Strings

Alphabet: An alphabet is a set of symbols. E.g.
$\Sigma_{1}=\{a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z\}$, or $\Sigma_{2}=\{0,1\}$.

Strings

Alphabet: An alphabet is a set of symbols. E.g.
$\Sigma_{1}=\{a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z\}$, or $\Sigma_{2}=\{0,1\}$.
String: A string is a finite sequence of characters.

Strings

Alphabet: An alphabet is a set of symbols. E.g.
$\Sigma_{1}=\{a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z\}$, or $\Sigma_{2}=\{0,1\}$.
String: A string is a finite sequence of characters.
A string over some alphabet Σ is a finite sequence of characters from that alphabet.
Example: dog is a string over Σ_{1}. So is doogle. 001010 is a string over Σ_{2}.

Strings

Alphabet: An alphabet is a set of symbols. E.g.
$\Sigma_{1}=\{a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z\}$, or $\Sigma_{2}=\{0,1\}$.
String: A string is a finite sequence of characters.
A string over some alphabet Σ is a finite sequence of characters from that alphabet. Example: dog is a string over Σ_{1}. So is doogle. 001010 is a string over Σ_{2}.
Λ is a special string, called the empty string. It exists, regardless of the alphabet being used.

Strings

Alphabet: An alphabet is a set of symbols. E.g.
$\Sigma_{1}=\{a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z\}$, or $\Sigma_{2}=\{0,1\}$.
String: A string is a finite sequence of characters.
A string over some alphabet Σ is a finite sequence of characters from that alphabet. Example: dog is a string over Σ_{1}. So is doogle. 001010 is a string over Σ_{2}.
Λ is a special string, called the empty string. It exists, regardless of the alphabet being used.

Concatenation: The primary operator we use on strings is concatenation. This takes two strings as input and outputs a new string. Because we use it so often, we don't bother with a symbol: the concatenation of strings x and y is written $x y$.

Strings

Alphabet: An alphabet is a set of symbols. E.g.
$\Sigma_{1}=\{a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z\}$, or $\Sigma_{2}=\{0,1\}$.
String: A string is a finite sequence of characters.
A string over some alphabet Σ is a finite sequence of characters from that alphabet. Example: dog is a string over Σ_{1}. So is doogle. 001010 is a string over Σ_{2}.
Λ is a special string, called the empty string. It exists, regardless of the alphabet being used.

Concatenation: The primary operator we use on strings is concatenation. This takes two strings as input and outputs a new string. Because we use it so often, we don't bother with a symbol: the concatenation of strings x and y is written $x y$. Example: dog concatenated with doogle is dogdoogle.

Strings

Alphabet: An alphabet is a set of symbols. E.g.
$\Sigma_{1}=\{a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z\}$, or $\Sigma_{2}=\{0,1\}$.
String: A string is a finite sequence of characters.
A string over some alphabet Σ is a finite sequence of characters from that alphabet. Example: dog is a string over Σ_{1}. So is doogle. 001010 is a string over Σ_{2}.
Λ is a special string, called the empty string. It exists, regardless of the alphabet being used.

Concatenation: The primary operator we use on strings is concatenation. This takes two strings as input and outputs a new string. Because we use it so often, we don't bother with a symbol: the concatenation of strings x and y is written $x y$. Example: dog concatenated with doogle is dogdoogle.
We use $x^{2}=x x, x^{k}=x x^{k-1}, x^{0}=\Lambda$

Strings

Alphabet: An alphabet is a set of symbols. E.g.
$\Sigma_{1}=\{a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z\}$, or $\Sigma_{2}=\{0,1\}$.
String: A string is a finite sequence of characters.
A string over some alphabet Σ is a finite sequence of characters from that alphabet.
Example: $d o g$ is a string over Σ_{1}. So is doogle. 001010 is a string over Σ_{2}.
Λ is a special string, called the empty string. It exists, regardless of the alphabet being used.

Concatenation: The primary operator we use on strings is concatenation. This takes two strings as input and outputs a new string. Because we use it so often, we don't bother with a symbol: the concatenation of strings x and y is written $x y$.
Example: dog concatenated with doogle is dogdoogle.
We use $x^{2}=x x, x^{k}=x x^{k-1}, x^{0}=\Lambda$
Length: The length of a string is the number characters in the string.
Example: \mid doogle $\mid=6$.

Strings

Alphabet: An alphabet is a set of symbols. E.g.
$\Sigma_{1}=\{a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z\}$, or $\Sigma_{2}=\{0,1\}$.
String: A string is a finite sequence of characters.
A string over some alphabet Σ is a finite sequence of characters from that alphabet.
Example: $d o g$ is a string over Σ_{1}. So is doogle. 001010 is a string over Σ_{2}.
Λ is a special string, called the empty string. It exists, regardless of the alphabet being used.

Concatenation: The primary operator we use on strings is concatenation. This takes two strings as input and outputs a new string. Because we use it so often, we don't bother with a symbol: the concatenation of strings x and y is written $x y$.
Example: dog concatenated with doogle is dogdoogle.
We use $x^{2}=x x, x^{k}=x x^{k-1}, x^{0}=\Lambda$
Length: The length of a string is the number characters in the string.
Example: \mid doogle $\mid=6$. Example: $|\Lambda|=0$

Languages

Language: A language is a set of strings. It can be finite or infinite.
Example: $\{a b, b a b, b b a a b\}$ is a language of size 3.

Languages

Language: A language is a set of strings. It can be finite or infinite.
Example: $\{a b, b a b, b b a a b\}$ is a language of size 3.
Example: $L=\{\Lambda, a, b, a a, a b, b a, b b\}$

Languages

Language: A language is a set of strings. It can be finite or infinite.
Example: $\{a b, b a b, b b a a b\}$ is a language of size 3.
Example: $L=\{\Lambda, a, b, a a, a b, b a, b b\}$
Example: $\Sigma=\{0,1,+\}, L=\{0+0,0+1,1+0,1+1,0+0+0,0+0+1, \ldots\}$

Languages

Language: A language is a set of strings. It can be finite or infinite.
Example: $\{a b, b a b, b b a b\}$ is a language of size 3.
Example: $L=\{\Lambda, a, b, a a, a b, b a, b b\}$
Example: $\Sigma=\{0,1,+\}, L=\{0+0,0+1,1+0,1+1,0+0+0,0+0+1, \ldots\}$
While a language may have infinite size, each string in the language has finite size.

Languages

Language: A language is a set of strings. It can be finite or infinite.
Example: $\{a b, b a b, b b a b\}$ is a language of size 3.
Example: $L=\{\Lambda, a, b, a a, a b, b a, b b\}$
Example: $\Sigma=\{0,1,+\}, L=\{0+0,0+1,1+0,1+1,0+0+0,0+0+1, \ldots\}$
While a language may have infinite size, each string in the language has finite size.
Σ^{*} is the language containing all possible strings over the alphabet Σ.

Languages

Language: A language is a set of strings. It can be finite or infinite.
Example: $\{a b, b a b, b b a b\}$ is a language of size 3.
Example: $L=\{\Lambda, a, b, a a, a b, b a, b b\}$
Example: $\Sigma=\{0,1,+\}, L=\{0+0,0+1,1+0,1+1,0+0+0,0+0+1, \ldots\}$
While a language may have infinite size, each string in the language has finite size.
Σ^{*} is the language containing all possible strings over the alphabet Σ.
Example: $\Sigma=\{a, b\}, \Sigma^{*}=\{\Lambda, a, b, a a, a b, b a, b b, a a a, \ldots\}$

Languages

Language: A language is a set of strings. It can be finite or infinite.
Example: $\{a b, b a b, b b a b\}$ is a language of size 3.
Example: $L=\{\Lambda, a, b, a a, a b, b a, b b\}$
Example: $\Sigma=\{0,1,+\}, L=\{0+0,0+1,1+0,1+1,0+0+0,0+0+1, \ldots\}$
While a language may have infinite size, each string in the language has finite size.
Σ^{*} is the language containing all possible strings over the alphabet Σ.
Example: $\Sigma=\{a, b\}, \Sigma^{*}=\{\Lambda, a, b, a a, a b, b a, b b, a a a, \ldots\}$
We sometimes write this as $\{a, b\}^{*}$

Languages

Language: A language is a set of strings. It can be finite or infinite.
Example: $\{a b, b a b, b b a a b\}$ is a language of size 3.
Example: $L=\{\Lambda, a, b, a a, a b, b a, b b\}$
Example: $\Sigma=\{0,1,+\}, L=\{0+0,0+1,1+0,1+1,0+0+0,0+0+1, \ldots\}$
While a language may have infinite size, each string in the language has finite size.
Σ^{*} is the language containing all possible strings over the alphabet Σ.
Example: $\Sigma=\{a, b\}, \Sigma^{*}=\{\Lambda, a, b, a a, a b, b a, b b, a a a, \ldots\}$
We sometimes write this as $\{a, b\}^{*}$
$\Sigma=\{a, b\}, L_{1}=\{a, a a\}, L_{2}=\{\Lambda, a a, b a\}, L_{3}=\{\Lambda, a, a a, a a a, \ldots\}$

Languages

Language: A language is a set of strings. It can be finite or infinite.
Example: $\{a b, b a b, b b a a b\}$ is a language of size 3.
Example: $L=\{\Lambda, a, b, a a, a b, b a, b b\}$
Example: $\Sigma=\{0,1,+\}, L=\{0+0,0+1,1+0,1+1,0+0+0,0+0+1, \ldots\}$
While a language may have infinite size, each string in the language has finite size.
Σ^{*} is the language containing all possible strings over the alphabet Σ.
Example: $\Sigma=\{a, b\}, \Sigma^{*}=\{\Lambda, a, b, a a, a b, b a, b b, a a a, \ldots\}$
We sometimes write this as $\{a, b\}^{*}$
$\Sigma=\{a, b\}, L_{1}=\{a, a a\}, L_{2}=\{\Lambda, a a, b a\}, L_{3}=\{\Lambda, a, a a, a a a, \ldots\}$
Language operators:

Languages

Language: A language is a set of strings. It can be finite or infinite.
Example: $\{a b, b a b, b b a a b\}$ is a language of size 3.
Example: $L=\{\Lambda, a, b, a a, a b, b a, b b\}$
Example: $\Sigma=\{0,1,+\}, L=\{0+0,0+1,1+0,1+1,0+0+0,0+0+1, \ldots\}$
While a language may have infinite size, each string in the language has finite size.
Σ^{*} is the language containing all possible strings over the alphabet Σ.
Example: $\Sigma=\{a, b\}, \Sigma^{*}=\{\Lambda, a, b, a a, a b, b a, b b, a a a, \ldots\}$
We sometimes write this as $\{a, b\}^{*}$
$\Sigma=\{a, b\}, L_{1}=\{a, a a\}, L_{2}=\{\Lambda, a a, b a\}, L_{3}=\{\Lambda, a, a a, a a a, \ldots\}$
Language operators:

$$
L_{1} \cup L_{2}
$$

$$
\{a, a a, \Lambda, b a\}
$$

Languages

Language: A language is a set of strings. It can be finite or infinite.
Example: $\{a b, b a b, b b a a b\}$ is a language of size 3.
Example: $L=\{\Lambda, a, b, a a, a b, b a, b b\}$
Example: $\Sigma=\{0,1,+\}, L=\{0+0,0+1,1+0,1+1,0+0+0,0+0+1, \ldots\}$
While a language may have infinite size, each string in the language has finite size.
Σ^{*} is the language containing all possible strings over the alphabet Σ.
Example: $\Sigma=\{a, b\}, \Sigma^{*}=\{\Lambda, a, b, a a, a b, b a, b b, a a a, \ldots\}$
We sometimes write this as $\{a, b\}^{*}$
$\Sigma=\{a, b\}, L_{1}=\{a, a a\}, L_{2}=\{\Lambda, a a, b a\}, L_{3}=\{\Lambda, a, a a, a a a, \ldots\}$
Language operators:

$$
\begin{aligned}
& L_{1} \cup L_{2} \\
& L_{1} \cap L_{2}
\end{aligned}
$$

$$
\begin{aligned}
& \{a, a a, \Lambda, b a\} \\
& \{a a\}
\end{aligned}
$$

Languages

Language: A language is a set of strings. It can be finite or infinite.
Example: $\{a b, b a b, b b a a b\}$ is a language of size 3.
Example: $L=\{\Lambda, a, b, a a, a b, b a, b b\}$
Example: $\Sigma=\{0,1,+\}, L=\{0+0,0+1,1+0,1+1,0+0+0,0+0+1, \ldots\}$
While a language may have infinite size, each string in the language has finite size.
Σ^{*} is the language containing all possible strings over the alphabet Σ.
Example: $\Sigma=\{a, b\}, \Sigma^{*}=\{\Lambda, a, b, a a, a b, b a, b b, a a a, \ldots\}$
We sometimes write this as $\{a, b\}^{*}$
$\Sigma=\{a, b\}, L_{1}=\{a, a a\}, L_{2}=\{\Lambda, a a, b a\}, L_{3}=\{\Lambda, a, a a, a a a, \ldots\}$
Language operators:

$$
\begin{aligned}
& L_{1} \cup L_{2} \\
& L_{1} \cap L_{2} \\
& L_{2} \backslash L_{1}
\end{aligned}
$$

$$
\begin{aligned}
& \{a, a a, \Lambda, b a\} \\
& \{a a\} \\
& \{\Lambda, b a\}
\end{aligned}
$$

Languages

Language: A language is a set of strings. It can be finite or infinite.
Example: $\{a b, b a b, b b a a b\}$ is a language of size 3.
Example: $L=\{\Lambda, a, b, a a, a b, b a, b b\}$
Example: $\Sigma=\{0,1,+\}, L=\{0+0,0+1,1+0,1+1,0+0+0,0+0+1, \ldots\}$
While a language may have infinite size, each string in the language has finite size.
Σ^{*} is the language containing all possible strings over the alphabet Σ.
Example: $\Sigma=\{a, b\}, \Sigma^{*}=\{\Lambda, a, b, a a, a b, b a, b b, a a a, \ldots\}$
We sometimes write this as $\{a, b\}^{*}$
$\Sigma=\{a, b\}, L_{1}=\{a, a a\}, L_{2}=\{\Lambda, a a, b a\}, L_{3}=\{\Lambda, a, a a, a a a, \ldots\}$
Language operators:

$$
\begin{gathered}
L_{1} \cup L_{2} \\
L_{1} \cap L_{2} \\
L_{2} \backslash L_{1} \\
L_{1} \backslash L_{2}
\end{gathered}
$$

$$
\begin{aligned}
& \{a, a a, \Lambda, b a\} \\
& \{a a\} \\
& \{\Lambda, b a\} \\
& \{a\}
\end{aligned}
$$

Languages

Language: A language is a set of strings. It can be finite or infinite.
Example: $\{a b, b a b, b b a a b\}$ is a language of size 3.
Example: $L=\{\Lambda, a, b, a a, a b, b a, b b\}$
Example: $\Sigma=\{0,1,+\}, L=\{0+0,0+1,1+0,1+1,0+0+0,0+0+1, \ldots\}$
While a language may have infinite size, each string in the language has finite size.
Σ^{*} is the language containing all possible strings over the alphabet Σ.
Example: $\Sigma=\{a, b\}, \Sigma^{*}=\{\Lambda, a, b, a a, a b, b a, b b, a a a, \ldots\}$
We sometimes write this as $\{a, b\}^{*}$
$\Sigma=\{a, b\}, L_{1}=\{a, a a\}, L_{2}=\{\Lambda, a a, b a\}, L_{3}=\{\Lambda, a, a a, a a a, \ldots\}$
Language operators:

$$
\begin{aligned}
& L_{1} \cup L_{2} \\
& L_{1} \cap L_{2} \\
& L_{2} \backslash L_{1} \\
& L_{1} \backslash L_{2} \\
& \bar{L}=\Sigma^{*} \backslash L
\end{aligned}
$$

$$
\begin{aligned}
& \{a, a a, \Lambda, b a\} \\
& \{a a\} \\
& \{\Lambda, b a\} \\
& \{a\} \\
& \bar{L}_{3}=\{b, a b, b a, b b, a a b, a b a, a b b, b a a, b a b, b b a, b b b \ldots\}
\end{aligned}
$$

Languages

Language: A language is a set of strings. It can be finite or infinite.
Example: $\{a b, b a b, b b a b\}$ is a language of size 3.
Example: $L=\{\Lambda, a, b, a a, a b, b a, b b\}$
Example: $\Sigma=\{0,1,+\}, L=\{0+0,0+1,1+0,1+1,0+0+0,0+0+1, \ldots\}$
While a language may have infinite size, each string in the language has finite size.
Σ^{*} is the language containing all possible strings over the alphabet Σ.
Example: $\Sigma=\{a, b\}, \Sigma^{*}=\{\Lambda, a, b, a a, a b, b a, b b, a a a, \ldots\}$
We sometimes write this as $\{a, b\}^{*}$
$\Sigma=\{a, b\}, L_{1}=\{a, a a\}, L_{2}=\{\Lambda, a a, b a\}, L_{3}=\{\Lambda, a, a a, a a a, \ldots\}$
Language operators:

$$
\begin{array}{ll}
L_{1} \cup L_{2} & \{a, a a, \Lambda, b a\} \\
L_{1} \cap L_{2} & \{a a\} \\
L_{2} \backslash L_{1} & \{\Lambda, b a\} \\
L_{1} \backslash L_{2} & \{a\} \\
\bar{L}=\Sigma^{*} \backslash L & \bar{L}_{3}=\{b, a b, b a, b b, a a b, a b a, a \\
L_{1} L_{2}=\left\{x y \mid x \in L_{1} \wedge y \in L_{2}\right\} & \{a, a a, a a a, a b a, a a a a, a a b a\}
\end{array}
$$

Languages

Language: A language is a set of strings. It can be finite or infinite.
Example: $\{a b, b a b, b b a a b\}$ is a language of size 3.
Example: $L=\{\Lambda, a, b, a a, a b, b a, b b\}$
Example: $\Sigma=\{0,1,+\}, L=\{0+0,0+1,1+0,1+1,0+0+0,0+0+1, \ldots\}$
While a language may have infinite size, each string in the language has finite size.
Σ^{*} is the language containing all possible strings over the alphabet Σ.
Example: $\Sigma=\{a, b\}, \Sigma^{*}=\{\Lambda, a, b, a a, a b, b a, b b, a a a, \ldots\}$
We sometimes write this as $\{a, b\}^{*}$
$\Sigma=\{a, b\}, L_{1}=\{a, a a\}, L_{2}=\{\Lambda, a a, b a\}, L_{3}=\{\Lambda, a, a a, a a a, \ldots\}$
Language operators:

$$
\begin{array}{ll}
L_{1} \cup L_{2} & \{a, a a, \Lambda, b a\} \\
L_{1} \cap L_{2} & \{a a\} \\
L_{2} \backslash L_{1} & \{\Lambda, b a\} \\
L_{1} \backslash L_{2} & \{a\} \\
\bar{L}=\Sigma^{*} \backslash L & \bar{L}_{3}=\{b, a b, b a, b b, a a b, a b a, a b b, b a a, b a b, b b a, b b b \ldots\} \\
L_{1} L_{2}=\left\{x y \mid x \in L_{1} \wedge y \in L_{2}\right\} & \{a, a a, a a a, a b a, a a a a, a a b a\} \\
L_{2} L_{1} & \{a, a a, a a a, a a a a, b a a, b a a a\}
\end{array}
$$

Languages

Language: A language is a set of strings. It can be finite or infinite.
Example: $\{a b, b a b, b b a a b\}$ is a language of size 3.
Example: $L=\{\Lambda, a, b, a a, a b, b a, b b\}$
Example: $\Sigma=\{0,1,+\}, L=\{0+0,0+1,1+0,1+1,0+0+0,0+0+1, \ldots\}$
While a language may have infinite size, each string in the language has finite size.
Σ^{*} is the language containing all possible strings over the alphabet Σ.
Example: $\Sigma=\{a, b\}, \Sigma^{*}=\{\Lambda, a, b, a a, a b, b a, b b, a a a, \ldots\}$
We sometimes write this as $\{a, b\}^{*}$
$\Sigma=\{a, b\}, L_{1}=\{a, a a\}, L_{2}=\{\Lambda, a a, b a\}, L_{3}=\{\Lambda, a, a a, a a a, \ldots\}$
Language operators:

$$
\begin{array}{ll}
L_{1} \cup L_{2} & \{a, a a, \Lambda, b a\} \\
L_{1} \cap L_{2} & \{a a\} \\
L_{2} \backslash L_{1} & \{\Lambda, b a\} \\
L_{1} \backslash L_{2} & \{a\} \\
\bar{L}=\Sigma^{*} \backslash L & \bar{L}_{3}=\{b, a b, b a, b b, a a b, a b a, a b b, b a a, b a b, b b a, b b b \ldots\} \\
L_{1} L_{2}=\left\{x y \mid x \in L_{1} \wedge y \in L_{2}\right\} & \{a, a a, a a a, a b a, a a a a, a a b a\} \\
L_{2} L_{1} & \{a, a a, a a a, a a a a, b a a, b a a a\}
\end{array}
$$

$L^{0}=\{\Lambda\}$ for any L

Languages

Language: A language is a set of strings. It can be finite or infinite.
Example: $\{a b, b a b, b b a a b\}$ is a language of size 3.
Example: $L=\{\Lambda, a, b, a a, a b, b a, b b\}$
Example: $\Sigma=\{0,1,+\}, L=\{0+0,0+1,1+0,1+1,0+0+0,0+0+1, \ldots\}$
While a language may have infinite size, each string in the language has finite size.
Σ^{*} is the language containing all possible strings over the alphabet Σ.
Example: $\Sigma=\{a, b\}, \Sigma^{*}=\{\Lambda, a, b, a a, a b, b a, b b, a a a, \ldots\}$
We sometimes write this as $\{a, b\}^{*}$
$\Sigma=\{a, b\}, L_{1}=\{a, a a\}, L_{2}=\{\Lambda, a a, b a\}, L_{3}=\{\Lambda, a, a a, a a a, \ldots\}$
Language operators:

$$
\begin{array}{ll}
L_{1} \cup L_{2} & \{a, a a, \Lambda, b a\} \\
L_{1} \cap L_{2} & \{a a\} \\
L_{2} \backslash L_{1} & \{\Lambda, b a\} \\
L_{1} \backslash L_{2} & \{a\} \\
\bar{L}=\Sigma^{*} \backslash L & \bar{L}_{3}=\{b, a b, b a, b b, a a b, a b a, a b b, b a a, b a b, b b a, b b b \ldots\} \\
L_{1} L_{2}=\left\{x y \mid x \in L_{1} \wedge y \in L_{2}\right\} & \{a, a a, a a a, a b a, a a a a, a a b a\} \\
L_{2} L_{1} & \{a, a a, a a a, a a a a, b a a, b a a a\}
\end{array}
$$

$L^{0}=\{\Lambda\}$ for any L
$L^{2}=L L$ and $L^{k}=L L^{k-1}$

Languages

Language: A language is a set of strings. It can be finite or infinite.
Example: $\{a b, b a b, b b a a b\}$ is a language of size 3.
Example: $L=\{\Lambda, a, b, a a, a b, b a, b b\}$
Example: $\Sigma=\{0,1,+\}, L=\{0+0,0+1,1+0,1+1,0+0+0,0+0+1, \ldots\}$
While a language may have infinite size, each string in the language has finite size.
Σ^{*} is the language containing all possible strings over the alphabet Σ.
Example: $\Sigma=\{a, b\}, \Sigma^{*}=\{\Lambda, a, b, a a, a b, b a, b b, a a a, \ldots\}$
We sometimes write this as $\{a, b\}^{*}$
$\Sigma=\{a, b\}, L_{1}=\{a, a a\}, L_{2}=\{\Lambda, a a, b a\}, L_{3}=\{\Lambda, a, a a, a a a, \ldots\}$
Language operators:

$$
\begin{array}{ll}
L_{1} \cup L_{2} & \{a, a a, \Lambda, b a\} \\
L_{1} \cap L_{2} & \{a a\} \\
L_{2} \backslash L_{1} & \{\Lambda, b a\} \\
L_{1} \backslash L_{2} & \{a\} \\
\bar{L}=\Sigma^{*} \backslash L & \bar{L}_{3}=\{b, a b, b a, b b, a a b, a b a, a b b, b a a, b a b, b b a, b b b \ldots\} \\
L_{1} L_{2}=\left\{x y \mid x \in L_{1} \wedge y \in L_{2}\right\} & \{a, a a, a a a, a b a, a a a a, a a b a\} \\
L_{2} L_{1} & \{a, a a, a a a, a a a a, b a a, b a a a\}
\end{array}
$$

$$
\begin{aligned}
& L^{0}=\{\Lambda\} \text { for any } L \\
& L^{2}=L L \text { and } L^{k}=L L^{k-1} \\
& L^{*}=\bigcup_{i=0}^{\infty} L^{i}
\end{aligned}
$$

Languages

Example: $L=\{a, b b\}$

Languages

Example: $L=\{a, b b\}$ $L^{0}=\{\Lambda\}$

Languages

Example: $L=\{a, b b\}$ $L^{0}=\{\Lambda\}$
$L^{1}=\{a, b b\}$

Languages

$$
\begin{aligned}
& \text { Example: } L=\{a, b b\} \\
& L^{0}=\{\Lambda\} \\
& L^{1}=\{a, b b\} \\
& L^{2}=\{a a, a b b, b b a, b b b b\}
\end{aligned}
$$

Languages

Example: $L=\{a, b b\}$
$L^{0}=\{\Lambda\}$
$L^{1}=\{a, b b\}$
$L^{2}=\{a a, a b b, b b a, b b b b\}$
$L^{3}=\{a a a, a a b b, a b b a, a b b b b, b b a a, b b a b b, b b b b a, b b b b b b\}$

Languages

$$
\begin{aligned}
& \text { Example: } L=\{a, b b\} \\
& L^{0}=\{\Lambda\} \\
& L^{1}=\{a, b b\} \\
& L^{2}=\{a a, a b b, b b a, b b b b\} \\
& L^{3}=\{a a a, a a b b, a b b a, a b b b b, b b a a, b b a b b, b b b b a, b b b b b b\} \\
& L^{*}=\{\Lambda, a, b b, a a, a b b, b b a, b b b b, a a a, a a b b, a b b a, a b b b, b b a a, \ldots\}
\end{aligned}
$$

Languages

Example: $L=\{a, b b\}$
$L^{0}=\{\Lambda\}$
$L^{1}=\{a, b b\}$
$L^{2}=\{a a, a b b, b b a, b b b b\}$
$L^{3}=\{a a a, a a b b, a b b a, a b b b b, b b a a, b b a b b, b b b b a, b b b b b b\}$
$L^{*}=\{\Lambda, a, b b, a a, a b b, b b a, b b b b, a a a, a a b b, a b b a, a b b b, b b a a, \ldots\}$
extensional form: enumerate the strings.

Languages

```
Example: \(L=\{a, b b\}\)
\(L^{0}=\{\Lambda\}\)
\(L^{1}=\{a, b b\}\)
\(L^{2}=\{a a, a b b, b b a, b b b b\}\)
\(L^{3}=\{a a a, a a b b, a b b a, a b b b b, b b a a, b b a b b, b b b b a, b b b b b b\}\)
\(L^{*}=\{\Lambda, a, b b, a a, a b b, b b a, b b b b, a a a, a a b b, a b b a, a b b b, b b a a, \ldots\}\)
```

extensional form: enumerate the strings. Only finite sets, or possibly use "..."

Languages

Example: $L=\{a, b b\}$
$L^{0}=\{\Lambda\}$
$L^{1}=\{a, b b\}$
$L^{2}=\{a a, a b b, b b a, b b b b\}$
$L^{3}=\{a a a, a a b b, a b b a, a b b b b, b b a a, b b a b b, b b b b a, b b b b b b\}$
$L^{*}=\{\Lambda, a, b b, a a, a b b, b b a, b b b b, a a a, a a b b, a b b a, a b b b, b b a a, \ldots\}$
extensional form: enumerate the strings. Only finite sets, or possibly use ". . " intensional form: specify the properties of the strings.

Languages

Example: $L=\{a, b b\}$
$L^{0}=\{\Lambda\}$
$L^{1}=\{a, b b\}$
$L^{2}=\{a a, a b b, b b a, b b b b\}$
$L^{3}=\{a a a, a a b b, a b b a, a b b b b, b b a a, b b a b b, b b b b a, b b b b b b\}$
$L^{*}=\{\Lambda, a, b b, a a, a b b, b b a, b b b b, a a a, a a b b, a b b a, a b b b, b b a a, \ldots\}$
extensional form: enumerate the strings. Only finite sets, or possibly use "..." intensional form: specify the properties of the strings.
Informally: $L=\{x \mid x$ contains an equal number of a s and $b s\}$

Languages

Example: $L=\{a, b b\}$
$L^{0}=\{\Lambda\}$
$L^{1}=\{a, b b\}$
$L^{2}=\{a a, a b b, b b a, b b b b\}$
$L^{3}=\{a a a, a a b b, a b b a, a b b b b, b b a a, b b a b b, b b b b a, b b b b b b\}$
$L^{*}=\{\Lambda, a, b b, a a, a b b, b b a, b b b b, a a a, a a b b, a b b a, a b b b, b b a a, \ldots\}$
extensional form: enumerate the strings. Only finite sets, or possibly use "..." intensional form: specify the properties of the strings.
Informally: $L=\{x \mid x$ contains an equal number of a s and $b s\}$
Formally: $L=\left\{x \mid x \in\{a, b\}^{*} \wedge N_{a}(x)=N_{b}(x)\right\}$, where $N_{a}(x)$ denotes the number of $a \mathrm{~s}$ in string x.

Now What?

Until now we've talked about how to prove things.

Now What?

Until now we've talked about how to prove things.
Now we're going to start proving things about the nature of computation.

Now What?

Until now we've talked about how to prove things.
Now we're going to start proving things about the nature of computation.
Central questions:

Now What?

Until now we've talked about how to prove things.
Now we're going to start proving things about the nature of computation.
Central questions:

- How do we generate the strings of some language L ?

Now What?

Until now we've talked about how to prove things.
Now we're going to start proving things about the nature of computation.
Central questions:

- How do we generate the strings of some language L ?
- Note that many languages have infinite size, so we need to take a finite representation of that language, and use it to construct all of the strings!

Now What?

Until now we've talked about how to prove things.
Now we're going to start proving things about the nature of computation.
Central questions:

- How do we generate the strings of some language L ?
- Note that many languages have infinite size, so we need to take a finite representation of that language, and use it to construct all of the strings!
- A grammar for L gives a description of how to enumerate the strings of L

Now What?

Until now we've talked about how to prove things.
Now we're going to start proving things about the nature of computation.
Central questions:

- How do we generate the strings of some language L ?
- Note that many languages have infinite size, so we need to take a finite representation of that language, and use it to construct all of the strings!
- A grammar for L gives a description of how to enumerate the strings of L
- How do we recognize the strings of a language?

Now What?

Until now we've talked about how to prove things.
Now we're going to start proving things about the nature of computation.
Central questions:

- How do we generate the strings of some language L ?
- Note that many languages have infinite size, so we need to take a finite representation of that language, and use it to construct all of the strings!
- A grammar for L gives a description of how to enumerate the strings of L
- How do we recognize the strings of a language?
- given some x and some description of a language L, how do we decide whether $x \in L$?

Now What?

Until now we've talked about how to prove things.
Now we're going to start proving things about the nature of computation.
Central questions:

- How do we generate the strings of some language L ?
- Note that many languages have infinite size, so we need to take a finite representation of that language, and use it to construct all of the strings!
- A grammar for L gives a description of how to enumerate the strings of L
- How do we recognize the strings of a language?
- given some x and some description of a language L, how do we decide whether $x \in L$?
- An automaton for L is a simple machine that allows us to decide, given some x, whether $x \in L$

Now What?

Until now we've talked about how to prove things.
Now we're going to start proving things about the nature of computation.
Central questions:

- How do we generate the strings of some language L ?
- Note that many languages have infinite size, so we need to take a finite representation of that language, and use it to construct all of the strings!
- A grammar for L gives a description of how to enumerate the strings of L
- How do we recognize the strings of a language?
- given some x and some description of a language L, how do we decide whether $x \in L$?
- An automaton for L is a simple machine that allows us to decide, given some x, whether $x \in L$

We will see that there are different classes of language: some are easier to generate / recognize than others.

Now What?

Until now we've talked about how to prove things.
Now we're going to start proving things about the nature of computation.
Central questions:

- How do we generate the strings of some language L ?
- Note that many languages have infinite size, so we need to take a finite representation of that language, and use it to construct all of the strings!
- A grammar for L gives a description of how to enumerate the strings of L
- How do we recognize the strings of a language?
- given some x and some description of a language L, how do we decide whether $x \in L$?
- An automaton for L is a simple machine that allows us to decide, given some x, whether $x \in L$

We will see that there are different classes of language: some are easier to generate / recognize than others.
$L_{1}=\left\{x \mid x \in\{a\}^{*}\right.$ and x contains an even number of symbols $\}$
$L_{2}=\left\{x \mid x \in\{a\}^{*}\right.$ and x contains a prime number of symbols $\}$

Now What?

Until now we've talked about how to prove things.
Now we're going to start proving things about the nature of computation.

Central questions:

- How do we generate the strings of some language L ?
- Note that many languages have infinite size, so we need to take a finite representation of that language, and use it to construct all of the strings!
- A grammar for L gives a description of how to enumerate the strings of L
- How do we recognize the strings of a language?
- given some x and some description of a language L, how do we decide whether $x \in L$?
- An automaton for L is a simple machine that allows us to decide, given some x, whether $x \in L$

We will see that there are different classes of language: some are easier to generate / recognize than others.
$L_{1}=\left\{x \mid x \in\{a\}^{*}\right.$ and x contains an even number of symbols $\}$
$L_{2}=\left\{x \mid x \in\{a\}^{*}\right.$ and x contains a prime number of symbols $\}$

Figure 7.1: Containment of some language classes.

Regular Languages

The class of regular languages is the set of languages that can be built out of 3 simple operators: \cup, concatenation, and *

Regular Languages

The class of regular languages is the set of languages that can be built out of 3 simple operators: \cup, concatenation, and *

Regular Languages

Let \mathcal{R} be the set of all regular languages over symbol set Σ.

- $\emptyset \in \mathcal{R},\{\Lambda\} \in \mathcal{R}, \forall \sigma \in \Sigma:\{\sigma\} \in \mathcal{R}$

Regular Languages

The class of regular languages is the set of languages that can be built out of 3 simple operators: \cup, concatenation, and *

Regular Languages

Let \mathcal{R} be the set of all regular languages over symbol set Σ.

- $\emptyset \in \mathcal{R},\{\Lambda\} \in \mathcal{R}, \forall \sigma \in \Sigma:\{\sigma\} \in \mathcal{R}$
- If $L \in \mathcal{R}$, then $L^{*} \in \mathcal{R}$ If $L_{1}, L_{2} \in \mathcal{R}$, then $L_{1} L_{2} \in \mathcal{R}$ If $L_{1}, L_{2} \in \mathcal{R}$, then $L_{1} \cup L_{2} \in \mathcal{R}$

Regular Languages

The class of regular languages is the set of languages that can be built out of 3 simple operators: \cup, concatenation, and *

Regular Languages

Let \mathcal{R} be the set of all regular languages over symbol set Σ.

- $\emptyset \in \mathcal{R},\{\Lambda\} \in \mathcal{R}, \forall \sigma \in \Sigma:\{\sigma\} \in \mathcal{R}$
- If $L \in \mathcal{R}$, then $L^{*} \in \mathcal{R}$ If $L_{1}, L_{2} \in \mathcal{R}$, then $L_{1} L_{2} \in \mathcal{R}$ If $L_{1}, L_{2} \in \mathcal{R}$, then $L_{1} \cup L_{2} \in \mathcal{R}$
- There are no other regular languages over Σ.

Regular Languages

The class of regular languages is the set of languages that can be built out of 3 simple operators: \cup, concatenation, and *

Regular Languages

Let \mathcal{R} be the set of all regular languages over symbol set Σ.

- $\emptyset \in \mathcal{R},\{\Lambda\} \in \mathcal{R}, \forall \sigma \in \Sigma:\{\sigma\} \in \mathcal{R}$
- If $L \in \mathcal{R}$, then $L^{*} \in \mathcal{R}$ If $L_{1}, L_{2} \in \mathcal{R}$, then $L_{1} L_{2} \in \mathcal{R}$ If $L_{1}, L_{2} \in \mathcal{R}$, then $L_{1} \cup L_{2} \in \mathcal{R}$
- There are no other regular languages over Σ.

Example: $\Sigma=\{a, b, c\}$.
$L_{1}=\{a\}, L_{2}=\{b\}, L_{3}=\{c\}$ are all regular

Regular Languages

The class of regular languages is the set of languages that can be built out of 3 simple operators: \cup, concatenation, and *

Regular Languages

Let \mathcal{R} be the set of all regular languages over symbol set Σ.

- $\emptyset \in \mathcal{R},\{\Lambda\} \in \mathcal{R}, \forall \sigma \in \Sigma:\{\sigma\} \in \mathcal{R}$
- If $L \in \mathcal{R}$, then $L^{*} \in \mathcal{R}$ If $L_{1}, L_{2} \in \mathcal{R}$, then $L_{1} L_{2} \in \mathcal{R}$ If $L_{1}, L_{2} \in \mathcal{R}$, then $L_{1} \cup L_{2} \in \mathcal{R}$
- There are no other regular languages over Σ.

Example: $\Sigma=\{a, b, c\}$.

$$
\begin{aligned}
& L_{1}=\{a\}, L_{2}=\{b\}, L_{3}=\{c\} \text { are all regular } \\
& L=L_{1} \cup L_{2} L_{3}^{*}:
\end{aligned}
$$

Regular Languages

The class of regular languages is the set of languages that can be built out of 3 simple operators: \cup, concatenation, and *

Regular Languages

Let \mathcal{R} be the set of all regular languages over symbol set Σ.

- $\emptyset \in \mathcal{R},\{\Lambda\} \in \mathcal{R}, \forall \sigma \in \Sigma:\{\sigma\} \in \mathcal{R}$
- If $L \in \mathcal{R}$, then $L^{*} \in \mathcal{R}$ If $L_{1}, L_{2} \in \mathcal{R}$, then $L_{1} L_{2} \in \mathcal{R}$ If $L_{1}, L_{2} \in \mathcal{R}$, then $L_{1} \cup L_{2} \in \mathcal{R}$
- There are no other regular languages over Σ.

Example: $\Sigma=\{a, b, c\}$.

$$
\begin{aligned}
& L_{1}=\{a\}, L_{2}=\{b\}, L_{3}=\{c\} \text { are all regular } \\
& L=L_{1} \cup L_{2} L_{3}^{*}: L=\{a, b, b c, b c c, b c c c, \ldots\}
\end{aligned}
$$

Regular Expressions

We write \cup with + , and we remove set notation.
Example: $\left(\{a\}\{b\}^{*} \cup\{c\}^{*}\{d\}\right)^{*}\{e\}$ becomes $\left(a b^{*}+c^{*} d\right)^{*} e$.

RE (r)	Corresponding Language $(\mathcal{L}(r))$
$a+b c$	
$a(b+c)$	
$(a+b)(a+c)(\Lambda+a)$	
$a^{*}(b+c c)$	
$a+b b^{*}$	
$(a+b b)^{*}$	
$a^{*} b^{*}$	
$((a+b)(a+b))^{*}$	

Regular Expressions

We write \cup with + , and we remove set notation.
Example: $\left(\{a\}\{b\}^{*} \cup\{c\}^{*}\{d\}\right)^{*}\{e\}$ becomes $\left(a b^{*}+c^{*} d\right)^{*} e$.
Given some regular expression, r, we use $\mathcal{L}(r)$ to represent the language it denotes.

RE (r)	Corresponding Language $(\mathcal{L}(r))$
$a+b c$	
$a(b+c)$	
$(a+b)(a+c)(\Lambda+a)$	
$a^{*}(b+c c)$	
$a+b b^{*}$	
$(a+b b)^{*}$	
$a^{*} b^{*}$	
$((a+b)(a+b))^{*}$	

Regular Expressions

We write \cup with + , and we remove set notation.
Example: $\left(\{a\}\{b\}^{*} \cup\{c\}^{*}\{d\}\right)^{*}\{e\}$ becomes $\left(a b^{*}+c^{*} d\right)^{*} e$.
Given some regular expression, r, we use $\mathcal{L}(r)$ to represent the language it denotes.

RE (r)	Corresponding Language $(\mathcal{L}(r))$
$a+b c$	$\{a, b c\}$
$a(b+c)$	
$(a+b)(a+c)(\Lambda+a)$	
$a^{*}(b+c c)$	
$a+b b^{*}$	
$(a+b b)^{*}$	
$a^{*} b^{*}$	
$((a+b)(a+b))^{*}$	

Regular Expressions

We write \cup with + , and we remove set notation.
Example: $\left(\{a\}\{b\}^{*} \cup\{c\}^{*}\{d\}\right)^{*}\{e\}$ becomes $\left(a b^{*}+c^{*} d\right)^{*} e$.
Given some regular expression, r, we use $\mathcal{L}(r)$ to represent the language it denotes.

RE (r)	Corresponding Language $(\mathcal{L}(r))$
$a+b c$	$\{a, b c\}$
$a(b+c)$	$\{a b, a c\}$
$(a+b)(a+c)(\Lambda+a)$	
$a^{*}(b+c c)$	
$a+b b^{*}$	
$(a+b b)^{*}$	
$a^{*} b^{*}$	
$((a+b)(a+b))^{*}$	

Regular Expressions

We write \cup with + , and we remove set notation.
Example: $\left(\{a\}\{b\}^{*} \cup\{c\}^{*}\{d\}\right)^{*}\{e\}$ becomes $\left(a b^{*}+c^{*} d\right)^{*} e$.
Given some regular expression, r, we use $\mathcal{L}(r)$ to represent the language it denotes.

RE (r)	Corresponding Language $(\mathcal{L}(r))$
$a+b c$	$\{a, b c\}$
$a(b+c)$	$\{a b, a c\}$
$(a+b)(a+c)(\Lambda+a)$	$\{a a, a c, b a, b c, a a a, a c a, b a a, b c a\}$
$a^{*}(b+c c)$	
$a+b b^{*}$	
$(a+b b)^{*}$	
$a^{*} b^{*}$	
$((a+b)(a+b))^{*}$	

Regular Expressions

We write \cup with + , and we remove set notation.
Example: $\left(\{a\}\{b\}^{*} \cup\{c\}^{*}\{d\}\right)^{*}\{e\}$ becomes $\left(a b^{*}+c^{*} d\right)^{*} e$.
Given some regular expression, r, we use $\mathcal{L}(r)$ to represent the language it denotes.

RE (r)	Corresponding Language $(\mathcal{L}(r))$
$a+b c$	$\{a, b c\}$
$a(b+c)$	$\{a b, a c\}$
$(a+b)(a+c)(\Lambda+a)$	$\{a a, a c, b a, b c, a a a, a c a, b a a, b c a\}$
$a^{*}(b+c c)$	$\{b, c c, a b, a c c, a a b, a a c c, a a a b, a a a c c, \ldots\}$
$a+b b^{*}$	
$(a+b b)^{*}$	
$a^{*} b^{*}$	
$((a+b)(a+b))^{*}$	

Regular Expressions

We write \cup with + , and we remove set notation.
Example: $\left(\{a\}\{b\}^{*} \cup\{c\}^{*}\{d\}\right)^{*}\{e\}$ becomes $\left(a b^{*}+c^{*} d\right)^{*} e$.
Given some regular expression, r, we use $\mathcal{L}(r)$ to represent the language it denotes.

RE (r)	Corresponding Language $(\mathcal{L}(r))$
$a+b c$	$\{a, b c\}$
$a(b+c)$	$\{a b, a c\}$
$(a+b)(a+c)(\Lambda+a)$	$\{a a, a c, b a, b c, a a a, a c a, b a a, b c a\}$
$a^{*}(b+c c)$	$\{b, c c, a b, a c c, a a b, a a c c, a a a b, a a a c c, \ldots\}$
$a+b b^{*}$	$\{a, b, b b, b b b, b b b b, \ldots\}$
$(a+b b)^{*}$	
$a^{*} b^{*}$	
$((a+b)(a+b))^{*}$	

Regular Expressions

We write \cup with + , and we remove set notation.
Example: $\left(\{a\}\{b\}^{*} \cup\{c\}^{*}\{d\}\right)^{*}\{e\}$ becomes $\left(a b^{*}+c^{*} d\right)^{*} e$.
Given some regular expression, r, we use $\mathcal{L}(r)$ to represent the language it denotes.

RE (r)	Corresponding Language $(\mathcal{L}(r))$
$a+b c$	$\{a, b c\}$
$a(b+c)$	$\{a b, a c\}$
$(a+b)(a+c)(\Lambda+a)$	$\{a a, a c, b a, b c, a a a, a c a, b a a, b c a\}$
$a^{*}(b+c c)$	$\{b, c c, a b, a c c, a a b, a a c c, a a a b, a a a c c, \ldots\}$
$a+b b^{*}$	$\{a, b, b b, b b b, b b b b, \ldots\}$
$(a+b b)^{*}$	$\{\Lambda, a, b b, a a, a b b, b b a, b b b b, a a a, \ldots\}$
$a^{*} b^{*}$	
$((a+b)(a+b))^{*}$	

Regular Expressions

We write \cup with + , and we remove set notation.
Example: $\left(\{a\}\{b\}^{*} \cup\{c\}^{*}\{d\}\right)^{*}\{e\}$ becomes $\left(a b^{*}+c^{*} d\right)^{*} e$.
Given some regular expression, r, we use $\mathcal{L}(r)$ to represent the language it denotes.

RE (r)	Corresponding Language $(\mathcal{L}(r))$
$a+b c$	$\{a, b c\}$
$a(b+c)$	$\{a b, a c\}$
$(a+b)(a+c)(\Lambda+a)$	$\{a a, a c, b a, b c, a a a, a c a, b a a, b c a\}$
$a^{*}(b+c c)$	$\{b, c c, a b, a c c, a a b, a a c c, a a a b, a a a c c, \ldots\}$
$a+b b^{*}$	$\{a, b, b b, b b b, b b b b, \ldots\}$
$(a+b b)^{*}$	$\{\Lambda, a, b b, a a, a b b, b b a, b b b b, a a a, \ldots\}$
$a^{*} b^{*}$	$\{\Lambda, a, b, a b, a a, b b, a a a, a a b, a b b, b b b, \ldots\}$
$((a+b)(a+b))^{*}$	

Regular Expressions

We write \cup with + , and we remove set notation.
Example: $\left(\{a\}\{b\}^{*} \cup\{c\}^{*}\{d\}\right)^{*}\{e\}$ becomes $\left(a b^{*}+c^{*} d\right)^{*} e$.
Given some regular expression, r, we use $\mathcal{L}(r)$ to represent the language it denotes.

RE (r)	Corresponding Language $(\mathcal{L}(r))$
$a+b c$	$\{a, b c\}$
$a(b+c)$	$\{a b, a c\}$
$(a+b)(a+c)(\Lambda+a)$	$\{a a, a c, b a, b c, a a a, a c a, b a a, b c a\}$
$a^{*}(b+c c)$	$\{b, c c, a b, a c c, a a b, a a c c, a a a b, a a a c c, \ldots\}$
$a+b b^{*}$	$\{a, b, b b, b b b, b b b b, \ldots\}$
$(a+b b)^{*}$	$\{\Lambda, a, b b, a a, a b b, b b a, b b b b, a a a, \ldots\}$
$a^{*} b^{*}$	$\{\Lambda, a, b, a b, a a, b b, a a a, a a b, a b b, b b b, \ldots\}$
$((a+b)(a+b))^{*}$	$\{x\|x \in\{a, b\} \wedge\| x \mid$ is even $\}$

Regular Expressions

We write \cup with + , and we remove set notation.
Example: $\left(\{a\}\{b\}^{*} \cup\{c\}^{*}\{d\}\right)^{*}\{e\}$ becomes $\left(a b^{*}+c^{*} d\right)^{*} e$.
Given some regular expression, r, we use $\mathcal{L}(r)$ to represent the language it denotes.

RE (r)	Corresponding Language $(\mathcal{L}(r))$
$a+b c$	$\{a, b c\}$
$a(b+c)$	$\{a b, a c\}$
$(a+b)(a+c)(\Lambda+a)$	$\{a a, a c, b a, b c, a a a, a c a, b a a, b c a\}$
$a^{*}(b+c c)$	$\{b, c c, a b, a c c, a a b, a a c c, a a a b, a a a c c, \ldots\}$
$a+b b^{*}$	$\{a, b, b b, b b b, b b b b, \ldots\}$
$(a+b b)^{*}$	$\{\Lambda, a, b b, a a, a b b, b b a, b b b b, a a a, \ldots\}$
$a^{*} b^{*}$	$\{\Lambda, a, b, a b, a a, b b, a a a, a a b, a b b, b b b, \ldots\}$
$((a+b)(a+b))^{*}$	$\{x\|x \in\{a, b\} \wedge\| x \mid$ is even $\}$

Some notational conveniences (that do not change the class of languages.):
Let r be a RE. $r^{0}=\Lambda$, and $\forall k \geq 0, r^{k+1}=r r^{k}$

Regular Expressions

We write \cup with + , and we remove set notation.
Example: $\left(\{a\}\{b\}^{*} \cup\{c\}^{*}\{d\}\right)^{*}\{e\}$ becomes $\left(a b^{*}+c^{*} d\right)^{*} e$.
Given some regular expression, r, we use $\mathcal{L}(r)$ to represent the language it denotes.

RE (r)	Corresponding Language $(\mathcal{L}(r))$
$a+b c$	$\{a, b c\}$
$a(b+c)$	$\{a b, a c\}$
$(a+b)(a+c)(\Lambda+a)$	$\{a a, a c, b a, b c, a a a, a c a, b a a, b c a\}$
$a^{*}(b+c c)$	$\{b, c c, a b, a c c, a a b, a a c c, a a a b, a a a c c, \ldots\}$
$a+b b^{*}$	$\{a, b, b b, b b b, b b b b, \ldots\}$
$(a+b b)^{*}$	$\{\Lambda, a, b b, a a, a b b, b b a, b b b b, a a a, \ldots\}$
$a^{*} b^{*}$	$\{\Lambda, a, b, a b, a a, b b, a a a, a a b, a b b, b b b, \ldots\}$
$((a+b)(a+b))^{*}$	$\{x\|x \in\{a, b\} \wedge\| x \mid$ is even $\}$

Some notational conveniences (that do not change the class of languages.):
Let r be a RE. $r^{0}=\Lambda$, and $\forall k \geq 0, r^{k+1}=r r^{k}$
$(a+b)^{k}$: all strings over $\{a, b\}$ of length exactly k

Regular Expressions

We write \cup with + , and we remove set notation.
Example: $\left(\{a\}\{b\}^{*} \cup\{c\}^{*}\{d\}\right)^{*}\{e\}$ becomes $\left(a b^{*}+c^{*} d\right)^{*} e$.
Given some regular expression, r, we use $\mathcal{L}(r)$ to represent the language it denotes.

RE (r)	Corresponding Language $(\mathcal{L}(r))$
$a+b c$	$\{a, b c\}$
$a(b+c)$	$\{a b, a c\}$
$(a+b)(a+c)(\Lambda+a)$	$\{a a, a c, b a, b c, a a a, a c a, b a a, b c a\}$
$a^{*}(b+c c)$	$\{b, c c, a b, a c c, a a b, a a c c, a a a b, a a a c c, \ldots\}$
$a+b b^{*}$	$\{a, b, b b, b b b, b b b b, \ldots\}$
$(a+b b)^{*}$	$\{\Lambda, a, b b, a a, a b b, b b a, b b b b, a a a, \ldots\}$
$a^{*} b^{*}$	$\{\Lambda, a, b, a b, a a, b b, a a a, a a b, a b b, b b b, \ldots\}$
$((a+b)(a+b))^{*}$	$\{x\|x \in\{a, b\} \wedge\| x \mid$ is even $\}$

Some notational conveniences (that do not change the class of languages.):
Let r be a RE. $r^{0}=\Lambda$, and $\forall k \geq 0, r^{k+1}=r r^{k}$
$(a+b)^{k}$: all strings over $\{a, b\}$ of length exactly k
$(a+b+\Lambda)^{k}$: all strings of length at most k.

Regular Expressions

We write \cup with + , and we remove set notation.
Example: $\left(\{a\}\{b\}^{*} \cup\{c\}^{*}\{d\}\right)^{*}\{e\}$ becomes $\left(a b^{*}+c^{*} d\right)^{*} e$.
Given some regular expression, r, we use $\mathcal{L}(r)$ to represent the language it denotes.

RE (r)	Corresponding Language $(\mathcal{L}(r))$
$a+b c$	$\{a, b c\}$
$a(b+c)$	$\{a b, a c\}$
$(a+b)(a+c)(\Lambda+a)$	$\{a a, a c, b a, b c, a a a, a c a, b a a, b c a\}$
$a^{*}(b+c c)$	$\{b, c c, a b, a c c, a a b, a a c c, a a a b, a a a c c, \ldots\}$
$a+b b^{*}$	$\{a, b, b b, b b b, b b b b, \ldots\}$
$(a+b b)^{*}$	$\{\Lambda, a, b b, a a, a b b, b b a, b b b b, a a a, \ldots\}$
$a^{*} b^{*}$	$\{\Lambda, a, b, a b, a a, b b, a a a, a a b, a b b, b b b, \ldots\}$
$((a+b)(a+b))^{*}$	$\{x\|x \in\{a, b\} \wedge\| x \mid$ is even $\}$

Some notational conveniences (that do not change the class of languages.):
Let r be a RE. $r^{0}=\Lambda$, and $\forall k \geq 0, r^{k+1}=r r^{k}$
$(a+b)^{k}$: all strings over $\{a, b\}$ of length exactly k
$(a+b+\Lambda)^{k}$: all strings of length at most k.
Positive closure: $r^{+}=r r^{*}$

Regular Expressions

We write \cup with + , and we remove set notation.
Example: $\left(\{a\}\{b\}^{*} \cup\{c\}^{*}\{d\}\right)^{*}\{e\}$ becomes $\left(a b^{*}+c^{*} d\right)^{*} e$.
Given some regular expression, r, we use $\mathcal{L}(r)$ to represent the language it denotes.

RE (r)	Corresponding Language $(\mathcal{L}(r))$
$a+b c$	$\{a, b c\}$
$a(b+c)$	$\{a b, a c\}$
$(a+b)(a+c)(\Lambda+a)$	$\{a a, a c, b a, b c, a a a, a c a, b a a, b c a\}$
$a^{*}(b+c c)$	$\{b, c c, a b, a c c, a a b, a a c c, a a a b, a a a c c, \ldots\}$
$a+b b^{*}$	$\{a, b, b b, b b b, b b b b, \ldots\}$
$(a+b b)^{*}$	$\{\Lambda, a, b b, a a, a b b, b b a, b b b b, a a a, \ldots\}$
$a^{*} b^{*}$	$\{\Lambda, a, b, a b, a a, b b, a a a, a a b, a b b, b b b, \ldots\}$
$((a+b)(a+b))^{*}$	$\{x\|x \in\{a, b\} \wedge\| x \mid$ is even $\}$

Some notational conveniences (that do not change the class of languages.):
Let r be a RE. $r^{0}=\Lambda$, and $\forall k \geq 0, r^{k+1}=r r^{k}$
$(a+b)^{k}$: all strings over $\{a, b\}$ of length exactly k
$(a+b+\Lambda)^{k}$: all strings of length at most k.
Positive closure: $r^{+}=r r^{*}$
(Alternatively, $r^{*}=\Lambda+r^{+}$)

