
RE from a RG

RG with Expressions (RGE)

A regular grammar with expressions, RGE, is (V,Σ, S, P ), as before, but we extend
the definition to include these two types of productions, A → Λ or A → rB, where r
is a regular expression over Σ. The latter is interpreted to mean that the variable A
can be replaced, in a derivation, by the string xB for any x ∈ L(r). Note r can be
just Λ, so we can have A → ΛB (which will not be written A → B, in order to
emphasize the presence of an RE). The definition of the language generated by an
RGE is unchanged from regular grammars.
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Example:
P = {S → aA,A → aB,A → aA

A → bB,B → aS, B → bB,
B → Λ}

P ′ = {S → aA,A → aB,A → aA
A → bB,B → aS, B → bB,
B → ΛH, S′ → ΛS,H → Λ}

After 2nd For Each:
P ′ = {S → aA,A → (a + b)B,

A → aA,B → aS, B → bB,
B → ΛH, S′ → ΛS,H → Λ}

Removing A from V
P ′ = {B → aS, B → bB,B → ΛH,

S′ → ΛS,H → Λ,
S → (aa∗(a + b))B}

Removing B from V
P ′ = {S′ → ΛS,H → Λ,

S → ((aa∗(a + b))b∗a)S
S → ((aa∗(a + b))b∗)H}

Removing S from V
S′ →
(((aa∗(a+b))b∗a)∗)((aa∗(a+b))b∗)H
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Claim: The loop invariant for the while loop is that the (currently modified) RGE has
a derivation for a string x if and only if the original grammar G has a derivation for x.

First, note that it holds when we arrive at the While loop.
After each execution of the While loop, the invariant holds.
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Deterministic Grammars

Consider the following grammar:
P = {S → aA,A → aB,A → bA, A → bB,B → aS, B → bB, B → Λ}

Generate: x = aabaab and y = aabaabb
S ⇒ aA ⇒ aaB ⇒ aabB ⇒ aabaS ⇒ aabaaA ⇒ aabaabB ⇒ aabaab

⇒ aabaabA ⇒ aabaabbB ⇒ aabaabb

There are choices to make!
(In this case, only 1 correct choice.)
This requires “looking ahead”. We call this non-determinism.

Deterministic Regular Grammars

A deterministic regular grammar G is a regular grammar that, for any a ∈ Σ and any
A,B,C ∈ V with B 6= C, G does not have a pair of productions, A → aB and
A → aC.

Lemma 8.4

If G is a regular grammar, then there exists a deterministic regular grammar G′ such
that L(G) = L(G′).
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