
Strings

Alphabet: An alphabet is a set of symbols. E.g.
Σ1 = {a, b, c, d, e, f, g, h, i, j, k, l,m, n, o, p, q, r, s, t, u, v, w, x, y, z}, or Σ2 = {0, 1}.

String: A string is a finite sequence of characters.
A string over some alphabet Σ is a finite sequence of characters from that alphabet.
Example: dog is a string over Σ1. So is doogle. 001010 is a string over Σ2.

Λ is a special string, called the empty string. It exists, regardless of the alphabet being
used.

Concatenation: The primary operator we use on strings is concatenation. This takes
two strings as input and outputs a new string. Because we use it so often, we don’t
bother with a symbol: the concatenation of strings x and y is written xy.
Example: dog concatenated with doogle is dogdoogle.
We use x2 = xx, xk = xxk−1, x0 = Λ

Length: The length of a string is the number characters in the string.
Example: |doogle| = 6. Example: |Λ| = 0



Strings

Alphabet: An alphabet is a set of symbols. E.g.
Σ1 = {a, b, c, d, e, f, g, h, i, j, k, l,m, n, o, p, q, r, s, t, u, v, w, x, y, z}, or Σ2 = {0, 1}.

String: A string is a finite sequence of characters.

A string over some alphabet Σ is a finite sequence of characters from that alphabet.
Example: dog is a string over Σ1. So is doogle. 001010 is a string over Σ2.

Λ is a special string, called the empty string. It exists, regardless of the alphabet being
used.

Concatenation: The primary operator we use on strings is concatenation. This takes
two strings as input and outputs a new string. Because we use it so often, we don’t
bother with a symbol: the concatenation of strings x and y is written xy.
Example: dog concatenated with doogle is dogdoogle.
We use x2 = xx, xk = xxk−1, x0 = Λ

Length: The length of a string is the number characters in the string.
Example: |doogle| = 6. Example: |Λ| = 0



Strings

Alphabet: An alphabet is a set of symbols. E.g.
Σ1 = {a, b, c, d, e, f, g, h, i, j, k, l,m, n, o, p, q, r, s, t, u, v, w, x, y, z}, or Σ2 = {0, 1}.

String: A string is a finite sequence of characters.
A string over some alphabet Σ is a finite sequence of characters from that alphabet.
Example: dog is a string over Σ1. So is doogle. 001010 is a string over Σ2.

Λ is a special string, called the empty string. It exists, regardless of the alphabet being
used.

Concatenation: The primary operator we use on strings is concatenation. This takes
two strings as input and outputs a new string. Because we use it so often, we don’t
bother with a symbol: the concatenation of strings x and y is written xy.
Example: dog concatenated with doogle is dogdoogle.
We use x2 = xx, xk = xxk−1, x0 = Λ

Length: The length of a string is the number characters in the string.
Example: |doogle| = 6. Example: |Λ| = 0



Strings

Alphabet: An alphabet is a set of symbols. E.g.
Σ1 = {a, b, c, d, e, f, g, h, i, j, k, l,m, n, o, p, q, r, s, t, u, v, w, x, y, z}, or Σ2 = {0, 1}.

String: A string is a finite sequence of characters.
A string over some alphabet Σ is a finite sequence of characters from that alphabet.
Example: dog is a string over Σ1. So is doogle. 001010 is a string over Σ2.

Λ is a special string, called the empty string. It exists, regardless of the alphabet being
used.

Concatenation: The primary operator we use on strings is concatenation. This takes
two strings as input and outputs a new string. Because we use it so often, we don’t
bother with a symbol: the concatenation of strings x and y is written xy.
Example: dog concatenated with doogle is dogdoogle.
We use x2 = xx, xk = xxk−1, x0 = Λ

Length: The length of a string is the number characters in the string.
Example: |doogle| = 6. Example: |Λ| = 0



Strings

Alphabet: An alphabet is a set of symbols. E.g.
Σ1 = {a, b, c, d, e, f, g, h, i, j, k, l,m, n, o, p, q, r, s, t, u, v, w, x, y, z}, or Σ2 = {0, 1}.

String: A string is a finite sequence of characters.
A string over some alphabet Σ is a finite sequence of characters from that alphabet.
Example: dog is a string over Σ1. So is doogle. 001010 is a string over Σ2.

Λ is a special string, called the empty string. It exists, regardless of the alphabet being
used.

Concatenation: The primary operator we use on strings is concatenation. This takes
two strings as input and outputs a new string. Because we use it so often, we don’t
bother with a symbol: the concatenation of strings x and y is written xy.

Example: dog concatenated with doogle is dogdoogle.
We use x2 = xx, xk = xxk−1, x0 = Λ

Length: The length of a string is the number characters in the string.
Example: |doogle| = 6. Example: |Λ| = 0



Strings

Alphabet: An alphabet is a set of symbols. E.g.
Σ1 = {a, b, c, d, e, f, g, h, i, j, k, l,m, n, o, p, q, r, s, t, u, v, w, x, y, z}, or Σ2 = {0, 1}.

String: A string is a finite sequence of characters.
A string over some alphabet Σ is a finite sequence of characters from that alphabet.
Example: dog is a string over Σ1. So is doogle. 001010 is a string over Σ2.

Λ is a special string, called the empty string. It exists, regardless of the alphabet being
used.

Concatenation: The primary operator we use on strings is concatenation. This takes
two strings as input and outputs a new string. Because we use it so often, we don’t
bother with a symbol: the concatenation of strings x and y is written xy.
Example: dog concatenated with doogle is dogdoogle.

We use x2 = xx, xk = xxk−1, x0 = Λ

Length: The length of a string is the number characters in the string.
Example: |doogle| = 6. Example: |Λ| = 0



Strings

Alphabet: An alphabet is a set of symbols. E.g.
Σ1 = {a, b, c, d, e, f, g, h, i, j, k, l,m, n, o, p, q, r, s, t, u, v, w, x, y, z}, or Σ2 = {0, 1}.

String: A string is a finite sequence of characters.
A string over some alphabet Σ is a finite sequence of characters from that alphabet.
Example: dog is a string over Σ1. So is doogle. 001010 is a string over Σ2.

Λ is a special string, called the empty string. It exists, regardless of the alphabet being
used.

Concatenation: The primary operator we use on strings is concatenation. This takes
two strings as input and outputs a new string. Because we use it so often, we don’t
bother with a symbol: the concatenation of strings x and y is written xy.
Example: dog concatenated with doogle is dogdoogle.
We use x2 = xx, xk = xxk−1, x0 = Λ

Length: The length of a string is the number characters in the string.
Example: |doogle| = 6. Example: |Λ| = 0



Strings

Alphabet: An alphabet is a set of symbols. E.g.
Σ1 = {a, b, c, d, e, f, g, h, i, j, k, l,m, n, o, p, q, r, s, t, u, v, w, x, y, z}, or Σ2 = {0, 1}.

String: A string is a finite sequence of characters.
A string over some alphabet Σ is a finite sequence of characters from that alphabet.
Example: dog is a string over Σ1. So is doogle. 001010 is a string over Σ2.

Λ is a special string, called the empty string. It exists, regardless of the alphabet being
used.

Concatenation: The primary operator we use on strings is concatenation. This takes
two strings as input and outputs a new string. Because we use it so often, we don’t
bother with a symbol: the concatenation of strings x and y is written xy.
Example: dog concatenated with doogle is dogdoogle.
We use x2 = xx, xk = xxk−1, x0 = Λ

Length: The length of a string is the number characters in the string.
Example: |doogle| = 6.

Example: |Λ| = 0



Strings

Alphabet: An alphabet is a set of symbols. E.g.
Σ1 = {a, b, c, d, e, f, g, h, i, j, k, l,m, n, o, p, q, r, s, t, u, v, w, x, y, z}, or Σ2 = {0, 1}.

String: A string is a finite sequence of characters.
A string over some alphabet Σ is a finite sequence of characters from that alphabet.
Example: dog is a string over Σ1. So is doogle. 001010 is a string over Σ2.

Λ is a special string, called the empty string. It exists, regardless of the alphabet being
used.

Concatenation: The primary operator we use on strings is concatenation. This takes
two strings as input and outputs a new string. Because we use it so often, we don’t
bother with a symbol: the concatenation of strings x and y is written xy.
Example: dog concatenated with doogle is dogdoogle.
We use x2 = xx, xk = xxk−1, x0 = Λ

Length: The length of a string is the number characters in the string.
Example: |doogle| = 6. Example: |Λ| = 0



Languages

Language: A language is a set of strings. It can be finite or infinite.
Example: {ab, bab, bbaab} is a language of size 3.

Example: L = {Λ, a, b, aa, ab, ba, bb}
Example: Σ = {0, 1,+}, L = {0 + 0, 0 + 1, 1 + 0, 1 + 1, 0 + 0 + 0, 0 + 0 + 1, . . .}
While a language may have infinite size, each string in the language has finite size.

Σ∗ is the language containing all possible strings over the alphabet Σ.
Example: Σ = {a, b}, Σ∗ = {Λ, a, b, aa, ab, ba, bb, aaa, . . .}
We sometimes write this as {a, b}∗

Σ = {a, b}, L1 = {a, aa}, L2 = {Λ, aa, ba}, L3 = {Λ, a, aa, aaa, . . .}
Language operators:
L1 ∪ L2 {a, aa,Λ, ba}
L1 ∩ L2 {aa}
L2 \ L1 {Λ, ba}
L1 \ L2 {a}
L̄ = Σ∗ \ L L̄3 = {b, ab, ba, bb, aab, aba, abb, baa, bab, bba, bbb . . .}
L1L2 = {xy | x ∈ L1 ∧ y ∈ L2} {a, aa, aaa, aba, aaaa, aaba}
L2L1 {a, aa, aaa, aaaa, baa, baaa}

L0 = {Λ} for any L
L2 = LL and Lk = LLk−1

L∗ =
∞⋃
i=0

Li
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Example: L = {a, bb}

L0 = {Λ}
L1 = {a, bb}
L2 = {aa, abb, bba, bbbb}
L3 = {aaa, aabb, abba, abbbb, bbaa, bbabb, bbbba, bbbbbb}
L∗ = {Λ, a, bb, aa, abb, bba, bbbb, aaa, aabb, abba, abbb, bbaa, . . .}

extensional form: enumerate the strings. Only finite sets, or possibly use “ . . . ”
intensional form: specify the properties of the strings.
Informally: L = {x | x contains an equal number of as and bs }
Formally: L = {x | x ∈ {a, b}∗ ∧Na(x) = Nb(x)}, where Na(x) denotes the number
of as in string x.
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Now What?

Until now we’ve talked about how to prove things.

Now we’re going to start proving things about the nature of computation.

Central questions:

I How do we generate the strings of some language L?
I Note that many languages have infinite size, so we need to take a finite representation

of that language, and use it to construct all of the strings!
I A grammar for L gives a description of how to enumerate the strings of L

I How do we recognize the strings of a language?
I given some x and some description of a language L, how do we decide whether x ∈ L?
I An automaton for L is a simple machine that allows us to decide, given some x,

whether x ∈ L

We will see that there are different classes of language: some are easier to generate /
recognize than others.
L1 = {x | x ∈ {a}∗ and x contains an even number of symbols}
L2 = {x | x ∈ {a}∗ and x contains a prime number of symbols}
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operators: ∪, concatenation, and ∗

Regular Languages

Let R be the set of all regular languages over symbol set Σ.
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Regular Expressions

We write ∪ with +, and we remove set notation.
Example: ({a}{b}∗ ∪ {c}∗{d})∗{e} becomes (ab∗ + c∗d)∗e.

Given some regular expression, r, we use L(r) to represent the language it denotes.

RE (r) Corresponding Language (L(r))
a+ bc

{a, bc}

a(b+ c)

{ab, ac}

(a+ b)(a+ c)(Λ + a)

{aa, ac, ba, bc, aaa, aca, baa, bca}

a∗(b+ cc)

{b, cc, ab, acc, aab, aacc, aaab, aaacc, . . .}

a+ bb∗

{a, b, bb, bbb, bbbb, . . .}

(a+ bb)∗

{Λ, a, bb, aa, abb, bba, bbbb, aaa, . . .}

a∗b∗

{Λ, a, b, ab, aa, bb, aaa, aab, abb, bbb, . . .}

((a+ b)(a+ b))∗

{x | x ∈ {a, b} ∧ |x| is even }

Some notational conveniences (that do not change the class of languages.):
Let r be a RE. r0 = Λ, and ∀k ≥ 0, rk+1 = rrk

(a+ b)k: all strings over {a, b} of length exactly k
(a+ b+ Λ)k: all strings of length at most k.

Positive closure: r+ = rr∗

(Alternatively, r∗ = Λ + r+)
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Given some regular expression, r, we use L(r) to represent the language it denotes.

RE (r) Corresponding Language (L(r))
a+ bc {a, bc}
a(b+ c) {ab, ac}
(a+ b)(a+ c)(Λ + a) {aa, ac, ba, bc, aaa, aca, baa, bca}
a∗(b+ cc) {b, cc, ab, acc, aab, aacc, aaab, aaacc, . . .}
a+ bb∗ {a, b, bb, bbb, bbbb, . . .}
(a+ bb)∗ {Λ, a, bb, aa, abb, bba, bbbb, aaa, . . .}
a∗b∗ {Λ, a, b, ab, aa, bb, aaa, aab, abb, bbb, . . .}
((a+ b)(a+ b))∗ {x | x ∈ {a, b} ∧ |x| is even }

Some notational conveniences (that do not change the class of languages.):
Let r be a RE. r0 = Λ, and ∀k ≥ 0, rk+1 = rrk

(a+ b)k: all strings over {a, b} of length exactly k
(a+ b+ Λ)k: all strings of length at most k.

Positive closure: r+ = rr∗

(Alternatively, r∗ = Λ + r+)


