∈ {a}∗ and x contains a prime number of symbols}

Now What?

Until now we’ve talked about how to prove things.
Now we’re going to start proving things about the nature of computation.

Central questions:

I How do we generate the strings of some language L?
I Note that many languages have infinite size, so we need to take a finite representation

of that language, and use it to construct all of the strings!
I A grammar for L gives a description of how to enumerate the strings of L

I How do we recognize the strings of a language?
I given some x and some description of a language L, how do we decide whether x ∈ L?
I An automaton for L is a simple machine that allows us to decide, given some x,

whether x ∈ L

We will see that there are different classes of language: some are easier to generate /
recognize than others.

L1 = {x | x ∈ {a}∗ and x contains an even number of symbols}
L2 = {x | x ∈ {a}∗ and x contains a prime number of symbols}

Now What?

Until now we’ve talked about how to prove things.
Now we’re going to start proving things about the nature of computation.

Central questions:

I How do we generate the strings of some language L?
I Note that many languages have infinite size, so we need to take a finite representation

of that language, and use it to construct all of the strings!
I A grammar for L gives a description of how to enumerate the strings of L

I How do we recognize the strings of a language?
I given some x and some description of a language L, how do we decide whether x ∈ L?
I An automaton for L is a simple machine that allows us to decide, given some x,

whether x ∈ L

We will see that there are different classes of language: some are easier to generate /
recognize than others.
L1 = {x | x ∈ {a}∗ and x contains an even number of symbols}
L2 = {x | x ∈ {a}∗ and x contains a prime number of symbols}

Now What?

Until now we’ve talked about how to prove things.
Now we’re going to start proving things about the nature of computation.

Central questions:

I How do we generate the strings of some language L?
I Note that many languages have infinite size, so we need to take a finite representation

of that language, and use it to construct all of the strings!
I A grammar for L gives a description of how to enumerate the strings of L

I How do we recognize the strings of a language?
I given some x and some description of a language L, how do we decide whether x ∈ L?
I An automaton for L is a simple machine that allows us to decide, given some x,

whether x ∈ L

We will see that there are different classes of language: some are easier to generate /
recognize than others.
L1 = {x | x ∈ {a}∗ and x contains an even number of symbols}
L2 = {x | x ∈ {a}∗ and x contains a prime number of symbols}

Regular Languages

The class of regular languages is the set of languages that can be built out of 3 simple
operators: ∪, concatenation, and ∗

Regular Languages

Let R be the set of all regular languages over symbol set Σ.

I ∅ ∈ R, {Λ} ∈ R, ∀σ ∈ Σ : {σ} ∈ R
I If L ∈ R, then L∗ ∈ R

If L1, L2 ∈ R, then L1L2 ∈ R
If L1, L2 ∈ R, then L1 ∪ L2 ∈ R

I There are no other regular languages over Σ.

Example: Σ = {a, b, c}.
L1 = {a}, L2 = {b}, L3 = {c} are all regular
L = L1 ∪ L2L∗3: L = {a, b, bc, bcc, bccc, . . .}

Regular Languages

The class of regular languages is the set of languages that can be built out of 3 simple
operators: ∪, concatenation, and ∗

Regular Languages

Let R be the set of all regular languages over symbol set Σ.

I ∅ ∈ R, {Λ} ∈ R, ∀σ ∈ Σ : {σ} ∈ R

I If L ∈ R, then L∗ ∈ R
If L1, L2 ∈ R, then L1L2 ∈ R
If L1, L2 ∈ R, then L1 ∪ L2 ∈ R

I There are no other regular languages over Σ.

Example: Σ = {a, b, c}.
L1 = {a}, L2 = {b}, L3 = {c} are all regular
L = L1 ∪ L2L∗3: L = {a, b, bc, bcc, bccc, . . .}

Regular Languages

The class of regular languages is the set of languages that can be built out of 3 simple
operators: ∪, concatenation, and ∗

Regular Languages

Let R be the set of all regular languages over symbol set Σ.

I ∅ ∈ R, {Λ} ∈ R, ∀σ ∈ Σ : {σ} ∈ R
I If L ∈ R, then L∗ ∈ R

If L1, L2 ∈ R, then L1L2 ∈ R
If L1, L2 ∈ R, then L1 ∪ L2 ∈ R

I There are no other regular languages over Σ.

Example: Σ = {a, b, c}.
L1 = {a}, L2 = {b}, L3 = {c} are all regular
L = L1 ∪ L2L∗3: L = {a, b, bc, bcc, bccc, . . .}

Regular Languages

The class of regular languages is the set of languages that can be built out of 3 simple
operators: ∪, concatenation, and ∗

Regular Languages

Let R be the set of all regular languages over symbol set Σ.

I ∅ ∈ R, {Λ} ∈ R, ∀σ ∈ Σ : {σ} ∈ R
I If L ∈ R, then L∗ ∈ R

If L1, L2 ∈ R, then L1L2 ∈ R
If L1, L2 ∈ R, then L1 ∪ L2 ∈ R

I There are no other regular languages over Σ.

Example: Σ = {a, b, c}.
L1 = {a}, L2 = {b}, L3 = {c} are all regular
L = L1 ∪ L2L∗3: L = {a, b, bc, bcc, bccc, . . .}

Regular Languages

The class of regular languages is the set of languages that can be built out of 3 simple
operators: ∪, concatenation, and ∗

Regular Languages

Let R be the set of all regular languages over symbol set Σ.

I ∅ ∈ R, {Λ} ∈ R, ∀σ ∈ Σ : {σ} ∈ R
I If L ∈ R, then L∗ ∈ R

If L1, L2 ∈ R, then L1L2 ∈ R
If L1, L2 ∈ R, then L1 ∪ L2 ∈ R

I There are no other regular languages over Σ.

Example: Σ = {a, b, c}.
L1 = {a}, L2 = {b}, L3 = {c} are all regular

L = L1 ∪ L2L∗3: L = {a, b, bc, bcc, bccc, . . .}

Regular Languages

The class of regular languages is the set of languages that can be built out of 3 simple
operators: ∪, concatenation, and ∗

Regular Languages

Let R be the set of all regular languages over symbol set Σ.

I ∅ ∈ R, {Λ} ∈ R, ∀σ ∈ Σ : {σ} ∈ R
I If L ∈ R, then L∗ ∈ R

If L1, L2 ∈ R, then L1L2 ∈ R
If L1, L2 ∈ R, then L1 ∪ L2 ∈ R

I There are no other regular languages over Σ.

Example: Σ = {a, b, c}.
L1 = {a}, L2 = {b}, L3 = {c} are all regular
L = L1 ∪ L2L∗3:

L = {a, b, bc, bcc, bccc, . . .}

Regular Languages

The class of regular languages is the set of languages that can be built out of 3 simple
operators: ∪, concatenation, and ∗

Regular Languages

Let R be the set of all regular languages over symbol set Σ.

I ∅ ∈ R, {Λ} ∈ R, ∀σ ∈ Σ : {σ} ∈ R
I If L ∈ R, then L∗ ∈ R

If L1, L2 ∈ R, then L1L2 ∈ R
If L1, L2 ∈ R, then L1 ∪ L2 ∈ R

I There are no other regular languages over Σ.

Example: Σ = {a, b, c}.
L1 = {a}, L2 = {b}, L3 = {c} are all regular
L = L1 ∪ L2L∗3: L = {a, b, bc, bcc, bccc, . . .}

Regular Expressions

We write ∪ with +, and we remove set notation.
Example: ({a}{b}∗ ∪ {c}∗{d})∗{e} becomes (ab∗ + c∗d)∗e.

Given some regular expression, r, we use L(r) to represent the language it denotes.

RE (r) Corresponding Language (L(r))
a+ bc

{a, bc}

a(b+ c)

{ab, ac}

(a+ b)(a+ c)(Λ + a)

{aa, ac, ba, bc, aaa, aca, baa, bca}

a∗(b+ cc)

{b, cc, ab, acc, aab, aacc, aaab, aaacc, . . .}

a+ bb∗

{a, b, bb, bbb, bbbb, . . .}

(a+ bb)∗

{Λ, a, bb, aa, abb, bba, bbbb, aaa, . . .}

a∗b∗

{Λ, a, b, ab, aa, bb, aaa, aab, abb, bbb, . . .}

((a+ b)(a+ b))∗

{x | x ∈ {a, b} ∧ |x| is even }

Some notational conveniences (that do not change the class of languages.):
Let r be a RE. r0 = Λ, and ∀k ≥ 0, rk+1 = rrk

(a+ b)k: all strings over {a, b} of length exactly k
(a+ b+ Λ)k: all strings of length at most k.

Positive closure: r+ = rr∗

(Alternatively, r∗ = Λ + r+)

Regular Expressions

We write ∪ with +, and we remove set notation.
Example: ({a}{b}∗ ∪ {c}∗{d})∗{e} becomes (ab∗ + c∗d)∗e.
Given some regular expression, r, we use L(r) to represent the language it denotes.

RE (r) Corresponding Language (L(r))
a+ bc

{a, bc}

a(b+ c)

{ab, ac}

(a+ b)(a+ c)(Λ + a)

{aa, ac, ba, bc, aaa, aca, baa, bca}

a∗(b+ cc)

{b, cc, ab, acc, aab, aacc, aaab, aaacc, . . .}

a+ bb∗

{a, b, bb, bbb, bbbb, . . .}

(a+ bb)∗

{Λ, a, bb, aa, abb, bba, bbbb, aaa, . . .}

a∗b∗

{Λ, a, b, ab, aa, bb, aaa, aab, abb, bbb, . . .}

((a+ b)(a+ b))∗

{x | x ∈ {a, b} ∧ |x| is even }

Some notational conveniences (that do not change the class of languages.):
Let r be a RE. r0 = Λ, and ∀k ≥ 0, rk+1 = rrk

(a+ b)k: all strings over {a, b} of length exactly k
(a+ b+ Λ)k: all strings of length at most k.

Positive closure: r+ = rr∗

(Alternatively, r∗ = Λ + r+)

Regular Expressions

We write ∪ with +, and we remove set notation.
Example: ({a}{b}∗ ∪ {c}∗{d})∗{e} becomes (ab∗ + c∗d)∗e.
Given some regular expression, r, we use L(r) to represent the language it denotes.

RE (r) Corresponding Language (L(r))
a+ bc {a, bc}
a(b+ c)

{ab, ac}

(a+ b)(a+ c)(Λ + a)

{aa, ac, ba, bc, aaa, aca, baa, bca}

a∗(b+ cc)

{b, cc, ab, acc, aab, aacc, aaab, aaacc, . . .}

a+ bb∗

{a, b, bb, bbb, bbbb, . . .}

(a+ bb)∗

{Λ, a, bb, aa, abb, bba, bbbb, aaa, . . .}

a∗b∗

{Λ, a, b, ab, aa, bb, aaa, aab, abb, bbb, . . .}

((a+ b)(a+ b))∗

{x | x ∈ {a, b} ∧ |x| is even }

Some notational conveniences (that do not change the class of languages.):
Let r be a RE. r0 = Λ, and ∀k ≥ 0, rk+1 = rrk

(a+ b)k: all strings over {a, b} of length exactly k
(a+ b+ Λ)k: all strings of length at most k.

Positive closure: r+ = rr∗

(Alternatively, r∗ = Λ + r+)

Regular Expressions

We write ∪ with +, and we remove set notation.
Example: ({a}{b}∗ ∪ {c}∗{d})∗{e} becomes (ab∗ + c∗d)∗e.
Given some regular expression, r, we use L(r) to represent the language it denotes.

RE (r) Corresponding Language (L(r))
a+ bc {a, bc}
a(b+ c) {ab, ac}
(a+ b)(a+ c)(Λ + a)

{aa, ac, ba, bc, aaa, aca, baa, bca}

a∗(b+ cc)

{b, cc, ab, acc, aab, aacc, aaab, aaacc, . . .}

a+ bb∗

{a, b, bb, bbb, bbbb, . . .}

(a+ bb)∗

{Λ, a, bb, aa, abb, bba, bbbb, aaa, . . .}

a∗b∗

{Λ, a, b, ab, aa, bb, aaa, aab, abb, bbb, . . .}

((a+ b)(a+ b))∗

{x | x ∈ {a, b} ∧ |x| is even }

Some notational conveniences (that do not change the class of languages.):
Let r be a RE. r0 = Λ, and ∀k ≥ 0, rk+1 = rrk

(a+ b)k: all strings over {a, b} of length exactly k
(a+ b+ Λ)k: all strings of length at most k.

Positive closure: r+ = rr∗

(Alternatively, r∗ = Λ + r+)

Regular Expressions

We write ∪ with +, and we remove set notation.
Example: ({a}{b}∗ ∪ {c}∗{d})∗{e} becomes (ab∗ + c∗d)∗e.
Given some regular expression, r, we use L(r) to represent the language it denotes.

RE (r) Corresponding Language (L(r))
a+ bc {a, bc}
a(b+ c) {ab, ac}
(a+ b)(a+ c)(Λ + a) {aa, ac, ba, bc, aaa, aca, baa, bca}
a∗(b+ cc)

{b, cc, ab, acc, aab, aacc, aaab, aaacc, . . .}

a+ bb∗

{a, b, bb, bbb, bbbb, . . .}

(a+ bb)∗

{Λ, a, bb, aa, abb, bba, bbbb, aaa, . . .}

a∗b∗

{Λ, a, b, ab, aa, bb, aaa, aab, abb, bbb, . . .}

((a+ b)(a+ b))∗

{x | x ∈ {a, b} ∧ |x| is even }

Some notational conveniences (that do not change the class of languages.):
Let r be a RE. r0 = Λ, and ∀k ≥ 0, rk+1 = rrk

(a+ b)k: all strings over {a, b} of length exactly k
(a+ b+ Λ)k: all strings of length at most k.

Positive closure: r+ = rr∗

(Alternatively, r∗ = Λ + r+)

Regular Expressions

We write ∪ with +, and we remove set notation.
Example: ({a}{b}∗ ∪ {c}∗{d})∗{e} becomes (ab∗ + c∗d)∗e.
Given some regular expression, r, we use L(r) to represent the language it denotes.

RE (r) Corresponding Language (L(r))
a+ bc {a, bc}
a(b+ c) {ab, ac}
(a+ b)(a+ c)(Λ + a) {aa, ac, ba, bc, aaa, aca, baa, bca}
a∗(b+ cc) {b, cc, ab, acc, aab, aacc, aaab, aaacc, . . .}
a+ bb∗

{a, b, bb, bbb, bbbb, . . .}

(a+ bb)∗

{Λ, a, bb, aa, abb, bba, bbbb, aaa, . . .}

a∗b∗

{Λ, a, b, ab, aa, bb, aaa, aab, abb, bbb, . . .}

((a+ b)(a+ b))∗

{x | x ∈ {a, b} ∧ |x| is even }

Some notational conveniences (that do not change the class of languages.):
Let r be a RE. r0 = Λ, and ∀k ≥ 0, rk+1 = rrk

(a+ b)k: all strings over {a, b} of length exactly k
(a+ b+ Λ)k: all strings of length at most k.

Positive closure: r+ = rr∗

(Alternatively, r∗ = Λ + r+)

Regular Expressions

We write ∪ with +, and we remove set notation.
Example: ({a}{b}∗ ∪ {c}∗{d})∗{e} becomes (ab∗ + c∗d)∗e.
Given some regular expression, r, we use L(r) to represent the language it denotes.

RE (r) Corresponding Language (L(r))
a+ bc {a, bc}
a(b+ c) {ab, ac}
(a+ b)(a+ c)(Λ + a) {aa, ac, ba, bc, aaa, aca, baa, bca}
a∗(b+ cc) {b, cc, ab, acc, aab, aacc, aaab, aaacc, . . .}
a+ bb∗ {a, b, bb, bbb, bbbb, . . .}
(a+ bb)∗

{Λ, a, bb, aa, abb, bba, bbbb, aaa, . . .}

a∗b∗

{Λ, a, b, ab, aa, bb, aaa, aab, abb, bbb, . . .}

((a+ b)(a+ b))∗

{x | x ∈ {a, b} ∧ |x| is even }

Some notational conveniences (that do not change the class of languages.):
Let r be a RE. r0 = Λ, and ∀k ≥ 0, rk+1 = rrk

(a+ b)k: all strings over {a, b} of length exactly k
(a+ b+ Λ)k: all strings of length at most k.

Positive closure: r+ = rr∗

(Alternatively, r∗ = Λ + r+)

Regular Expressions

We write ∪ with +, and we remove set notation.
Example: ({a}{b}∗ ∪ {c}∗{d})∗{e} becomes (ab∗ + c∗d)∗e.
Given some regular expression, r, we use L(r) to represent the language it denotes.

RE (r) Corresponding Language (L(r))
a+ bc {a, bc}
a(b+ c) {ab, ac}
(a+ b)(a+ c)(Λ + a) {aa, ac, ba, bc, aaa, aca, baa, bca}
a∗(b+ cc) {b, cc, ab, acc, aab, aacc, aaab, aaacc, . . .}
a+ bb∗ {a, b, bb, bbb, bbbb, . . .}
(a+ bb)∗ {Λ, a, bb, aa, abb, bba, bbbb, aaa, . . .}
a∗b∗

{Λ, a, b, ab, aa, bb, aaa, aab, abb, bbb, . . .}

((a+ b)(a+ b))∗

{x | x ∈ {a, b} ∧ |x| is even }

Some notational conveniences (that do not change the class of languages.):
Let r be a RE. r0 = Λ, and ∀k ≥ 0, rk+1 = rrk

(a+ b)k: all strings over {a, b} of length exactly k
(a+ b+ Λ)k: all strings of length at most k.

Positive closure: r+ = rr∗

(Alternatively, r∗ = Λ + r+)

Regular Expressions

We write ∪ with +, and we remove set notation.
Example: ({a}{b}∗ ∪ {c}∗{d})∗{e} becomes (ab∗ + c∗d)∗e.
Given some regular expression, r, we use L(r) to represent the language it denotes.

RE (r) Corresponding Language (L(r))
a+ bc {a, bc}
a(b+ c) {ab, ac}
(a+ b)(a+ c)(Λ + a) {aa, ac, ba, bc, aaa, aca, baa, bca}
a∗(b+ cc) {b, cc, ab, acc, aab, aacc, aaab, aaacc, . . .}
a+ bb∗ {a, b, bb, bbb, bbbb, . . .}
(a+ bb)∗ {Λ, a, bb, aa, abb, bba, bbbb, aaa, . . .}
a∗b∗ {Λ, a, b, ab, aa, bb, aaa, aab, abb, bbb, . . .}
((a+ b)(a+ b))∗

{x | x ∈ {a, b} ∧ |x| is even }

Some notational conveniences (that do not change the class of languages.):
Let r be a RE. r0 = Λ, and ∀k ≥ 0, rk+1 = rrk

(a+ b)k: all strings over {a, b} of length exactly k
(a+ b+ Λ)k: all strings of length at most k.

Positive closure: r+ = rr∗

(Alternatively, r∗ = Λ + r+)

Regular Expressions

We write ∪ with +, and we remove set notation.
Example: ({a}{b}∗ ∪ {c}∗{d})∗{e} becomes (ab∗ + c∗d)∗e.
Given some regular expression, r, we use L(r) to represent the language it denotes.

RE (r) Corresponding Language (L(r))
a+ bc {a, bc}
a(b+ c) {ab, ac}
(a+ b)(a+ c)(Λ + a) {aa, ac, ba, bc, aaa, aca, baa, bca}
a∗(b+ cc) {b, cc, ab, acc, aab, aacc, aaab, aaacc, . . .}
a+ bb∗ {a, b, bb, bbb, bbbb, . . .}
(a+ bb)∗ {Λ, a, bb, aa, abb, bba, bbbb, aaa, . . .}
a∗b∗ {Λ, a, b, ab, aa, bb, aaa, aab, abb, bbb, . . .}
((a+ b)(a+ b))∗ {x | x ∈ {a, b} ∧ |x| is even }

Some notational conveniences (that do not change the class of languages.):
Let r be a RE. r0 = Λ, and ∀k ≥ 0, rk+1 = rrk

(a+ b)k: all strings over {a, b} of length exactly k
(a+ b+ Λ)k: all strings of length at most k.

Positive closure: r+ = rr∗

(Alternatively, r∗ = Λ + r+)

Regular Expressions

We write ∪ with +, and we remove set notation.
Example: ({a}{b}∗ ∪ {c}∗{d})∗{e} becomes (ab∗ + c∗d)∗e.
Given some regular expression, r, we use L(r) to represent the language it denotes.

RE (r) Corresponding Language (L(r))
a+ bc {a, bc}
a(b+ c) {ab, ac}
(a+ b)(a+ c)(Λ + a) {aa, ac, ba, bc, aaa, aca, baa, bca}
a∗(b+ cc) {b, cc, ab, acc, aab, aacc, aaab, aaacc, . . .}
a+ bb∗ {a, b, bb, bbb, bbbb, . . .}
(a+ bb)∗ {Λ, a, bb, aa, abb, bba, bbbb, aaa, . . .}
a∗b∗ {Λ, a, b, ab, aa, bb, aaa, aab, abb, bbb, . . .}
((a+ b)(a+ b))∗ {x | x ∈ {a, b} ∧ |x| is even }

Some notational conveniences (that do not change the class of languages.):
Let r be a RE. r0 = Λ, and ∀k ≥ 0, rk+1 = rrk

(a+ b)k: all strings over {a, b} of length exactly k
(a+ b+ Λ)k: all strings of length at most k.

Positive closure: r+ = rr∗

(Alternatively, r∗ = Λ + r+)

Regular Expressions

We write ∪ with +, and we remove set notation.
Example: ({a}{b}∗ ∪ {c}∗{d})∗{e} becomes (ab∗ + c∗d)∗e.
Given some regular expression, r, we use L(r) to represent the language it denotes.

RE (r) Corresponding Language (L(r))
a+ bc {a, bc}
a(b+ c) {ab, ac}
(a+ b)(a+ c)(Λ + a) {aa, ac, ba, bc, aaa, aca, baa, bca}
a∗(b+ cc) {b, cc, ab, acc, aab, aacc, aaab, aaacc, . . .}
a+ bb∗ {a, b, bb, bbb, bbbb, . . .}
(a+ bb)∗ {Λ, a, bb, aa, abb, bba, bbbb, aaa, . . .}
a∗b∗ {Λ, a, b, ab, aa, bb, aaa, aab, abb, bbb, . . .}
((a+ b)(a+ b))∗ {x | x ∈ {a, b} ∧ |x| is even }

Some notational conveniences (that do not change the class of languages.):
Let r be a RE. r0 = Λ, and ∀k ≥ 0, rk+1 = rrk

(a+ b)k: all strings over {a, b} of length exactly k

(a+ b+ Λ)k: all strings of length at most k.

Positive closure: r+ = rr∗

(Alternatively, r∗ = Λ + r+)

Regular Expressions

We write ∪ with +, and we remove set notation.
Example: ({a}{b}∗ ∪ {c}∗{d})∗{e} becomes (ab∗ + c∗d)∗e.
Given some regular expression, r, we use L(r) to represent the language it denotes.

RE (r) Corresponding Language (L(r))
a+ bc {a, bc}
a(b+ c) {ab, ac}
(a+ b)(a+ c)(Λ + a) {aa, ac, ba, bc, aaa, aca, baa, bca}
a∗(b+ cc) {b, cc, ab, acc, aab, aacc, aaab, aaacc, . . .}
a+ bb∗ {a, b, bb, bbb, bbbb, . . .}
(a+ bb)∗ {Λ, a, bb, aa, abb, bba, bbbb, aaa, . . .}
a∗b∗ {Λ, a, b, ab, aa, bb, aaa, aab, abb, bbb, . . .}
((a+ b)(a+ b))∗ {x | x ∈ {a, b} ∧ |x| is even }

Some notational conveniences (that do not change the class of languages.):
Let r be a RE. r0 = Λ, and ∀k ≥ 0, rk+1 = rrk

(a+ b)k: all strings over {a, b} of length exactly k
(a+ b+ Λ)k: all strings of length at most k.

Positive closure: r+ = rr∗

(Alternatively, r∗ = Λ + r+)

Regular Expressions

We write ∪ with +, and we remove set notation.
Example: ({a}{b}∗ ∪ {c}∗{d})∗{e} becomes (ab∗ + c∗d)∗e.
Given some regular expression, r, we use L(r) to represent the language it denotes.

RE (r) Corresponding Language (L(r))
a+ bc {a, bc}
a(b+ c) {ab, ac}
(a+ b)(a+ c)(Λ + a) {aa, ac, ba, bc, aaa, aca, baa, bca}
a∗(b+ cc) {b, cc, ab, acc, aab, aacc, aaab, aaacc, . . .}
a+ bb∗ {a, b, bb, bbb, bbbb, . . .}
(a+ bb)∗ {Λ, a, bb, aa, abb, bba, bbbb, aaa, . . .}
a∗b∗ {Λ, a, b, ab, aa, bb, aaa, aab, abb, bbb, . . .}
((a+ b)(a+ b))∗ {x | x ∈ {a, b} ∧ |x| is even }

Some notational conveniences (that do not change the class of languages.):
Let r be a RE. r0 = Λ, and ∀k ≥ 0, rk+1 = rrk

(a+ b)k: all strings over {a, b} of length exactly k
(a+ b+ Λ)k: all strings of length at most k.

Positive closure: r+ = rr∗

(Alternatively, r∗ = Λ + r+)

Regular Expressions

We write ∪ with +, and we remove set notation.
Example: ({a}{b}∗ ∪ {c}∗{d})∗{e} becomes (ab∗ + c∗d)∗e.
Given some regular expression, r, we use L(r) to represent the language it denotes.

RE (r) Corresponding Language (L(r))
a+ bc {a, bc}
a(b+ c) {ab, ac}
(a+ b)(a+ c)(Λ + a) {aa, ac, ba, bc, aaa, aca, baa, bca}
a∗(b+ cc) {b, cc, ab, acc, aab, aacc, aaab, aaacc, . . .}
a+ bb∗ {a, b, bb, bbb, bbbb, . . .}
(a+ bb)∗ {Λ, a, bb, aa, abb, bba, bbbb, aaa, . . .}
a∗b∗ {Λ, a, b, ab, aa, bb, aaa, aab, abb, bbb, . . .}
((a+ b)(a+ b))∗ {x | x ∈ {a, b} ∧ |x| is even }

Some notational conveniences (that do not change the class of languages.):
Let r be a RE. r0 = Λ, and ∀k ≥ 0, rk+1 = rrk

(a+ b)k: all strings over {a, b} of length exactly k
(a+ b+ Λ)k: all strings of length at most k.

Positive closure: r+ = rr∗

(Alternatively, r∗ = Λ + r+)

