Strings

Alphabet: An alphabet is a set of symbols. E.g.
\[\Sigma_1 = \{a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z\}, \text{ or } \Sigma_2 = \{0, 1\}. \]
Strings

Alphabet: An alphabet is a set of symbols. E.g. \(\Sigma_1 = \{ a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z \} \), or \(\Sigma_2 = \{ 0, 1 \} \).

String: A string is a *finite* sequence of characters.
Strings

Alphabet: An alphabet is a set of symbols. E.g.
$\Sigma_1 = \{a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z\}$, or $\Sigma_2 = \{0, 1\}$.

String: A string is a *finite* sequence of characters.
A string over some alphabet Σ is a finite sequence of characters from that alphabet.
Example: *dog* is a string over Σ_1. So is *doogle*. 001010 is a string over Σ_2.
Strings

Alphabet: An alphabet is a set of symbols. E.g. \(\Sigma_1 = \{a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z\} \), or \(\Sigma_2 = \{0, 1\} \).

String: A string is a *finite* sequence of characters. A string over some alphabet \(\Sigma \) is a finite sequence of characters from that alphabet. Example: *dog* is a string over \(\Sigma_1 \). So is *doogle*. 001010 is a string over \(\Sigma_2 \).

\(\Lambda \) is a special string, called the empty string. It exists, regardless of the alphabet being used.

Concatenation: The primary operator we use on strings is concatenation. This takes two strings as input and outputs a new string. Because we use it so often, we don't bother with a symbol: the concatenation of strings \(x \) and \(y \) is written \(xy \).

Example: *dog* concatenated with *doogle* is *dogdoogle*.

Length: The length of a string is the number characters in the string.

Example: \(|doogle| = 6 \).

Example: \(|\Lambda| = 0 \).
Strings

Alphabet: An alphabet is a set of symbols. E.g. \(\Sigma_1 = \{a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z\} \), or \(\Sigma_2 = \{0, 1\} \).

String: A string is a *finite* sequence of characters. A string over some alphabet \(\Sigma \) is a finite sequence of characters from that alphabet. Example: *dog* is a string over \(\Sigma_1 \). So is *doogle*. 001010 is a string over \(\Sigma_2 \).

\(\Lambda \) is a special string, called the empty string. It exists, regardless of the alphabet being used.

Concatenation: The primary operator we use on strings is concatenation. This takes two strings as input and outputs a new string. Because we use it so often, we don’t bother with a symbol: the concatenation of strings \(x \) and \(y \) is written \(xy \).
Strings

Alphabet: An alphabet is a set of symbols. E.g.
$\Sigma_1 = \{a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z\}$, or $\Sigma_2 = \{0, 1\}$.

String: A string is a *finite* sequence of characters.
A string over some alphabet Σ is a finite sequence of characters from that alphabet. Example: *dog* is a string over Σ_1. So is *doogle*. 001010 is a string over Σ_2.

Λ is a special string, called the empty string. It exists, regardless of the alphabet being used.

Concatenation: The primary operator we use on strings is concatenation. This takes two strings as input and outputs a new string. Because we use it so often, we don’t bother with a symbol: the concatenation of strings x and y is written xy.
Example: *dog* concatenated with *doogle* is *dogdoogle*.
Strings

Alphabet: An alphabet is a set of symbols. E.g. \(\Sigma_1 = \{a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z\} \), or \(\Sigma_2 = \{0, 1\} \).

String: A string is a *finite* sequence of characters. A string over some alphabet \(\Sigma \) is a finite sequence of characters from that alphabet. Example: *dog* is a string over \(\Sigma_1 \). So is *doogle*. 001010 is a string over \(\Sigma_2 \).

\(\Lambda \) is a special string, called the empty string. It exists, regardless of the alphabet being used.

Concatenation: The primary operator we use on strings is concatenation. This takes two strings as input and outputs a new string. Because we use it so often, we don’t bother with a symbol: the concatenation of strings \(x \) and \(y \) is written \(xy \). Example: *dog* concatenated with *doogle* is *dogdoogle*.

We use \(x^2 = xx \), \(x^k = xx^{k-1} \), \(x^0 = \Lambda \)
Strings

Alphabet: An alphabet is a set of symbols. E.g.
\[\Sigma_1 = \{a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z\} \], or \(\Sigma_2 = \{0, 1\} \).

String: A string is a *finite* sequence of characters.
A string over some alphabet \(\Sigma \) is a finite sequence of characters from that alphabet.
Example: *dog* is a string over \(\Sigma_1 \). So is *doogle*. 001010 is a string over \(\Sigma_2 \).

\(\Lambda \) is a special string, called the empty string. It exists, regardless of the alphabet being used.

Concatenation: The primary operator we use on strings is concatenation. This takes two strings as input and outputs a new string. Because we use it so often, we don’t bother with a symbol: the concatenation of strings \(x \) and \(y \) is written \(xy \).
Example: *dog* concatenated with *doogle* is *dogdoogle*.
We use \(x^2 = xx \), \(x^k = xx^{k-1} \), \(x^0 = \Lambda \)

Length: The length of a string is the number of characters in the string.
Example: \(|doogle| = 6\).
Alphabet: An alphabet is a set of symbols. E.g.
Σ₁ = \{a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z\}, or Σ₂ = \{0, 1\}.

String: A string is a *finite* sequence of characters.
A string over some alphabet Σ is a finite sequence of characters from that alphabet.
Example: *dog* is a string over Σ₁. So is *doogle*. 001010 is a string over Σ₂.

Λ is a special string, called the empty string. It exists, regardless of the alphabet being used.

Concatenation: The primary operator we use on strings is concatenation. This takes two strings as input and outputs a new string. Because we use it so often, we don’t bother with a symbol: the concatenation of strings \(x\) and \(y\) is written \(xy\).
Example: *dog* concatenated with *doogle* is *dogdoogle*.
We use \(x^2 = xx\), \(x^k = xx^{k-1}\), \(x^0 = \Lambda\)

Length: The length of a string is the number characters in the string.
Example: \(|*doogle*| = 6. \ Example: \(|\Lambda| = 0\)
Languages

Language: A language is a set of strings. It can be finite or infinite. Example: \{ab, bab, bbaab\} is a language of size 3.
Languages

Language: A language is a set of strings. It can be finite or infinite.
Example: \{ab, bab, bbaab\} is a language of size 3.
Example: \(L = \{\Lambda, a, b, aa, ab, ba, bb\} \)
Languages

Language: A language is a set of strings. It can be finite or infinite.
Example: \{ab, bab, bbaab\} is a language of size 3.
Example: \(L = \{\Lambda, a, b, aa, ab, ba, bb\} \)
Example: \(\Sigma = \{0, 1, +\}, \ L = \{0 + 0, 0 + 1, 1 + 0, 1 + 1, 0 + 0 + 0, 0 + 0 + 1, \ldots\} \)
Languages

Language: A language is a set of strings. It can be finite or infinite.
Example: \{ab, bab, bbaab\} is a language of size 3.
Example: \(L = \{\Lambda, a, b, aa, ab, ba, bb\}\)
Example: \(\Sigma = \{0, 1, +\}, \quad L = \{0 + 0, 0 + 1, 1 + 0, 1 + 1, 0 + 0 + 0, 0 + 0 + 1, \ldots\}\)
While a language may have infinite size, each string in the language has finite size.
Languages

Language: A language is a set of strings. It can be finite or infinite.
Example: \{ab, bab, bbaab\} is a language of size 3.
Example: \(L = \{\Lambda, a, b, aa, ab, ba, bb\}\)
Example: \(\Sigma = \{0, 1, +\}\), \(L = \{0 + 0, 0 + 1, 1 + 0, 1 + 1, 0 + 0 + 0, 0 + 0 + 1, \ldots\}\)

While a language may have infinite size, each string in the language has finite size.

\(\Sigma^*\) is the language containing all possible strings over the alphabet \(\Sigma\).
Languages

Language: A language is a set of strings. It can be finite or infinite.
Example: \{ab, bab, bbaab\} is a language of size 3.
Example: \(L = \{\Lambda, a, b, aa, ab, ba, bb\}\)
Example: \(\Sigma = \{0, 1, +\}, \ L = \{0 + 0, 0 + 1, 1 + 0, 1 + 1, 0 + 0 + 0, 0 + 0 + 1, \ldots\}\)
While a language may have infinite size, each string in the language has finite size.

\(\Sigma^{*}\) is the language containing all possible strings over the alphabet \(\Sigma\).
Example: \(\Sigma = \{a, b\}, \ \Sigma^{*} = \{\Lambda, a, b, aa, ab, ba, bb, aaa, \ldots\}\)
Languages

Language: A language is a set of strings. It can be finite or infinite.
Example: \{ab, bab, bbaab\} is a language of size 3.
Example: \(L = \{\Lambda, a, b, aa, ab, ba, bb\} \)
Example: \(\Sigma = \{0, 1, +\}, \ L = \{0 + 0, 0 + 1, 1 + 0, 1 + 1, 0 + 0 + 0, 0 + 0 + 1, \ldots\} \)
While a language may have infinite size, each string in the language has finite size.

\(\Sigma^* \) is the language containing all possible strings over the alphabet \(\Sigma \).
Example: \(\Sigma = \{a, b\}, \ \Sigma^* = \{\Lambda, a, b, aa, ab, ba, bb, aaa, \ldots\} \)
We sometimes write this as \(\{a, b\}^* \)
Languages

Language: A language is a set of strings. It can be finite or infinite.

Example: \{ab, bab, bbaab\} is a language of size 3.

Example: \(L = \{\Lambda, a, b, aa, ab, ba, bb\}\)

Example: \(\Sigma = \{0, 1, +\}\), \(L = \{0 + 0, 0 + 1, 1 + 0, 1 + 1, 0 + 0 + 0, 0 + 0 + 1, \ldots\}\)

While a language may have infinite size, each string in the language has finite size.

\(\Sigma^*\) is the language containing all possible strings over the alphabet \(\Sigma\).

Example: \(\Sigma = \{a, b\}\), \(\Sigma^* = \{\Lambda, a, b, aa, ab, ba, bb, aaa, \ldots\}\)

We sometimes write this as \(\{a, b\}^*\)

\(\Sigma = \{a, b\}, L_1 = \{a, aa\}, L_2 = \{\Lambda, aa, ba\}, L_3 = \{\Lambda, a, aa, aaa, \ldots\}\)
Languages

Language: A language is a set of strings. It can be finite or infinite.
Example: \{ab, bab, bbaab\} is a language of size 3.
Example: \(L = \{\Lambda, a, b, aa, ab, ba, bb\}\)
Example: \(\Sigma = \{0, 1, +\}, \ L = \{0 + 0, 0 + 1, 1 + 0, 1 + 1, 0 + 0 + 0, 0 + 0 + 1, \ldots\}\)
While a language may have infinite size, each string in the language has finite size.

\(\Sigma^*\) is the language containing all possible strings over the alphabet \(\Sigma\).
Example: \(\Sigma = \{a, b\}, \ \Sigma^* = \{\Lambda, a, b, aa, ab, ba, bb, aab, \ldots\}\)
We sometimes write this as \(\{a, b\}^*\)

\(\Sigma = \{a, b\}, \ L_1 = \{a, aa\}, \ L_2 = \{\Lambda, aa, ba\}, \ L_3 = \{\Lambda, a, aa, aaa, \ldots\}\)
Language operators:
Languages

Language: A language is a set of strings. It can be finite or infinite.
Example: \{ab, bab, bbaab\} is a language of size 3.
Example: \(L = \{\Lambda, a, b, aa, ab, ba, bb\}\)
Example: \(\Sigma = \{0, 1, +\}, \ L = \{0 + 0, 0 + 1, 1 + 0, 1 + 1, 0 + 0 + 0, 0 + 0 + 1, \ldots\}\)
While a language may have infinite size, each string in the language has finite size.

\(\Sigma^*\) is the language containing all possible strings over the alphabet \(\Sigma\).
Example: \(\Sigma = \{a, b\}, \ \Sigma^* = \{\Lambda, a, b, aa, ab, ba, bb, aab, aba, abb, baa, bab, bba, bbb, \ldots\}\)
We sometimes write this as \(\{a, b\}^*\)

\(\Sigma = \{a, b\}, \ L_1 = \{a, aa\}, \ L_2 = \{\Lambda, aa, ba\}, \ L_3 = \{\Lambda, a, aa, aaa, \ldots\}\)
Language operators:
\(L_1 \cup L_2\) \(\{a, aa, \Lambda, ba\}\)
Languages

Language: A language is a set of strings. It can be finite or infinite.
Example: \{ab, bab, bbaab\} is a language of size 3.
Example: \(L = \{\Lambda, \alpha, \beta, \gamma, \delta, \alpha\beta, \alpha\delta, \beta\delta\} \)
Example: \(\Sigma = \{0, 1, +\}, \quad L = \{0 + 0, 0 + 1, 1 + 0, 1 + 1, 0 + 0 + 0, 0 + 0 + 1, \ldots\} \)
While a language may have infinite size, each string in the language has finite size.

\(\Sigma^* \) is the language containing all possible strings over the alphabet \(\Sigma \).
Example: \(\Sigma = \{a, b\}, \quad \Sigma^* = \{\Lambda, a, b, aa, ab, ba, bb, aaa, \ldots\} \)
We sometimes write this as \(\{a, b\}^* \)

\(\Sigma = \{a, b\}, \quad L_1 = \{a, aa\}, \quad L_2 = \{\Lambda, aa, ba\}, \quad L_3 = \{\Lambda, a, aa, aaa, \ldots\} \)
Language operators:

\[
L_1 \cup L_2 \quad \{a, aa, \Lambda, ba\}
\]
\[
L_1 \cap L_2 \quad \{aa\}\]
Languages

Language: A language is a set of strings. It can be finite or infinite. Example: \{ab, bab, bbaab\} is a language of size 3.
Example: \(L = \{\Lambda, a, b, aa, ab, ba, bb\}\)
Example: \(\Sigma = \{0, 1, +\}, L = \{0 + 0, 0 + 1, 1 + 0, 1 + 1, 0 + 0 + 0, 0 + 0 + 1, \ldots\}\)
While a language may have infinite size, each string in the language has finite size.

\(\Sigma^*\) is the language containing all possible strings over the alphabet \(\Sigma\).
Example: \(\Sigma = \{a, b\}, \Sigma^* = \{\Lambda, a, b, aa, ab, ba, bb, aab, \ldots\}\)
We sometimes write this as \(\{a, b\}^*\)

\(\Sigma = \{a, b\}, L_1 = \{a, aa\}, L_2 = \{\Lambda, aa, ba\}, L_3 = \{\Lambda, a, aa, aaaa, \ldots\}\)
Language operators:

- \(L_1 \cup L_2\) \(\{a, aa, \Lambda, ba\}\)
- \(L_1 \cap L_2\) \(\{aa\}\)
- \(L_2 \setminus L_1\) \(\{\Lambda, ba\}\)
Languages

Language: A language is a set of strings. It can be finite or infinite.
Example: \{ab, bab, bbaab\} is a language of size 3.
Example: \(L = \{\Lambda, a, b, aa, ab, ba, bb\}\)
Example: \(\Sigma = \{0, 1, +\}, \quad L = \{0 + 0, 0 + 1, 1 + 0, 1 + 1, 0 + 0 + 0, 0 + 0 + 1, \ldots\}\)
While a language may have infinite size, each string in the language has finite size.

\(\Sigma^*\) is the language containing all possible strings over the alphabet \(\Sigma\).
Example: \(\Sigma = \{a, b\}, \quad \Sigma^* = \{\Lambda, a, b, aa, ab, ba, bb, aaa, \ldots\}\)
We sometimes write this as \(\{a, b\}^*\)

\(\Sigma = \{a, b\}, \quad L_1 = \{a, aa\}, \quad L_2 = \{\Lambda, aa, ba\}, \quad L_3 = \{\Lambda, a, aa, aaaa, \ldots\}\)
Language operators:

\[
\begin{align*}
L_1 \cup L_2 & = \{a, aa, \Lambda, ba\} \\
L_1 \cap L_2 & = \{aa\} \\
L_2 \setminus L_1 & = \{\Lambda, ba\} \\
L_1 \setminus L_2 & = \{a\}
\end{align*}
\]
Languages

Language: A language is a set of strings. It can be finite or infinite.
Example: \{ab, bab, bbaab\} is a language of size 3.
Example: \(L = \{\Lambda, a, b, aa, ab, ba, bb\}\)
Example: \(\Sigma = \{0, 1, +\}, \ L = \{0 + 0, 0 + 1, 1 + 0, 1 + 1, 0 + 0 + 0, 0 + 0 + 1, \ldots\}\)
While a language may have infinite size, each string in the language has finite size.

\(\Sigma^*\) is the language containing all possible strings over the alphabet \(\Sigma\).
Example: \(\Sigma = \{a, b\}, \ \Sigma^* = \{\Lambda, a, b, aa, ab, ba, bb, aaa, \ldots\}\)
We sometimes write this as \(\{a, b\}^*\)

\(\Sigma = \{a, b\}, \ L_1 = \{a, aa\}, \ L_2 = \{\Lambda, aa, ba\}, \ L_3 = \{\Lambda, a, aa, aaa, \ldots\}\)
Language operators:

\[\begin{align*}
L_1 \cup L_2 & = \{a, aa, \Lambda, ba\} \\
L_1 \cap L_2 & = \{aa\} \\
L_2 \setminus L_1 & = \{\Lambda, ba\} \\
L_1 \setminus L_2 & = \{a\} \\
\bar{L} & = \Sigma^* \setminus L \\
\bar{L}_3 & = \{b, ab, ba, bb, aab, aba, abb, baa, bab, bba, bbb \ldots\}\end{align*}\]
Languages

Language: A language is a set of strings. It can be finite or infinite.

Example: \{ab, bab, bbaab\} is a language of size 3.

Example: \(L = \{\Lambda, a, b, aa, ab, ba, bb\}\)

Example: \(\Sigma = \{0, 1, +\}, \ L = \{0 + 0, 0 + 1, 1 + 0, 1 + 1, 0 + 0 + 0, 0 + 0 + 1, \ldots\}\)

While a language may have infinite size, each string in the language has finite size.

\(\Sigma^*\) is the language containing all possible strings over the alphabet \(\Sigma\).

Example: \(\Sigma = \{a, b\}, \ \Sigma^* = \{\Lambda, a, b, aa, ab, ba, bb, aaaa, \ldots\}\)

We sometimes write this as \(\{a, b\}^*\)

\(\Sigma = \{a, b\}, \ L_1 = \{a, aa\}, \ L_2 = \{\Lambda, aa, ba\}, \ L_3 = \{\Lambda, a, aa, aaaa, \ldots\}\)

Language operators:

\(L_1 \cup L_2\) \(\{a, aa, \Lambda, ba\}\)

\(L_1 \cap L_2\) \(\{aa\}\)

\(L_2 \setminus L_1\) \(\{\Lambda, ba\}\)

\(L_1 \setminus L_2\) \(\{a\}\)

\(\bar{L} = \Sigma^* \setminus L\)

\(L_3 = \{b, ab, ba, bb, aab, aba, abb, baa, bab, bba, bbb \ldots\}\)

\(L_1 L_2 = \{xy \mid x \in L_1 \land y \in L_2\}\) \(\{a, aa, aaaa, aba, aaaa, aaba\}\)

\(L_2 L_1 = \{a, aa, aaaa, aba, aaaa, aaba\}\)
Languages

Language: A language is a set of strings. It can be finite or infinite.
Example: \{ab, bab, bbaab\} is a language of size 3.
Example: \(L = \{\Lambda, a, b, aa, ab, ba, bb\}\)
Example: \(\Sigma = \{0, 1, +\}, \quad L = \{0 + 0, 0 + 1, 1 + 0, 1 + 1, 0 + 0 + 0, 0 + 0 + 1, \ldots\}\)
While a language may have infinite size, each string in the language has finite size.

\(\Sigma^*\) is the language containing all possible strings over the alphabet \(\Sigma\).
Example: \(\Sigma = \{a, b\}, \quad \Sigma^* = \{\Lambda, a, b, aa, ab, ba, bb, aaa, \ldots\}\)
We sometimes write this as \(\{a, b\}^*\)

\(\Sigma = \{a, b\}, \quad L_1 = \{a, aa\}, \quad L_2 = \{\Lambda, aa, ba\}, \quad L_3 = \{\Lambda, a, aa, aaa, \ldots\}\)

Language operators:

\[\]
\[L_1 \cup L_2 = \{a, aa, \Lambda, ba\}\]
\[L_1 \cap L_2 = \{aa\}\]
\[L_2 \setminus L_1 = \{\Lambda, ba\}\]
\[L_1 \setminus L_2 = \{a\}\]
\[\bar{L} = \Sigma^* \setminus L\]
\[\bar{L}_3 = \{b, ab, ba, bb, aab, aba, abb, baa, bab, bba, bbb \ldots\}\]
\[L_1L_2 = \{xy \mid x \in L_1 \land y \in L_2\}\]
\[L_2L_1 = \{a, aa, aaaa, baa, baaa\}\]
Languages

Language: A language is a set of strings. It can be finite or infinite.

Example: \{ab, bab, bbaab\} is a language of size 3.

Example: \(L = \{\Lambda, a, b, aa, ab, ba, bb\} \)

Example: \(\Sigma = \{0, 1, +\}, \quad L = \{0 + 0, 0 + 1, 1 + 0, 1 + 1, 0 + 0 + 0, 0 + 0 + 1, \ldots\} \)

While a language may have infinite size, each string in the language has finite size.

\(\Sigma^* \) is the language containing all possible strings over the alphabet \(\Sigma \).

Example: \(\Sigma = \{a, b\}, \quad \Sigma^* = \{\Lambda, a, b, aa, ab, ba, bb, aaaa, \ldots\} \)

We sometimes write this as \(\{a, b\}^* \)

\(\Sigma = \{a, b\}, \quad L_1 = \{a, aa\}, \quad L_2 = \{\Lambda, aa, ba\}, \quad L_3 = \{\Lambda, a, aa, aaaa, \ldots\} \)

Language operators:

\[
\begin{align*}
L_1 \cup L_2 &= \{a, aa, \Lambda, ba\} \\
L_1 \cap L_2 &= \{aa\} \\
L_2 \setminus L_1 &= \{\Lambda, ba\} \\
L_1 \setminus L_2 &= \{a\} \\
\bar{L} &= \Sigma^* \setminus L \\
L_1 L_2 &= \{xy \mid x \in L_1 \land y \in L_2\} \\
L_2 L_1 &= \{a, aa, aaaa, baa, ba\}
\end{align*}
\]

\(L_3 = \{b, ab, ba, bb, aab, aba, abb, baa, bab, bba, bbb \ldots\} \)

\(L_0 = \{\Lambda\} \) for any \(L \)
Languages

Language: A language is a set of strings. It can be finite or infinite.
Example: \{ab, bab, bbaab\} is a language of size 3.
Example: \(L = \{\Lambda, a, b, aa, ab, ba, bb\} \)
Example: \(\Sigma = \{0, 1, +\}, \; L = \{0 + 0, 0 + 1, 1 + 0, 1 + 1, 0 + 0 + 0, 0 + 0 + 1, \ldots\} \)
While a language may have infinite size, each string in the language has finite size.

\(\Sigma^* \) is the language containing all possible strings over the alphabet \(\Sigma \).
Example: \(\Sigma = \{a, b\}, \; \Sigma^* = \{\Lambda, a, b, aa, ab, ba, bb, aaa, \ldots\} \)
We sometimes write this as \(\{a, b\}^* \)

\(\Sigma = \{a, b\}, \; L_1 = \{a, aa\}, \; L_2 = \{\Lambda, aa, ba\}, \; L_3 = \{\Lambda, a, aa, aaa, \ldots\} \)
Language operators:
\[
\begin{align*}
L_1 \cup L_2 &= \{a, aa, \Lambda, ba\} \\
L_1 \cap L_2 &= \{aa\} \\
L_2 \setminus L_1 &= \{\Lambda, ba\} \\
L_1 \setminus L_2 &= \{a\} \\
\bar{L} &= \Sigma^* \setminus L \\
L_1 L_2 &= \{xy \mid x \in L_1 \land y \in L_2\} \\
L_2 L_1 &= \{a, aa, aaaa, baa, baaa\}
\end{align*}
\]
\(\bar{L}_3 = \{b, ab, ba, bb, aab, aba, abb, baa, bab, bba, bbb \ldots\} \)
\(L_1 L_2 = \{a, aa, aaaa, aba, aaaa, aaba\} \)
\(L_2 L_1 = \{a, aa, aaaa, baa, baaa\} \)

\(L^0 = \{\Lambda\} \) for any \(L \)
\(L^2 = LL \) and \(L^k = LL^{k-1} \)
Languages

Language: A language is a set of strings. It can be finite or infinite.

Example: \{ab, bab, bbaab\} is a language of size 3.

Example: \(L = \{\Lambda, a, b, aa, ab, ba, bb\} \)

Example: \(\Sigma = \{0, 1, +\}, \ L = \{0 + 0, 0 + 1, 1 + 0, 1 + 1, 0 + 0 + 0, 0 + 0 + 1, \ldots\} \)

While a language may have infinite size, each string in the language has finite size.

\(\Sigma^* \) is the language containing all possible strings over the alphabet \(\Sigma \).

Example: \(\Sigma = \{a, b\}, \ \Sigma^* = \{\Lambda, a, b, aa, ab, ba, bb, aab, aaba, aabba, \ldots \} \)

We sometimes write this as \(\{a, b\}^* \)

\(\Sigma = \{a, b\}, \ L_1 = \{a, aa\}, \ L_2 = \{\Lambda, aa, ba\}, \ L_3 = \{\Lambda, a, aa, aaaa, \ldots\} \)

Language operators:

\[
\begin{align*}
L_1 \cup L_2 &= \{a, aa, aab, aaba, \ldots\} \\
L_1 \cap L_2 &= \{\Lambda, aa\} \\
L_2 \setminus L_1 &= \{\Lambda, ba\} \\
L_1 \setminus L_2 &= \{a\} \\
\bar{L} &= \Sigma^* \setminus L \\
L_1 L_2 &= \{xy \mid x \in L_1 \land y \in L_2\} \\
L_2 L_1 &= \{aa, aaaa, baa, baaa\}
\end{align*}
\]

\(L^0 = \{\Lambda\} \) for any \(L \)

\(L^2 = LL \) and \(L^k = LL^{k-1} \)

\(L^* = \bigcup_{i=0}^{\infty} L^i \)
Languages

Example: $L = \{a, bb\}$
Languages

Example: $L = \{a, bb\}$
$L^0 = \{\Lambda\}$
Languages

Example: \(L = \{a, bb\} \)
\(L^0 = \{\Lambda\} \)
\(L^1 = \{a, bb\} \)
Languages

Example: \(L = \{a, bb\} \)
\(L^0 = \{\Lambda\} \)
\(L^1 = \{a, bb\} \)
\(L^2 = \{aa, abb, bba, bbbb\} \)
Languages

Example: \(L = \{a, bb\} \)
\(L^0 = \{\Lambda\} \)
\(L^1 = \{a, bb\} \)
\(L^2 = \{aa, abb, bba, bbbb\} \)
\(L^3 = \{aaa, aabb, abba, abbb, bbba, bbabb, bbbba, bbbbb\} \)
Languages

Example: \(L = \{a, bb\} \)
\(L^0 = \{\Lambda\} \)
\(L^1 = \{a, bb\} \)
\(L^2 = \{aa, abb, bba, bbb\} \)
\(L^3 = \{aaa, aabb, abba, abbbb, bbbaa, bbbab, bbbbba, bbbbbbb\} \)
\(L^* = \{\Lambda, a, bb, aa, abb, bba, bbb, aaa, aabb, abba, abbb, bbaa, \ldots\} \)
Languages

Example: \(L = \{a, bb\} \)
\(L^0 = \{\Lambda\} \)
\(L^1 = \{a, bb\} \)
\(L^2 = \{aa, abb, bba, bbbb\} \)
\(L^3 = \{aaa, aabb, abba, abbb, bbaa, bbabb, bbbaa, bbbbb\} \)
\(L^* = \{\Lambda, a, bb, aa, abb, bba, bbbb, aaa, aabb, abba, abbb, bbaa, \ldots\} \)

extensional form: enumerate the strings.
Languages

Example: \(L = \{a, bb\} \)
\(L^0 = \{\Lambda\} \)
\(L^1 = \{a, bb\} \)
\(L^2 = \{aa, abb, bba, bbbb\} \)
\(L^3 = \{aaa, aabb, abba, abbb, bbaa, bbabb, bbbba, bbbbbbb\} \)
\(L^* = \{\Lambda, a, bb, aa, abb, bba, bbbb, aaa, aabb, abba, abbb, bbbaa, \ldots\} \)

extensional form: enumerate the strings. Only finite sets, or possibly use “…”
Languages

Example: \(L = \{ a, bb \} \)
\(L^0 = \{ \Lambda \} \)
\(L^1 = \{ a, bb \} \)
\(L^2 = \{ aa, abb, bba, bbb \} \)
\(L^3 = \{ aaa, aabb, abba, abbb, bbaa, bbabb, bbbaa, bbbbbb \} \)
\(L^* = \{ \Lambda, a, bb, aa, abb, bba, bbb, aaa, aabb, abba, abbb, bbaa, \ldots \} \)

extensional form: enumerate the strings. Only finite sets, or possibly use “…”
intensional form: specify the properties of the strings.
Languages

Example: \(L = \{a, bb\} \)
\(L^0 = \{\Lambda\} \)
\(L^1 = \{a, bb\} \)
\(L^2 = \{aa, abb, bba, bbbb\} \)
\(L^3 = \{aaa, aabb, abba, abbb, bbba, bbabb, bbbba, bbbbbbb\} \)
\(L^* = \{\Lambda, a, bb, aa, abb, bba, bbbb, aaaa, aabb, abba, abbb, bbba, \ldots\} \)

extensional form: enumerate the strings. Only finite sets, or possibly use “…”
intensional form: specify the properties of the strings.
Informally: \(L = \{x \mid x \text{ contains an equal number of } a\text{s and } b\text{s}\} \)
Languages

Example: $L = \{a, bb\}$
$L^0 = \{\Lambda\}$
$L^1 = \{a, bb\}$
$L^2 = \{aa, abb, bba, bbbb\}$
$L^3 = \{aaa, aabb, abba, abbb, bbaa, bbabb, bbbaa, bbbbbb\}$
$L^* = \{\Lambda, a, bb, aa, abb, bba, bbbb, aaa, aabb, abba, abbb, bbbaa, \ldots \}$

extensional form: enumerate the strings. Only finite sets, or possibly use “…”
intensional form: specify the properties of the strings.
Informally: $L = \{x \mid x$ contains an equal number of as and bs $\}$
Formally: $L = \{x \mid x \in \{a, b\}^* \land N_a(x) = N_b(x)\}$, where $N_a(x)$ denotes the number of as in string x.
Now What?

Until now we’ve talked about how to prove things.
Now What?

Until now we’ve talked about *how* to prove things. Now we’re going to start proving things about the nature of computation.
Now What?

Until now we’ve talked about how to prove things.
Now we’re going to start proving things about the nature of computation.

Central questions:
Now What?

Until now we’ve talked about how to prove things. Now we’re going to start proving things about the nature of computation.

Central questions:

▶ How do we generate the strings of some language L?
Now What?

Until now we’ve talked about how to prove things.
Now we’re going to start proving things about the nature of computation.

Central questions:

▷ How do we generate the strings of some language \(L \)?
 ▷ Note that many languages have infinite size, so we need to take a finite representation of that language, and use it to construct all of the strings!
Now What?

Until now we’ve talked about how to prove things. Now we’re going to start proving things about the nature of computation.

Central questions:

- How do we generate the strings of some language L?
 - Note that many languages have infinite size, so we need to take a finite representation of that language, and use it to construct all of the strings!
 - A grammar for L gives a description of how to enumerate the strings of L
Now What?

Until now we’ve talked about \textit{how} to prove things.
Now we’re going to start proving things about the nature of computation.

Central questions:

- How do we generate the strings of some language L?
 - Note that many languages have infinite size, so we need to take a finite representation of that language, and use it to construct all of the strings!
 - A \textit{grammar} for L gives a description of how to enumerate the strings of L
- How do we recognize the strings of a language?
Now What?

Until now we’ve talked about how to prove things. Now we’re going to start proving things about the nature of computation.

Central questions:

- How do we generate the strings of some language L?
 - Note that many languages have infinite size, so we need to take a finite representation of that language, and use it to construct all of the strings!
 - A grammar for L gives a description of how to enumerate the strings of L

- How do we recognize the strings of a language?
 - given some x and some description of a language L, how do we decide whether $x \in L$?
Now What?

Until now we’ve talked about how to prove things.
Now we’re going to start proving things about the nature of computation.

Central questions:

▶ How do we generate the strings of some language L?
 ▶ Note that many languages have infinite size, so we need to take a finite representation of that language, and use it to construct all of the strings!
 ▶ A grammar for L gives a description of how to enumerate the strings of L

▶ How do we recognize the strings of a language?
 ▶ given some x and some description of a language L, how do we decide whether $x \in L$?
 ▶ An automaton for L is a simple machine that allows us to decide, given some x, whether $x \in L$
Now What?

Until now we’ve talked about how to prove things. Now we’re going to start proving things about the nature of computation.

Central questions:

- How do we generate the strings of some language L?
 - Note that many languages have infinite size, so we need to take a finite representation of that language, and use it to construct all of the strings!
 - A grammar for L gives a description of how to enumerate the strings of L

- How do we recognize the strings of a language?
 - given some x and some description of a language L, how do we decide whether $x \in L$?
 - An automaton for L is a simple machine that allows us to decide, given some x, whether $x \in L$

We will see that there are different classes of language: some are easier to generate / recognize than others.
Now What?

Until now we’ve talked about how to prove things. Now we’re going to start proving things about the nature of computation.

Central questions:

- How do we generate the strings of some language \(L\)?
 - Note that many languages have infinite size, so we need to take a finite representation of that language, and use it to construct all of the strings!
 - A grammar for \(L\) gives a description of how to enumerate the strings of \(L\)

- How do we recognize the strings of a language?
 - given some \(x\) and some description of a language \(L\), how do we decide whether \(x \in L\)?
 - An automaton for \(L\) is a simple machine that allows us to decide, given some \(x\), whether \(x \in L\)

We will see that there are different classes of language: some are easier to generate / recognize than others.

\[
L_1 = \{x \mid x \in \{a\}^* \text{ and } x \text{ contains an even number of symbols}\}
\]

\[
L_2 = \{x \mid x \in \{a\}^* \text{ and } x \text{ contains a prime number of symbols}\}
\]
Now What?

Until now we’ve talked about how to prove things.
Now we’re going to start proving things about the nature of computation.

Central questions:

▶ How do we generate the strings of some language \(L \)?
 ▶ Note that many languages have infinite size, so we need to take a finite representation of that language, and use it to construct all of the strings!
 ▶ A grammar for \(L \) gives a description of how to enumerate the strings of \(L \)

▶ How do we recognize the strings of a language?
 ▶ Given some \(x \) and some description of a language \(L \), how do we decide whether \(x \in L \)?
 ▶ An automaton for \(L \) is a simple machine that allows us to decide, given some \(x \), whether \(x \in L \)

We will see that there are different classes of language: some are easier to generate / recognize than others.
\[L_1 = \{ x \mid x \in \{a\}^* \text{ and } x \text{ contains an even number of symbols} \} \]
\[L_2 = \{ x \mid x \in \{a\}^* \text{ and } x \text{ contains a prime number of symbols} \} \]
Regular Languages

The class of regular languages is the set of languages that can be built out of 3 simple operators: ∪, concatenation, and *
Regular Languages

The class of regular languages is the set of languages that can be built out of 3 simple operators: \(\cup \), concatenation, and \(* \)

Regular Languages

Let \(\mathcal{R} \) be the set of all regular languages over symbol set \(\Sigma \).

- \(\emptyset \in \mathcal{R} \), \(\{\Lambda\} \in \mathcal{R} \), \(\forall \sigma \in \Sigma : \{\sigma\} \in \mathcal{R} \)
Regular Languages

The class of regular languages is the set of languages that can be built out of 3 simple operators: \cup, concatenation, and $*$

Let \mathcal{R} be the set of all regular languages over symbol set Σ.

- $\emptyset \in \mathcal{R}$, $\{\Lambda\} \in \mathcal{R}$, $\forall \sigma \in \Sigma : \{\sigma\} \in \mathcal{R}$
- If $L \in \mathcal{R}$, then $L^* \in \mathcal{R}$
 - If $L_1, L_2 \in \mathcal{R}$, then $L_1 L_2 \in \mathcal{R}$
 - If $L_1, L_2 \in \mathcal{R}$, then $L_1 \cup L_2 \in \mathcal{R}$

Example: $\Sigma = \{a, b, c\}$. $L_1 = \{a\}, L_2 = \{b\}, L_3 = \{c\}$ are all regular.

$L = L_1 \cup L_2 L^*$. $L = \{a, b, bc, bcc, bccc, \ldots\}$
Regular Languages

The class of regular languages is the set of languages that can be built out of 3 simple operators: \(\cup \), concatenation, and \(* \)

Let \(R \) be the set of all regular languages over symbol set \(\Sigma \).

- \(\emptyset \in R \), \(\{ \Lambda \} \in R \), \(\forall \sigma \in \Sigma : \{ \sigma \} \in R \)
- If \(L \in R \), then \(L^* \in R \)
 - If \(L_1, L_2 \in R \), then \(L_1 L_2 \in R \)
 - If \(L_1, L_2 \in R \), then \(L_1 \cup L_2 \in R \)
- There are no other regular languages over \(\Sigma \).
Regular Languages

The class of regular languages is the set of languages that can be built out of 3 simple operators: \cup, concatenation, and $*$.

Let \mathcal{R} be the set of all regular languages over symbol set Σ.

- $\emptyset \in \mathcal{R}$, $\{\Lambda\} \in \mathcal{R}$, $\forall \sigma \in \Sigma : \{\sigma\} \in \mathcal{R}$
- If $L \in \mathcal{R}$, then $L^* \in \mathcal{R}$
 - If $L_1, L_2 \in \mathcal{R}$, then $L_1 L_2 \in \mathcal{R}$
 - If $L_1, L_2 \in \mathcal{R}$, then $L_1 \cup L_2 \in \mathcal{R}$
- There are no other regular languages over Σ.

Example: $\Sigma = \{a, b, c\}$.
$L_1 = \{a\}, L_2 = \{b\}, L_3 = \{c\}$ are all regular.
Regular Languages

The class of regular languages is the set of languages that can be built out of 3 simple operators: \cup, concatenation, and \ast

Let \mathcal{R} be the set of all regular languages over symbol set Σ.

- $\emptyset \in \mathcal{R}$, $\{\Lambda\} \in \mathcal{R}$, $\forall \sigma \in \Sigma : \{\sigma\} \in \mathcal{R}$
- If $L \in \mathcal{R}$, then $L^* \in \mathcal{R}$
 - If $L_1, L_2 \in \mathcal{R}$, then $L_1 L_2 \in \mathcal{R}$
 - If $L_1, L_2 \in \mathcal{R}$, then $L_1 \cup L_2 \in \mathcal{R}$
- There are no other regular languages over Σ.

Example: $\Sigma = \{a, b, c\}$.
$L_1 = \{a\}, L_2 = \{b\}, L_3 = \{c\}$ are all regular
$L = L_1 \cup L_2 L_3^*$:
Regular Languages

The class of regular languages is the set of languages that can be built out of 3 simple operators: \cup, concatenation, and \ast.

Let \mathcal{R} be the set of all regular languages over symbol set Σ.

- $\emptyset \in \mathcal{R}$, $\{\Lambda\} \in \mathcal{R}$, $\forall \sigma \in \Sigma : \{\sigma\} \in \mathcal{R}$
- If $L \in \mathcal{R}$, then $L^* \in \mathcal{R}$
 - If $L_1, L_2 \in \mathcal{R}$, then $L_1 L_2 \in \mathcal{R}$
 - If $L_1, L_2 \in \mathcal{R}$, then $L_1 \cup L_2 \in \mathcal{R}$
- There are no other regular languages over Σ.

Example: $\Sigma = \{a, b, c\}$.
$L_1 = \{a\}, L_2 = \{b\}, L_3 = \{c\}$ are all regular
$L = L_1 \cup L_2 L_3^*: L = \{a, b, bc, bcc, bccc, \ldots\}$
Regular Expressions

We write \(\cup \) with \(+\), and we remove set notation.
Example: \((\{a\}\{b\}^* \cup \{c\}^* \{d\}^*)^* \{e\} \) becomes \((ab^* + c^* d^*)^* e\).

<table>
<thead>
<tr>
<th>RE ((r))</th>
<th>Corresponding Language ((L(r)))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a + bc)</td>
<td></td>
</tr>
<tr>
<td>(a(b + c))</td>
<td></td>
</tr>
<tr>
<td>((a + b)(a + c)(\Lambda + a))</td>
<td></td>
</tr>
<tr>
<td>(a^*(b + cc))</td>
<td></td>
</tr>
<tr>
<td>(a + bb^*)</td>
<td></td>
</tr>
<tr>
<td>((a + bb)^*)</td>
<td></td>
</tr>
<tr>
<td>(ab^)</td>
<td></td>
</tr>
<tr>
<td>((a + b)(a + b))^*)</td>
<td></td>
</tr>
</tbody>
</table>
Regular Expressions

We write \cup with $+$, and we remove set notation.

Example: $(\{a\}\{b\}^* \cup \{c\}^* \{d\})^* \{e\}$ becomes $(ab^* + c^*d)^*e$.

Given some regular expression, r, we use $L(r)$ to represent the language it denotes.

<table>
<thead>
<tr>
<th>RE (r)</th>
<th>Corresponding Language ($L(r)$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$a + bc$</td>
<td></td>
</tr>
<tr>
<td>$a(b + c)$</td>
<td></td>
</tr>
<tr>
<td>$(a + b)(a + c)(\Lambda + a)$</td>
<td></td>
</tr>
<tr>
<td>$a^*(b + cc)$</td>
<td></td>
</tr>
<tr>
<td>$a + bb^*$</td>
<td></td>
</tr>
<tr>
<td>$(a + bb)^*$</td>
<td></td>
</tr>
<tr>
<td>$a^b^$</td>
<td></td>
</tr>
<tr>
<td>$((a + b)(a + b))^*$</td>
<td></td>
</tr>
</tbody>
</table>
Regular Expressions

We write \cup with $+$, and we remove set notation.
Example: $\{a\}a^* \cup \{c\}c^* \{d\} \{e\}$ becomes $(ab^* + c^*d)*e$.

Given some regular expression, r, we use $L(r)$ to represent the language it denotes.

<table>
<thead>
<tr>
<th>RE (r)</th>
<th>Corresponding Language ($L(r)$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$a + bc$</td>
<td>${a, bc}$</td>
</tr>
<tr>
<td>$a(b + c)$</td>
<td></td>
</tr>
<tr>
<td>$(a + b)(a + c)(\Lambda + a)$</td>
<td></td>
</tr>
<tr>
<td>$a^*(b + cc)$</td>
<td></td>
</tr>
<tr>
<td>$a + bb^*$</td>
<td></td>
</tr>
<tr>
<td>$(a + bb)^*$</td>
<td></td>
</tr>
<tr>
<td>$ab^$</td>
<td></td>
</tr>
<tr>
<td>$((a + b)(a + b))^*$</td>
<td></td>
</tr>
</tbody>
</table>
We write \cup with $+$, and we remove set notation.

Example: $(\{a\}\{b\}^* \cup \{c\}^* \{d\})*\{e\}$ becomes $(ab^* + c^*d)^*e$.

Given some regular expression, r, we use $L(r)$ to represent the language it denotes.

<table>
<thead>
<tr>
<th>RE (r)</th>
<th>Corresponding Language ($L(r)$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$a + bc$</td>
<td>${a, bc}$</td>
</tr>
<tr>
<td>$a(b + c)$</td>
<td>${ab, ac}$</td>
</tr>
<tr>
<td>$(a + b)(a + c)(\Lambda + a)$</td>
<td></td>
</tr>
<tr>
<td>$a^*(b + cc)$</td>
<td></td>
</tr>
<tr>
<td>$a + bb^*$</td>
<td></td>
</tr>
<tr>
<td>$(a + bb)^*$</td>
<td></td>
</tr>
<tr>
<td>$a^b^$</td>
<td></td>
</tr>
<tr>
<td>$((a + b)(a + b))^*$</td>
<td></td>
</tr>
</tbody>
</table>
We write \cup with $+$, and we remove set notation.

Example: $(\{a\}\{b\}^* \cup \{c\}^* \{d\})^* \{e\}$ becomes $(ab^* + c^*d)^*e$.

Given some regular expression, r, we use $L(r)$ to represent the language it denotes.

<table>
<thead>
<tr>
<th>RE (r)</th>
<th>Corresponding Language ($L(r)$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$a + bc$</td>
<td>${a, bc}$</td>
</tr>
<tr>
<td>$a(b + c)$</td>
<td>${ab, ac}$</td>
</tr>
<tr>
<td>$(a + b)(a + c)(\Lambda + a)$</td>
<td>${aa, ac, ba, bc, aaa, aca, baa, bca}$</td>
</tr>
<tr>
<td>$a^*(b + cc)$</td>
<td></td>
</tr>
<tr>
<td>$a + bb^*$</td>
<td></td>
</tr>
<tr>
<td>$(a + bb)^*$</td>
<td></td>
</tr>
<tr>
<td>$a^b^$</td>
<td></td>
</tr>
<tr>
<td>$((a + b)(a + b))^*$</td>
<td></td>
</tr>
</tbody>
</table>
Regular Expressions

We write \cup with $+$, and we remove set notation.
Example: $(\{a\}\{b\}^* \cup \{c\}^* \{d\}^*)^* \{e\}$ becomes $(ab^* + c^*d)^* e$.

Given some regular expression, r, we use $L(r)$ to represent the language it denotes.

<table>
<thead>
<tr>
<th>RE (r)</th>
<th>Corresponding Language ($L(r)$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$a + bc$</td>
<td>${a, bc}$</td>
</tr>
<tr>
<td>$a(b + c)$</td>
<td>${ab, ac}$</td>
</tr>
<tr>
<td>$(a + b)(a + c)(\Lambda + a)$</td>
<td>${aa, ac, ba, bc, aaa, aca, baa, bca}$</td>
</tr>
<tr>
<td>$a^*(b + cc)$</td>
<td>${b, cc, ab, acc, aab, aacc, aaab, aaacc, \ldots}$</td>
</tr>
<tr>
<td>$a + bb^*$</td>
<td>${b, cc, ab, acc, aab, aacc, aaab, aaacc, \ldots}$</td>
</tr>
<tr>
<td>$(a + bb)^*$</td>
<td></td>
</tr>
<tr>
<td>$a^b^$</td>
<td></td>
</tr>
<tr>
<td>$((a + b)(a + b))^*$</td>
<td></td>
</tr>
</tbody>
</table>
Regular Expressions

We write \(\cup \) with +, and we remove set notation.

Example: \(\{a\}\{b\}^* \cup \{c\}^* \{d\}^* \{e\} \) becomes \((ab^* + c^*d)^*e\).

Given some regular expression, \(r \), we use \(L(r) \) to represent the language it denotes.

<table>
<thead>
<tr>
<th>RE ((r))</th>
<th>Corresponding Language ((L(r)))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a + bc)</td>
<td>({a, bc})</td>
</tr>
<tr>
<td>(a(b + c))</td>
<td>({ab, ac})</td>
</tr>
<tr>
<td>((a + b)(a + c)(\Lambda + a))</td>
<td>({aa, ac, ba, bc, aaa, aca, baa, bca})</td>
</tr>
<tr>
<td>(a^*(b + cc))</td>
<td>({b, cc, ab, acc, aab, aacc, aaab, aaacc, \ldots})</td>
</tr>
<tr>
<td>(a + bb^*)</td>
<td>({a, cc, ab, acc, aab, aacc, aaab, aaacc, \ldots})</td>
</tr>
<tr>
<td>((a + bb)^*)</td>
<td>({a, b, bb, bbb, bbbb, \ldots})</td>
</tr>
<tr>
<td>(ab^)</td>
<td>({})</td>
</tr>
<tr>
<td>((a + b)(a + b))^*)</td>
<td>({x</td>
</tr>
</tbody>
</table>
Regular Expressions

We write \cup with $+$, and we remove set notation.
Example: $(\{a\}\{b\}^* \cup \{c\}^*\{d\}^*)\{e\}$ becomes $(ab^* + c^*d^*)e$.
Given some regular expression, r, we use $L(r)$ to represent the language it denotes.

<table>
<thead>
<tr>
<th>RE (r)</th>
<th>Corresponding Language $(L(r))$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$a + bc$</td>
<td>${a, bc}$</td>
</tr>
<tr>
<td>$a(b + c)$</td>
<td>${ab, ac}$</td>
</tr>
<tr>
<td>$(a + b)(a + c)(\Lambda + a)$</td>
<td>${aa, ac, ba, bc, aaa, aca, baa, bca}$</td>
</tr>
<tr>
<td>$a^*(b + cc)$</td>
<td>${b, cc, ab, acc, aab, aacc, aaab, aaacc, \ldots}$</td>
</tr>
<tr>
<td>$a + bb^*$</td>
<td>${a, b, bb, bbb, bbbb, \ldots}$</td>
</tr>
<tr>
<td>$(a + bb)^*$</td>
<td>${\Lambda, a, bb, aa, abb, bba, bbbb, aaa, \ldots}$</td>
</tr>
<tr>
<td>$a^b^$</td>
<td></td>
</tr>
<tr>
<td>$((a + b)(a + b))^*$</td>
<td></td>
</tr>
</tbody>
</table>
Regular Expressions

We write \cup with $+$, and we remove set notation.

Example: $(\{a\}\{b\}^* \cup \{c\} \{d\})* \{e\}$ becomes $(ab^* + c^*d^*)e$.

Given some regular expression, r, we use $L(r)$ to represent the language it denotes.

<table>
<thead>
<tr>
<th>RE (r)</th>
<th>Corresponding Language ($L(r)$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$a + bc$</td>
<td>${a, bc}$</td>
</tr>
<tr>
<td>$a(b + c)$</td>
<td>${ab, ac}$</td>
</tr>
<tr>
<td>$(a + b)(a + c)(\Lambda + a)$</td>
<td>${aa, ac, ba, bc, aaa, aca, baa, bca}$</td>
</tr>
<tr>
<td>$a^*(b + cc)$</td>
<td>${b, cc, ab, acc, aab, aacc, aaab, aaacc,\ldots}$</td>
</tr>
<tr>
<td>$a + bb^*$</td>
<td>${a, b, bb, bbb, bbbb,\ldots}$</td>
</tr>
<tr>
<td>$(a + bb)^*$</td>
<td>${\Lambda, a, bb, aa, abb, bba, bbb, baa,\ldots}$</td>
</tr>
<tr>
<td>$ab^$</td>
<td>${\Lambda, a, b, ab, aa, bb, aaa, aab, abb, bbb,\ldots}$</td>
</tr>
<tr>
<td>$((a + b)(a + b))^*$</td>
<td></td>
</tr>
</tbody>
</table>
We write \cup with $+$, and we remove set notation.

Example: $(\{a\}\{b\}^* \cup \{c\}^* \{d\}^*)^* \{e\}$ becomes $(ab^* + c^*d)^*e$.

Given some regular expression, r, we use $L(r)$ to represent the language it denotes.

<table>
<thead>
<tr>
<th>RE (r)</th>
<th>Corresponding Language ($L(r)$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$a + bc$</td>
<td>${a, bc}$</td>
</tr>
<tr>
<td>$a(b + c)$</td>
<td>${ab, ac}$</td>
</tr>
<tr>
<td>$(a + b)(a + c)(\Lambda + a)$</td>
<td>${aa, ac, ba, bc, aaa, aca, baa, bca}$</td>
</tr>
<tr>
<td>$a^*(b + cc)$</td>
<td>${b, cc, ab, acc, aab, aacc, aaab, aaacc, \ldots}$</td>
</tr>
<tr>
<td>$a + bb^*$</td>
<td>${a, b, bb, bbb, bbbb, \ldots}$</td>
</tr>
<tr>
<td>$(a + bb)^*$</td>
<td>${\Lambda, a, bb, aa, abb, bba, bbbb, aaaa, \ldots}$</td>
</tr>
<tr>
<td>$a^b^$</td>
<td>${\Lambda, a, b, ab, aa, bb, aaaa, aab, abb, bbb, \ldots}$</td>
</tr>
<tr>
<td>$((a + b)(a + b))^*$</td>
<td>${x \mid x \in {a, b} \land</td>
</tr>
</tbody>
</table>

Some notational conveniences (that do not change the class of languages):

Let r be a RE.

[r]_0 = \Lambda, and

$\forall k \geq 0, r^k + 1 = rr^k$:

- $(a + b)^k$: all strings over $\{a, b\}$ of length exactly k.
- $(a + b + \Lambda)^k$: all strings of length at most k.

Positive closure: $r^+ = rr^*$ (Alternatively, $r^* = \Lambda + r^+$).
Regular Expressions

We write \cup with $+$, and we remove set notation.
Example: $(\{a\}\{b\}^* \cup \{c\}^*\{d\})^*\{e\}$ becomes $(ab^* + c^*d)^*e$.

Given some regular expression, r, we use $L(r)$ to represent the language it denotes.

<table>
<thead>
<tr>
<th>RE (r)</th>
<th>Corresponding Language $(L(r))$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$a + bc$</td>
<td>${a, bc}$</td>
</tr>
<tr>
<td>$a(b + c)$</td>
<td>${ab, ac}$</td>
</tr>
<tr>
<td>$(a + b)(a + c)(\Lambda + a)$</td>
<td>${aa, ac, ba, bc, aaa, aca, baa, bca}$</td>
</tr>
<tr>
<td>$a^*(b + cc)$</td>
<td>${b, cc, ab, acc, aab, aacc, aaab, aaacc, \ldots}$</td>
</tr>
<tr>
<td>$a + bb^*$</td>
<td>${a, b, bb, bbb, bbbb, \ldots}$</td>
</tr>
<tr>
<td>$(a + bb)^*$</td>
<td>${\Lambda, a, bb, aa, abb, bba, bbbb, aaa, \ldots}$</td>
</tr>
<tr>
<td>$a^b^$</td>
<td>${\Lambda, a, b, ab, aa, bb, aaa, aab, abb, bbb, \ldots}$</td>
</tr>
<tr>
<td>$((a + b)(a + b))^*$</td>
<td>${x \mid x \in {a, b} \land</td>
</tr>
</tbody>
</table>

Some notational conveniences (that do not change the class of languages.):
Let r be a RE. $r^0 = \Lambda$, and $\forall k \geq 0, r^{k+1} = rr^k$.
Regular Expressions

We write \cup with $+$, and we remove set notation.
Example: $(\{a\}\{b\}^* \cup \{c\}^* \{d\})^* \{e\}$ becomes $(ab^* + c^*d)^* e$.
Given some regular expression, r, we use $\mathcal{L}(r)$ to represent the language it denotes.

<table>
<thead>
<tr>
<th>RE (r)</th>
<th>Corresponding Language ($\mathcal{L}(r)$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$a + bc$</td>
<td>${a, bc}$</td>
</tr>
<tr>
<td>$a(b + c)$</td>
<td>${ab, ac}$</td>
</tr>
<tr>
<td>$(a + b)(a + c)(\Lambda + a)$</td>
<td>${aa, ac, ba, bc, aaa, aca, baa, bca}$</td>
</tr>
<tr>
<td>$a^*(b + cc)$</td>
<td>${b, cc, ab, acc, aab, aaacc, aaab, aaacc, \ldots}$</td>
</tr>
<tr>
<td>$a + bb^*$</td>
<td>${a, b, bb, bbb, bbbb, \ldots}$</td>
</tr>
<tr>
<td>$(a + bb)^*$</td>
<td>${\Lambda, a, bb, aa, abb, bba, bbbb, aaa, \ldots}$</td>
</tr>
<tr>
<td>$a^b^$</td>
<td>${\Lambda, a, b, ab, aa, bb, aab, aabb, abb, bbb, \ldots}$</td>
</tr>
<tr>
<td>$((a + b)(a + b))^*$</td>
<td>${x \mid x \in {a, b} \land</td>
</tr>
</tbody>
</table>

Some notational conveniences (that do not change the class of languages.):
Let r be a RE. $r^0 = \Lambda$, and $\forall k \geq 0, r^{k+1} = rr^k$
$(a + b)^k$: all strings over $\{a, b\}$ of length exactly k
We write \cup with $+$, and we remove set notation.

Example: $(\{a\}\{b\}^* \cup \{c\}^* \{d\})^* \{e\}$ becomes $(ab^* + c^*d)^*e$.

Given some regular expression, r, we use $L(r)$ to represent the language it denotes.

<table>
<thead>
<tr>
<th>RE (r)</th>
<th>Corresponding Language ($L(r)$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$a + bc$</td>
<td>${a, bc}$</td>
</tr>
<tr>
<td>$a(b + c)$</td>
<td>${ab, ac}$</td>
</tr>
<tr>
<td>$(a + b)(a + c)(\Lambda + a)$</td>
<td>${aa, ac, ba, bc, aaa, aca, baa, bca}$</td>
</tr>
<tr>
<td>$a^*(b + cc)$</td>
<td>${b, cc, ab, acc, aab, aacc, aaab, aaacc, \ldots}$</td>
</tr>
<tr>
<td>$a + bb^*$</td>
<td>${a, b, bb, bbb, bbbb, \ldots}$</td>
</tr>
<tr>
<td>$(a + bb)^*$</td>
<td>${\Lambda, a, bb, aa, abb, bba, bbbb, aaa, \ldots}$</td>
</tr>
<tr>
<td>$a^b^$</td>
<td>${\Lambda, a, b, ab, aa, bb, aaa, aab, abb, bbb, \ldots}$</td>
</tr>
<tr>
<td>$((a + b)(a + b))^*$</td>
<td>${x \mid x \in {a, b} \land</td>
</tr>
</tbody>
</table>

Some notational conveniences (that do not change the class of languages.):
Let r be a RE. $r^0 = \Lambda$, and $\forall k \geq 0, r^{k+1} = rr^k$
$(a + b)^k$: all strings over $\{a, b\}$ of length exactly k
$(a + b + \Lambda)^k$: all strings of length at most k.
Regular Expressions

We write \cup with $+$, and we remove set notation.
Example: $(\{a\}\{b\}^* \cup \{c\}^* \{d\}^*)^*\{e\}$ becomes $(ab^* + c^* d)^* e$.
Given some regular expression, r, we use $\mathcal{L}(r)$ to represent the language it denotes.

<table>
<thead>
<tr>
<th>RE (r)</th>
<th>Corresponding Language ($\mathcal{L}(r)$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$a + bc$</td>
<td>${a, bc}$</td>
</tr>
<tr>
<td>$a(b + c)$</td>
<td>${ab, ac}$</td>
</tr>
<tr>
<td>$(a + b)(a + c)(\Lambda + a)$</td>
<td>${aa, ac, ba, bc, aaa, aca, baa, bca}$</td>
</tr>
<tr>
<td>$a^*(b + cc)$</td>
<td>${b, cc, ab, acc, aab, aacc, aaab, aaacc, \ldots}$</td>
</tr>
<tr>
<td>$a + bb^*$</td>
<td>${a, b, bb, bbb, bbbb, \ldots}$</td>
</tr>
<tr>
<td>$(a + bb)^*$</td>
<td>${\Lambda, a, bb, aa, abb, bba, bbbb, aaa, \ldots}$</td>
</tr>
<tr>
<td>$a^b^$</td>
<td>${\Lambda, a, b, ab, aa, bb, aaa, aab, abb, bbb, \ldots}$</td>
</tr>
<tr>
<td>$((a + b)(a + b))^*$</td>
<td>${x</td>
</tr>
</tbody>
</table>

Some notational conveniences (that do not change the class of languages.):
Let r be a RE. $r^0 = \Lambda$, and $\forall k \geq 0, r^{k+1} = rr^k$
$(a + b)^k$: all strings over $\{a, b\}$ of length exactly k
$(a + b + \Lambda)^k$: all strings of length at most k.
Positive closure: $r^+ = rr^*$
Regular Expressions

We write \cup with $+$, and we remove set notation.
Example: $(\{a\}\{b\}^* \cup \{c\}^* \{d\}^*) \{e\}$ becomes $(ab^* + c^*d^*)e$.
Given some regular expression, r, we use $L(r)$ to represent the language it denotes.

<table>
<thead>
<tr>
<th>RE (r)</th>
<th>Corresponding Language ($L(r)$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$a + bc$</td>
<td>${a, bc}$</td>
</tr>
<tr>
<td>$a(b + c)$</td>
<td>${ab, ac}$</td>
</tr>
<tr>
<td>$(a + b)(a + c)(\Lambda + a)$</td>
<td>${aa, ac, ba, bc, aaa, aca, baa, bca}$</td>
</tr>
<tr>
<td>$a^*(b + cc)$</td>
<td>${b, cc, ab, acc, aab, aacc, aaab, aaacc, \ldots}$</td>
</tr>
<tr>
<td>$a + bb^*$</td>
<td>${a, b, bb, bbb, bbbb, \ldots}$</td>
</tr>
<tr>
<td>$(a + bb)^*$</td>
<td>${\Lambda, a, bb, aa, abb, bba, bbbb, aaaa, \ldots}$</td>
</tr>
<tr>
<td>$a^b^$</td>
<td>${\Lambda, a, b, ab, aa, bb, aab, abb, bbb, \ldots}$</td>
</tr>
<tr>
<td>$((a + b)(a + b))^*$</td>
<td>${x \mid x \in {a, b} \land</td>
</tr>
</tbody>
</table>

Some notational conveniences (that do not change the class of languages.):
Let r be a RE. $r^0 = \Lambda$, and $\forall k \geq 0$, $r^{k+1} = rr^k$
$(a + b)^k$: all strings over $\{a, b\}$ of length exactly k
$(a + b + \Lambda)^k$: all strings of length at most k.

Positive closure: $r^+ = rr^*$
(Alternatively, $r^* = \Lambda + r^+$)