RG with Expressions (RGE)

A regular grammar with expressions, RGE, is (V, Σ, S, P) , as before, but we extend the definition to include these two types of productions, $A \to \Lambda$ or $A \to rB$, where ris a regular expression over Σ . The latter is interpreted to mean that the variable Acan be replaced, in a derivation, by the string xB for any $x \in \mathcal{L}(r)$. Note r can be just Λ , so we can have $A \to \Lambda B$ (which will not be written $A \to B$, in order to emphasize the presence of an RE). The definition of the language generated by an RGE is unchanged from regular grammars.

Algorithm 8.1

Constructing an RE from a regular grammar

Input: A regular grammar $G = (V, \Sigma, S, P)$. Output: A regular expression r over Σ , such that $\mathcal{L}(r) = \mathcal{L}(G)$.

Let V' be $V \cup \{S', H\}$, where S' is the new start variable Add $S' \to \Lambda S$ and $H \to \Lambda$ to P for each $A \to \Lambda \in P$ do Replace $A \to \Lambda$ by $A \to \Lambda H$ in P [Now $G' = (V', \Sigma, S', P)$ is the first RGE and $\mathcal{L}(G') = \mathcal{L}(G)$.] for each pair from P: $D \rightarrow r_1 E, D \rightarrow r_2 E$ do Replace the pair by $D \to (r_1 + r_2)E$ in P while $V \neq \emptyset$ do Remove some B from Vif no $B \rightarrow rB$ in P then Add $B \to \Lambda B$ to P for each triple from $P: A \to r_1B, B \to r_2B, B \to r_3C$ do Add $A \to (r_1(r_2)^*r_3)C$ to P for each pair from $P: D \to r_1 E, D \to r_2 E$ do Replace the pair by $D \to (r_1 + r_2)E$ in P Remove all productions using B from PThe only remaining productions are $S' \to rH$ and $H \to \Lambda$ return (r)

Algorithm 8.1

Constructing an RE from a regular grammar

Input: A regular grammar $G = (V, \Sigma, S, P)$. Output: A regular expression r over Σ , such that $\mathcal{L}(r) = \mathcal{L}(G)$.

Let V' be $V \cup \{S', H\}$, where S' is the new start variable Add $S' \to \Lambda S$ and $H \to \Lambda$ to P for each $A \to \Lambda \in P$ do Replace $A \to \Lambda$ by $A \to \Lambda H$ in P [Now $G' = (V', \Sigma, S', P)$ is the first RGE and $\mathcal{L}(G') = \mathcal{L}(G)$.] for each pair from P: $D \rightarrow r_1 E, D \rightarrow r_2 E$ do Replace the pair by $D \to (r_1 + r_2)E$ in P while $V \neq \emptyset$ do Remove some B from Vif no $B \rightarrow rB$ in P then Add $B \rightarrow AB$ to P for each triple from $P: A \to r_1B, B \to r_2B, B \to r_3C$ do Add $A \to (r_1(r_2)^*r_3)C$ to P for each pair from $P: D \to r_1 E, D \to r_2 E$ do Replace the pair by $D \to (r_1 + r_2)E$ in P Remove all productions using B from PThe only remaining productions are $S' \to rH$ and $H \to \Lambda$ return (r)

$\begin{array}{l} \mbox{Example:} \\ P = \{S \rightarrow aA, A \rightarrow aB, A \rightarrow aA \\ A \rightarrow bB, B \rightarrow aS, B \rightarrow bB, \\ B \rightarrow \Lambda \} \end{array}$

Algorithm 8.1

Constructing an RE from a regular grammar

Input: A regular grammar $G = (V, \Sigma, S, P)$. Output: A regular expression r over Σ , such that $\mathcal{L}(r) = \mathcal{L}(G)$.

Let V' be $V \cup \{S', H\}$, where S' is the new start variable Add $S' \to \Lambda S$ and $H \to \Lambda$ to P for each $A \to \Lambda \in P$ do Replace $A \to \Lambda$ by $A \to \Lambda H$ in P [Now $G' = (V', \Sigma, S', P)$ is the first RGE and $\mathcal{L}(G') = \mathcal{L}(G)$.] for each pair from P: $D \rightarrow r_1 E, D \rightarrow r_2 E$ do Replace the pair by $D \to (r_1 + r_2)E$ in P while $V \neq \emptyset$ do Remove some B from Vif no $B \rightarrow rB$ in P then Add $B \rightarrow AB$ to P for each triple from $P: A \to r_1B, B \to r_2B, B \to r_3C$ do Add $A \to (r_1(r_2)^*r_3)C$ to P for each pair from $P: D \to r_1 E, D \to r_2 E$ do Replace the pair by $D \to (r_1 + r_2)E$ in P Remove all productions using B from PThe only remaining productions are $S' \to rH$ and $H \to \Lambda$ return (r)

Example: $P = \{S \rightarrow aA, A \rightarrow aB, A \rightarrow aA$ $A \rightarrow bB, B \rightarrow aS, B \rightarrow bB,$ $B \rightarrow \Lambda\}$ $P' = \{S \rightarrow aA, A \rightarrow aB, A \rightarrow aA$ $A \rightarrow bB, B \rightarrow aS, B \rightarrow bB,$ $B \rightarrow \Lambda H, S' \rightarrow \Lambda S, H \rightarrow \Lambda\}$

Algorithm 8.1

Constructing an RE from a regular grammar

Input: A regular grammar $G = (V, \Sigma, S, P)$. Output: A regular expression r over Σ , such that $\mathcal{L}(r) = \mathcal{L}(G)$.

Let V' be $V \cup \{S', H\}$, where S' is the new start variable Add $S' \to \Lambda S$ and $H \to \Lambda$ to P for each $A \to \Lambda \in P$ do Replace $A \to \Lambda$ by $A \to \Lambda H$ in P [Now $G' = (V', \Sigma, S', P)$ is the first RGE and $\mathcal{L}(G') = \mathcal{L}(G)$.] for each pair from P: $D \rightarrow r_1 E, D \rightarrow r_2 E$ do Replace the pair by $D \to (r_1 + r_2)E$ in P while $V \neq \emptyset$ do Remove some B from Vif no $B \rightarrow rB$ in P then Add $B \rightarrow AB$ to P for each triple from $P: A \to r_1B, B \to r_2B, B \to r_3C$ do Add $A \to (r_1(r_2)^*r_3)C$ to P for each pair from $P: D \to r_1 E, D \to r_2 E$ do Replace the pair by $D \to (r_1 + r_2)E$ in P Remove all productions using B from PThe only remaining productions are $S' \to rH$ and $H \to \Lambda$ return (r)

 $\begin{array}{l} \mathsf{Example:}\\ P = \{S \rightarrow aA, A \rightarrow aB, A \rightarrow aA\\ A \rightarrow bB, B \rightarrow aS, B \rightarrow bB,\\ B \rightarrow \Lambda \}\\ P' = \{S \rightarrow aA, A \rightarrow aB, A \rightarrow aA\\ A \rightarrow bB, B \rightarrow aS, B \rightarrow bB,\\ B \rightarrow \Lambda H, S' \rightarrow \Lambda S, H \rightarrow \Lambda \}\\ \mathsf{After 2nd For Each:}\\ P' = \{S \rightarrow aA, A \rightarrow (a + b)B,\\ A \rightarrow aA, B \rightarrow aS, B \rightarrow bB,\\ B \rightarrow \Lambda H, S' \rightarrow \Lambda S, H \rightarrow \Lambda \}\end{array}$

Algorithm 8.1

Constructing an RE from a regular grammar

Input: A regular grammar $G = (V, \Sigma, S, P)$. Output: A regular expression r over Σ , such that $\mathcal{L}(r) = \mathcal{L}(G)$.

Let V' be $V \cup \{S', H\}$, where S' is the new start variable Add $S' \to \Lambda S$ and $H \to \Lambda$ to P for each $A \to \Lambda \in P$ do Replace $A \to \Lambda$ by $A \to \Lambda H$ in P [Now $G' = (V', \Sigma, S', P)$ is the first RGE and $\mathcal{L}(G') = \mathcal{L}(G)$.] for each pair from P: $D \rightarrow r_1 E, D \rightarrow r_2 E$ do Replace the pair by $D \to (r_1 + r_2)E$ in P while $V \neq \emptyset$ do Remove some B from Vif no $B \rightarrow rB$ in P then Add $B \rightarrow AB$ to P for each triple from $P: A \to r_1B, B \to r_2B, B \to r_3C$ do Add $A \to (r_1(r_2)^*r_3)C$ to P for each pair from $P: D \to r_1 E, D \to r_2 E$ do Replace the pair by $D \to (r_1 + r_2)E$ in P Remove all productions using B from PThe only remaining productions are $S' \to rH$ and $H \to \Lambda$ return (r)

$$\begin{split} \text{Example:} & P = \{S \rightarrow aA, A \rightarrow aB, A \rightarrow aA, A \rightarrow bB, B \rightarrow aS, B \rightarrow bB, B \rightarrow aS, B \rightarrow bB, B \rightarrow A \} \\ P' = \{S \rightarrow aA, A \rightarrow aB, A \rightarrow aA, A \rightarrow bB, B \rightarrow aS, B \rightarrow bB, B \rightarrow AH, S' \rightarrow AS, H \rightarrow A \} \\ \text{After 2nd For Each:} & P' = \{S \rightarrow aA, A \rightarrow (a + b)B, A \rightarrow aA, B \rightarrow aS, B \rightarrow bB, B \rightarrow AH, S' \rightarrow AS, H \rightarrow A \} \\ \end{split}$$

Removing A from V

Algorithm 8.1

Constructing an RE from a regular grammar

Input: A regular grammar $G = (V, \Sigma, S, P)$. Output: A regular expression r over Σ , such that $\mathcal{L}(r) = \mathcal{L}(G)$.

Let V' be $V \cup \{S', H\}$, where S' is the new start variable Add $S' \to \Lambda S$ and $H \to \Lambda$ to P for each $A \to \Lambda \in P$ do Replace $A \to \Lambda$ by $A \to \Lambda H$ in P [Now $G' = (V', \Sigma, S', P)$ is the first RGE and $\mathcal{L}(G') = \mathcal{L}(G)$.] for each pair from P: $D \rightarrow r_1 E, D \rightarrow r_2 E$ do Replace the pair by $D \to (r_1 + r_2)E$ in P while $V \neq \emptyset$ do Remove some B from Vif no $B \rightarrow rB$ in P then Add $B \rightarrow AB$ to P for each triple from $P: A \to r_1B, B \to r_2B, B \to r_3C$ do Add $A \to (r_1(r_2)^*r_3)C$ to P for each pair from $P: D \to r_1 E, D \to r_2 E$ do Replace the pair by $D \to (r_1 + r_2)E$ in P Remove all productions using B from PThe only remaining productions are $S' \to rH$ and $H \to \Lambda$ return (r)

Example: $P = \{S \rightarrow aA, A \rightarrow aB, A \rightarrow aA\}$ $A \rightarrow bB, B \rightarrow aS, B \rightarrow bB,$ $B \to \Lambda$ $P' = \{S \to aA, A \to aB, A \to aA\}$ $A \rightarrow bB, B \rightarrow aS, B \rightarrow bB,$ $B \to \Lambda H, S' \to \Lambda S, H \to \Lambda$ After 2nd For Each $P' = \{S \rightarrow aA, A \rightarrow (a+b)B,$ $A \rightarrow aA \ B \rightarrow aS \ B \rightarrow bB$ $B \to \Lambda H, S' \to \Lambda S, H \to \Lambda$ Removing A from VTriple: $S \rightarrow aA, A \rightarrow aA, A \rightarrow (a+b)B$ Produces: $S \rightarrow (aa^*(a+b))B$ $P' = \{B \to aS, B \to bB, B \to \Lambda H, \}$ $\tilde{S}' \to \Lambda S, H \to \Lambda$ $S \rightarrow (aa^*(a+b))B$

Algorithm 8.1

Constructing an RE from a regular grammar

Input: A regular grammar $G = (V, \Sigma, S, P)$. Output: A regular expression r over Σ , such that $\mathcal{L}(r) = \mathcal{L}(G)$.

Let V' be $V \cup \{S', H\}$, where S' is the new start variable Add $S' \to \Lambda S$ and $H \to \Lambda$ to P for each $A \to \Lambda \in P$ do Replace $A \to \Lambda$ by $A \to \Lambda H$ in P [Now $G' = (V', \Sigma, S', P)$ is the first RGE and $\mathcal{L}(G') = \mathcal{L}(G)$.] for each pair from P: $D \rightarrow r_1 E, D \rightarrow r_2 E$ do Replace the pair by $D \to (r_1 + r_2)E$ in P while $V \neq \emptyset$ do Remove some B from Vif no $B \rightarrow rB$ in P then Add $B \rightarrow AB$ to P for each triple from $P: A \to r_1B, B \to r_2B, B \to r_3C$ do Add $A \to (r_1(r_2)^*r_3)C$ to P for each pair from $P: D \to r_1 E, D \to r_2 E$ do Replace the pair by $D \to (r_1 + r_2)E$ in P Remove all productions using B from PThe only remaining productions are $S' \to rH$ and $H \to \Lambda$ return (r)

 $\begin{array}{l} \mbox{Example:}\\ P = \{S \rightarrow aA, A \rightarrow aB, A \rightarrow aA, A \rightarrow bB, B \rightarrow aS, B \rightarrow bB, B \rightarrow A\} \\ P' = \{S \rightarrow aA, A \rightarrow aB, A \rightarrow aA, A \rightarrow bB, B \rightarrow aS, B \rightarrow bB, B \rightarrow AH, S' \rightarrow \Lambda S, H \rightarrow \Lambda\} \\ \mbox{After 2nd For Each:}\\ P' = \{S \rightarrow aA, A \rightarrow (a + b)B, A \rightarrow aA, A \rightarrow (a + b)B, B \rightarrow AH, S' \rightarrow \Lambda S, H \rightarrow \Lambda\} \\ \mbox{Removing A from } V \\ P' = \{B \rightarrow aS, B \rightarrow bB, B \rightarrow \Lambda H, S' \rightarrow \Lambda S, H \rightarrow \Lambda, S' \rightarrow (aa^*(a + b))B\} \end{array}$

Removing B from V

Algorithm 8.1

Constructing an RE from a regular grammar

Input: A regular grammar $G = (V, \Sigma, S, P)$. Output: A regular expression r over Σ , such that $\mathcal{L}(r) = \mathcal{L}(G)$.

Let V' be $V \cup \{S', H\}$, where S' is the new start variable Add $S' \to \Lambda S$ and $H \to \Lambda$ to P for each $A \to \Lambda \in P$ do Replace $A \to \Lambda$ by $A \to \Lambda H$ in P [Now $G' = (V', \Sigma, S', P)$ is the first RGE and $\mathcal{L}(G') = \mathcal{L}(G)$.] for each pair from P: $D \rightarrow r_1 E, D \rightarrow r_2 E$ do Replace the pair by $D \to (r_1 + r_2)E$ in P while $V \neq \emptyset$ do Remove some B from Vif no $B \rightarrow rB$ in P then Add $B \rightarrow AB$ to P for each triple from $P: A \to r_1B, B \to r_2B, B \to r_3C$ do Add $A \to (r_1(r_2)^*r_3)C$ to P for each pair from $P: D \to r_1 E, D \to r_2 E$ do Replace the pair by $D \to (r_1 + r_2)E$ in P Remove all productions using B from PThe only remaining productions are $S' \to rH$ and $H \to \Lambda$ return (r)

Example: $P = \{S \rightarrow aA, A \rightarrow aB, A \rightarrow aA\}$ $A \rightarrow bB, B \rightarrow aS, B \rightarrow bB,$ $B \to \Lambda$ $P' = \{S \to aA, A \to aB, A \to aA\}$ $A \rightarrow bB, B \rightarrow aS, B \rightarrow bB,$ $B \to \Lambda H, S' \to \Lambda S, H \to \Lambda$ After 2nd For Each $P' = \{S \rightarrow aA, A \rightarrow (a+b)B,$ $A \rightarrow aA \ B \rightarrow aS \ B \rightarrow bB$ $B \to \Lambda H, S' \to \Lambda S, H \to \Lambda$ Removing A from V $P' = \{ B \to aS, B \to bB, B \to \Lambda H, \}$ $\hat{S}' \to \Lambda S, H \to \Lambda.$ $S \rightarrow (aa^*(a+b))B$ Removing B from VTriple: $S \rightarrow (aa^*(a+b))B, B \rightarrow bB, B \rightarrow aS$ Produces: $S \rightarrow ((aa^*(a+b))b^*a)S$

Algorithm 8.1

Constructing an RE from a regular grammar

Input: A regular grammar $G = (V, \Sigma, S, P)$. Output: A regular expression r over Σ , such that $\mathcal{L}(r) = \mathcal{L}(G)$.

Let V' be $V \cup \{S', H\}$, where S' is the new start variable Add $S' \to \Lambda S$ and $H \to \Lambda$ to P for each $A \to \Lambda \in P$ do Replace $A \to \Lambda$ by $A \to \Lambda H$ in P [Now $G' = (V', \Sigma, S', P)$ is the first RGE and $\mathcal{L}(G') = \mathcal{L}(G)$.] for each pair from P: $D \rightarrow r_1 E, D \rightarrow r_2 E$ do Replace the pair by $D \to (r_1 + r_2)E$ in P while $V \neq \emptyset$ do Remove some B from Vif no $B \rightarrow rB$ in P then Add $B \rightarrow AB$ to P for each triple from $P: A \to r_1B, B \to r_2B, B \to r_3C$ do Add $A \to (r_1(r_2)^*r_3)C$ to P for each pair from $P: D \to r_1 E, D \to r_2 E$ do Replace the pair by $D \to (r_1 + r_2)E$ in P Remove all productions using B from PThe only remaining productions are $S' \to rH$ and $H \to \Lambda$ return (r)

Example: $P = \{S \rightarrow aA, A \rightarrow aB, A \rightarrow aA\}$ $A \rightarrow bB, B \rightarrow aS, B \rightarrow bB,$ $B \to \Lambda$ $P' = \{S \to aA, A \to aB, A \to aA\}$ $A \rightarrow bB, B \rightarrow aS, B \rightarrow bB,$ $B \to \Lambda H, S' \to \Lambda S, H \to \Lambda$ After 2nd For Each $P' = \{S \rightarrow aA, A \rightarrow (a+b)B,$ $A \rightarrow aA \ B \rightarrow aS \ B \rightarrow bB$ $B \to \Lambda H, S' \to \Lambda S, H \to \Lambda$ Removing A from V $P' = \{ B \to aS, B \to bB, B \to \Lambda H, \}$ $\hat{S}' \to \Lambda S, H \to \Lambda.$ $S \rightarrow (aa^*(a+b))B$ Removing B from VTriple: $S \rightarrow (aa^*(a+b))B, B \rightarrow bB, B \rightarrow aS$ Produces: $S \rightarrow ((aa^*(a+b))b^*a)S$ Triple: $S \rightarrow (aa^*(a+b))B, B \rightarrow$ $bB, B \rightarrow \Lambda H$ Produces: $S \rightarrow ((aa^*(a+b))b^*)H$

Algorithm 8.1

Constructing an RE from a regular grammar

Input: A regular grammar $G = (V, \Sigma, S, P)$. Output: A regular expression r over Σ , such that $\mathcal{L}(r) = \mathcal{L}(G)$.

Let V' be $V \cup \{S', H\}$, where S' is the new start variable Add $S' \to \Lambda S$ and $H \to \Lambda$ to P for each $A \to \Lambda \in P$ do Replace $A \to \Lambda$ by $A \to \Lambda H$ in P [Now $G' = (V', \Sigma, S', P)$ is the first RGE and $\mathcal{L}(G') = \mathcal{L}(G)$.] for each pair from P: $D \rightarrow r_1 E, D \rightarrow r_2 E$ do Replace the pair by $D \to (r_1 + r_2)E$ in P while $V \neq \emptyset$ do Remove some B from Vif no $B \rightarrow rB$ in P then Add $B \rightarrow AB$ to P for each triple from $P: A \to r_1B, B \to r_2B, B \to r_3C$ do Add $A \to (r_1(r_2)^*r_3)C$ to P for each pair from $P: D \to r_1 E, D \to r_2 E$ do Replace the pair by $D \to (r_1 + r_2)E$ in P Remove all productions using B from PThe only remaining productions are $S' \to rH$ and $H \to \Lambda$ return (r)

Example: $P = \{S \rightarrow aA, A \rightarrow aB, A \rightarrow aA\}$ $A \rightarrow bB, B \rightarrow aS, B \rightarrow bB,$ $B \to \Lambda$ $P' = \{S \to aA, A \to aB, A \to aA\}$ $A \rightarrow bB, B \rightarrow aS, B \rightarrow bB,$ $B \to \Lambda H, S' \to \Lambda S, H \to \Lambda$ After 2nd For Each $P' = \{S \rightarrow aA, A \rightarrow (a+b)B,$ $A \rightarrow aA \ B \rightarrow aS \ B \rightarrow bB$ $B \to \Lambda H, S' \to \Lambda S, H \to \Lambda$ Removing A from V $P' = \{ B \to aS, B \to bB, B \to \Lambda H, \}$ $\hat{S}' \to \Lambda S, H \to \Lambda.$ $S \rightarrow (aa^*(a+b))B$ Removing B from V $P' = \{ \widetilde{S'} \to \Lambda S, H \to \Lambda \}$ $\hat{S} \rightarrow ((aa^*(a+b))b^*a)S$ $S \rightarrow ((aa^*(a+b))b^*)H$

・ロト・日本・日本・日本・日本・日本

Algorithm 8.1

Constructing an RE from a regular grammar

Input: A regular grammar $G = (V, \Sigma, S, P)$. Output: A regular expression r over Σ , such that $\mathcal{L}(r) = \mathcal{L}(G)$.

Let V' be $V \cup \{S', H\}$, where S' is the new start variable Add $S' \to \Lambda S$ and $H \to \Lambda$ to P for each $A \to \Lambda \in P$ do Replace $A \to \Lambda$ by $A \to \Lambda H$ in P [Now $G' = (V', \Sigma, S', P)$ is the first RGE and $\mathcal{L}(G') = \mathcal{L}(G)$.] for each pair from P: $D \rightarrow r_1 E, D \rightarrow r_2 E$ do Replace the pair by $D \to (r_1 + r_2)E$ in P while $V \neq \emptyset$ do Remove some B from Vif no $B \rightarrow rB$ in P then Add $B \rightarrow AB$ to P for each triple from $P: A \to r_1B, B \to r_2B, B \to r_3C$ do Add $A \to (r_1(r_2)^*r_3)C$ to P for each pair from $P: D \to r_1 E, D \to r_2 E$ do Replace the pair by $D \to (r_1 + r_2)E$ in P Remove all productions using B from PThe only remaining productions are $S' \to rH$ and $H \to \Lambda$ return (r)

Example: $P = \{S \rightarrow aA, A \rightarrow aB, A \rightarrow aA\}$ $A \rightarrow bB, B \rightarrow aS, B \rightarrow bB,$ $B \to \Lambda$ $P' = \{S \to aA, A \to aB, A \to aA\}$ $A \rightarrow bB, B \rightarrow aS, B \rightarrow bB,$ $B \to \Lambda H, S' \to \Lambda S, H \to \Lambda$ After 2nd For Each $P' = \{S \rightarrow aA, A \rightarrow (a+b)B,$ $A \rightarrow aA \ B \rightarrow aS \ B \rightarrow bB$ $B \to \Lambda H, S' \to \Lambda S, H \to \Lambda$ Removing A from V $P' = \{ B \to aS, B \to bB, B \to \Lambda H, \}$ $\hat{S}' \to \Lambda S, H \to \Lambda.$ $S \rightarrow (aa^*(a+b))B$ Removing B from V $P' = \{\bar{S'} \to \Lambda S, H \to \Lambda, \}$ $\hat{S} \rightarrow ((aa^*(a+b))b^*a)S$ $S \rightarrow ((aa^*(a+b))b^*)H$ Removing S from V $S' \rightarrow$ $(((aa^{*}(a+b))b^{*}a)^{*})((aa^{*}(a+b))b^{*})H$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ○臣 - の々ぐ

Algorithm 8.1

Constructing an RE from a regular grammar Input: A regular grammar $G = (V, \Sigma, S, P)$. Output: A regular expression r over Σ , such that $\mathcal{L}(r) = \mathcal{L}(G)$.

Let V' be $V \cup \{S', H\}$, where S' is the new start variable Add $S' \to \Lambda S$ and $H \to \Lambda$ to P for each $A \to \Lambda \in P$ do Replace $A \to \Lambda$ by $A \to \Lambda H$ in P [Now $G' = (V', \Sigma, S', P)$ is the first RGE and $\mathcal{L}(G') = \mathcal{L}(G)$.] for each pair from $P: D \to r_1 E, D \to r_2 E$ do Replace the pair by $D \to (r_1 + r_2)E$ in P while $V \neq \emptyset$ do Remove some B from Vif no $B \rightarrow rB$ in P then Add $B \rightarrow \Lambda B$ to P for each triple from P: $A \to r_1 B, B \to r_2 B, B \to r_3 C$ do Add $A \to (r_1(r_2)^* r_3)C$ to P for each pair from $P: D \to r_1 E, D \to r_2 E$ do Replace the pair by $D \rightarrow (r_1 + r_2)E$ in P Remove all productions using B from PThe only remaining productions are $S' \to rH$ and $H \to \Lambda$ return (r)

Claim: The loop invariant for the while loop is that the (currently modified) RGE has a derivation for a string x if and only if the original grammar G has a derivation for x.

Algorithm 8.1

Constructing an RE from a regular grammar Input: A regular grammar $G = (V, \Sigma, S, P)$. Output: A regular expression r over Σ , such that $\mathcal{L}(r) = \mathcal{L}(G)$.

Let V' be $V \cup \{S', H\}$, where S' is the new start variable Add $S' \to \Lambda S$ and $H \to \Lambda$ to P for each $A \to \Lambda \in P$ do Replace $A \to \Lambda$ by $A \to \Lambda H$ in P [Now $G' = (V', \Sigma, S', P)$ is the first RGE and $\mathcal{L}(G') = \mathcal{L}(G)$.] for each pair from $P: D \to r_1 E, D \to r_2 E$ do Replace the pair by $D \to (r_1 + r_2)E$ in P while $V \neq \emptyset$ do Remove some B from Vif no $B \rightarrow rB$ in P then Add $B \rightarrow \Lambda B$ to P for each triple from P: $A \to r_1 B, B \to r_2 B, B \to r_3 C$ do Add $A \to (r_1(r_2)^* r_3)C$ to P for each pair from $P: D \to r_1 E, D \to r_2 E$ do Replace the pair by $D \rightarrow (r_1 + r_2)E$ in P Remove all productions using B from PThe only remaining productions are $S' \to rH$ and $H \to \Lambda$ return (r)

Claim: The loop invariant for the while loop is that the (currently modified) RGE has a derivation for a string x if and only if the original grammar G has a derivation for x. First, note that it holds when we arrive at the While loop.

Algorithm 8.1

Constructing an RE from a regular grammar Input: A regular grammar $G = (V, \Sigma, S, P)$. Output: A regular expression r over Σ , such that $\mathcal{L}(r) = \mathcal{L}(G)$.

Let V' be $V \cup \{S', H\}$, where S' is the new start variable Add $S' \to \Lambda S$ and $H \to \Lambda$ to P for each $A \to \Lambda \in P$ do Replace $A \to \Lambda$ by $A \to \Lambda H$ in P [Now $G' = (V', \Sigma, S', P)$ is the first RGE and $\mathcal{L}(G') = \mathcal{L}(G)$.] for each pair from $P: D \to r_1 E, D \to r_2 E$ do Replace the pair by $D \to (r_1 + r_2)E$ in P while $V \neq \emptyset$ do Remove some B from Vif no $B \rightarrow rB$ in P then Add $B \rightarrow \Lambda B$ to P for each triple from $P: A \to r_1B, B \to r_2B, B \to r_3C$ do Add $A \to (r_1(r_2)^* r_3)C$ to P for each pair from $P: D \to r_1 E, D \to r_2 E$ do Replace the pair by $D \rightarrow (r_1 + r_2)E$ in P Remove all productions using B from PThe only remaining productions are $S' \to rH$ and $H \to \Lambda$ return (r)

Claim: The loop invariant for the while loop is that the (currently modified) RGE has a derivation for a string x if and only if the original grammar G has a derivation for x. First, note that it holds when we arrive at the While loop. After each execution of the While loop, the invariant holds.

Consider the following grammar:

 $P = \{S \to aA, A \to aB, A \to bA, A \to bB, B \to aS, B \to bB, B \to \Lambda\}$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへで

Consider the following grammar:

 $P = \{ S \to aA, A \to aB, A \to bA, A \to bB, B \to aS, B \to bB, B \to \Lambda \}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Generate: x = aabaab and y = aabaabb

 $\begin{array}{l} \mbox{Consider the following grammar:} \\ P=\{S\rightarrow aA,A\rightarrow aB,A\rightarrow bA,\,A\rightarrow bB,B\rightarrow aS,\,B\rightarrow bB,\,B\rightarrow\Lambda\} \end{array}$

Generate: x = aabaab and y = aabaabb $S \Rightarrow aA$

Consider the following grammar: $P = \{S \rightarrow aA, A \rightarrow aB, A \rightarrow bA, A \rightarrow bB, B \rightarrow aS, B \rightarrow bB, B \rightarrow \Lambda\}$

Consider the following grammar: $P = \{S \rightarrow aA, A \rightarrow aB, A \rightarrow bA, A \rightarrow bB, B \rightarrow aS, B \rightarrow bB, B \rightarrow \Lambda\}$

 $\begin{array}{l} \mbox{Generate:} \ x = aabaab \ \mbox{and} \ y = aabaabb \\ S \Rightarrow aA \Rightarrow aaB \Rightarrow aabB \end{array}$

Consider the following grammar: $P = \{S \rightarrow aA, A \rightarrow aB, A \rightarrow bA, A \rightarrow bB, B \rightarrow aS, B \rightarrow bB, B \rightarrow \Lambda\}$

Generate: x = aabaab and y = aabaabb $S \Rightarrow aA \Rightarrow aaB \Rightarrow aabB \Rightarrow aabaS$

Consider the following grammar: $P = \{S \rightarrow aA, A \rightarrow aB, A \rightarrow bA, A \rightarrow bB, B \rightarrow aS, B \rightarrow bB, B \rightarrow \Lambda\}$

Generate: x = aabaab and y = aabaabb $S \Rightarrow aA \Rightarrow aaB \Rightarrow aabB \Rightarrow aabaaS \Rightarrow aabaaA$

Consider the following grammar: $P = \{S \rightarrow aA, A \rightarrow aB, A \rightarrow bA, A \rightarrow bB, B \rightarrow aS, B \rightarrow bB, B \rightarrow \Lambda\}$

Generate: x = aabaab and y = aabaabb $S \Rightarrow aA \Rightarrow aaB \Rightarrow aabB \Rightarrow aabaS \Rightarrow aabaaA \Rightarrow aabaabB \Rightarrow aabaab$

Consider the following grammar: $P = \{S \rightarrow aA, A \rightarrow aB, A \rightarrow bA, A \rightarrow bB, B \rightarrow aS, B \rightarrow bB, B \rightarrow \Lambda\}$

Consider the following grammar: $P = \{S \rightarrow aA, A \rightarrow aB, A \rightarrow bA, A \rightarrow bB, B \rightarrow aS, B \rightarrow bB, B \rightarrow \Lambda\}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

There are choices to make!

Consider the following grammar: $P = \{S \rightarrow aA, A \rightarrow aB, A \rightarrow bA, A \rightarrow bB, B \rightarrow aS, B \rightarrow bB, B \rightarrow \Lambda\}$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

There are choices to make! (In this case, only 1 correct choice.)

Consider the following grammar: $P = \{S \rightarrow aA, A \rightarrow aB, A \rightarrow bA, A \rightarrow bB, B \rightarrow aS, B \rightarrow bB, B \rightarrow \Lambda\}$

Generate: x = aabaab and y = aabaabb $S \Rightarrow aA \Rightarrow aaB \Rightarrow aabB \Rightarrow aabaaS \Rightarrow aabaaA \Rightarrow aabaabB \Rightarrow aabaab$ $\Rightarrow aabaabA \Rightarrow aabaabbB \Rightarrow aabaabb$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

There are choices to make! (In this case, only 1 correct choice.) This requires "looking ahead". We call this non-determinism.

Consider the following grammar: $P = \{S \rightarrow aA, A \rightarrow aB, A \rightarrow bA, A \rightarrow bB, B \rightarrow aS, B \rightarrow bB, B \rightarrow \Lambda\}$

Generate: x = aabaab and y = aabaabb $S \Rightarrow aA \Rightarrow aaB \Rightarrow aabB \Rightarrow aabaS \Rightarrow aabaaA \Rightarrow aabaabB \Rightarrow aabaab$ $\Rightarrow aabaabA \Rightarrow aabaabbB \Rightarrow aabaabb$

There are choices to make! (In this case, only 1 correct choice.) This requires "looking ahead". We call this non-determinism.

Deterministic Regular Grammars

A deterministic regular grammar G is a regular grammar that, for any $a \in \Sigma$ and any $A, B, C \in V$ with $B \neq C$, G does not have a pair of productions, $A \rightarrow aB$ and $A \rightarrow aC$.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Consider the following grammar: $P = \{S \rightarrow aA, A \rightarrow aB, A \rightarrow bA, A \rightarrow bB, B \rightarrow aS, B \rightarrow bB, B \rightarrow \Lambda\}$

Generate: x = aabaab and y = aabaabb $S \Rightarrow aA \Rightarrow aaB \Rightarrow aabB \Rightarrow aabaS \Rightarrow aabaaA \Rightarrow aabaabB \Rightarrow aabaab$ $\Rightarrow aabaabA \Rightarrow aabaabbB \Rightarrow aabaabb$

There are choices to make! (In this case, only 1 correct choice.) This requires "looking ahead". We call this non-determinism.

Deterministic Regular Grammars

A deterministic regular grammar G is a regular grammar that, for any $a \in \Sigma$ and any $A, B, C \in V$ with $B \neq C$, G does not have a pair of productions, $A \rightarrow aB$ and $A \rightarrow aC$.

Lemma 8.4

If G is a regular grammar, then there exists a deterministic regular grammar G' such that $\mathcal{L}(G) = \mathcal{L}(G')$.