
ISA 562: Information Security, Theory and Practice

Lecture 2

1 Achieving IND-CPA security

1.1 Pseudorandom numbers, and stateful encryption

As we saw last time, the OTP is perfectly secure, but it forces us to generate and share a key that’s
as large as all of the plaintext we’ll ever encrypt with it. This is a big drawback. One simple fix to
this problem is to use a pseudorandom number generator (PRG). A PRG takes a short, uniformly
sampled seed, and expands it into an arbitrarily large pseudorandom string. What do we mean by
pseudorandom? Suppose that our PRG takes random seeds of length ` and expands them to be of
length n � `. Since there are only 2` possible inputs to this PRG, there are at most 2` possible
outputs. So, even though the output is a string of length n, and there are 2n possible strings of
length n, only 2` � 2n of these n-bit strings can possibly be in the range of the PRG. We haven’t
added any entropy. But if we are using a secure PRG, then we can prove that no polynomial-
time machine can distinguish whether they’ve been given a pseudorandom string (resulting from
choosing a random ` bit string and running it through the PRG), or a truly random string, chosen
uniformly from {0, 1}n.

A very natural idea for encryption then follows. If two parties share a random seed of length `,
they can expand this as much as they’d like, and use a fresh portion of the pseudorandom string for
each encryption. The only major drawback is that they have to keep track of which portions they’ve
used so far, and which ones can still be used. (Remember, reusing the same OTP is completely
insecure!) So, this gives us a stateful encryption scheme. This isn’t ideal, but it can work in some
settings. It also gives some intuition for what comes next.

1.2 Random Functions

Recall that a function F : {0, 1}n → {0, 1}n maps every n-bit input to some n-bit output. Imagine
for the moment that both parties can afford to store the description of such a function F : {0, 1}n →
{0, 1}n, chosen uniformly at random from the set of all such functions. What would this keyspace
look like? To help picture it, we can fix a particular way of representing such a function. We will
do this with an array of size 2n, using each slot of the array to store one of the function’s output
values. We order these outputs according to the ordering of the input: if F (0) = y0, then we store
y0 in the first slot of the array; if F (1) = y1, we store y1in the 2nd slot of the array; if F (i) = yi,
we store yi in the ith slot of the array. Fixing all of the bits of this array gives us the description of
a single function that maps n input bits to n output bits. If we chose all of the bits of this array at
random, this gives us a method for randomly choosing one such function. How many such functions
are there? That is, if we view this as our keyspace, how large is the space? Since each output value
is n bits, and we have to specify 2n output values, the description of a function (using the above
representation) requires n2n bits. Note that changing just a single bit in this representation gives
us a different function. That is, every unique string of length n2n can be viewed as describing a
different function. There are 2n2

n
strings of length n2n, so this is exactly how many functions there

are mapping n-bit inputs to n-bit outputs.

2-1

We turn now to using random functions for encryption. For the moment, we’ll focus again
on fixed length messages. Specifically, we’ll assume that the message space, and ciphertext space
are both {0, 1}n. As per the conversation above, we let the key space be the set of all functions
mapping n bit inputs to n bit outputs. Formally, K = {F | F : {0, 1}n → {0, 1}n}. As we just
discussed, the size of this key is prohibitively large, so this does not resolve the issue we had with
using the one time pad construction. But it provides a good starting point for doing that. We
claim the following encryption scheme satisfies IND-CPA security.

Gen(1n): output the description of a randomly chosen function, F : {0, 1}n → {0, 1}n.
Enc(F,m): Sample a random value r ← {0, 1}n. Let c = F (r)⊕m. Output (c, r).
Dec(F, (c, r)): Output m = c⊕ F (r).

An important property of this encryption scheme is that it is not deterministic: if we encrypt
the same message twice, we will choose two different values of r in each encryption (except with
probability 2−n), so the two resulting ciphertexts will look different from one another. As we
mentioned last time, this is an essential property for any encryption scheme that meets the IND-
CPA security definition. We won’t prove in this class that this construction meets that definition,
but the intuition stems from the proof that the OTP is secure: for large enough values of n, we are
all but guaranteed that we’ll never re-use the same value of r in multiple encryptions. Since F is
a randomly chosen function, the adversary cannot know anything about F (r), so it is a perfectly
good OTP.

1.3 Pseudorandom functions

As we’ve already discussed, representing a truly random function would require far too much storage
(and therefore runtime) for a reasonable encryption scheme. However, note that some functions can
be represented much more simply. For example, F (x) = 2x is a very simple function to store and
evaluate. So it is only our insistence on supporting the full set of all possible functions on n-bits
that is causing problems for us. We will instead introduce the idea of pseudorandom functions.
This is a subset of the functions mapping n-bits to n-bits, with two properties: 1) the functions can
be concisely represented, and 2) when a function is randomly chosen from this subset, the output
is indistinguishable from random by any polynomial-time machine.

It’s not obvious that pseudorandom functions (PRFs) even exist, but one of the big break-
throughs of modern cryptography is a proof that, as long as certain computational problems are
hard, then PRFs do exist.1 In practice, we instead build them heuristically, and they are commonly
called block ciphers. The most well known are DES (Data Encryption Standard) and the newer
AES (Advanced Encryption Standard). These block ciphers are single, publicly known algorithms,
and the concise description of each function is simply encoded in an n-bit key. We therefore might
write a particular function from the set as Fk : {0, 1}n → {0, 1}n, with each possible value of k
giving us a different function from the set. Since there are 2n possible values for k, note that this
set of functions is much smaller than the set of all 2n2

n
functions; nevertheless, if n is 256, this

is still extremely large, and it is quite plausible to think that using a random function from this
smaller set is indistinguishable from using a truly random function. Since the block cipher is a
public algorithm, and only the key changes how the input is “scrambled”, it is common to write

1As always, an example of such a problem is the factoring problem, but there are many others that suffice as well.

2-2

Fk(r) as F (k, r), treating F (e.g. AES) as a single, fixed function that maps a pair of n-bit inputs
to a single n-bit output. Similarly, although a PRF is a set of functions, as previously described,
but it is common to refer to this single, keyed function as a PRF; we should recognize that the key
is what distinguishes one function in the set from every other.

An important point that is often misunderstood is that PRFs and block ciphers are not, in
themselves, secure encryption schemes. Recall the construction from the beginning of this lec-
ture: we did not use the message as input to the random function. Had we done that, it is easy to
see that encryption would be deterministic, and cannot possibly meet the security definition that
we’re aiming for. When using a PRF in place of the random function, the same issue arises, and we
solve it in the same way we did before. We make it explicit here. Let F be a PRF (e.g. AES). Let
the key space, message space, and ciphertext space all be {0, 1}n. Then the following encryption
scheme is IND-CPA secure.

Gen(1n): Randomly choose k ← {0, 1}n, and output k.
Enc(k,m): Sample a random value r ← {0, 1}n. Let c = F (k, r)⊕m. Output (c, r).
Dec(k, (c, r)): Output m = c⊕ F (k, r).

1.4 Modes of operation

So far, we have only described an encryption scheme that supports n-bit messages, using n-bit keys.
Of course, we were able to achieve this using the OTP! But, note that now we can re-use the key
for multiple encryptions, which is an important distinction. In fact, this suggests a natural way to
encrypt longer plaintexts: we simply need to break our plaintext up into blocks of length n (which
is why PRFs are commonly called block ciphers), and encrypt each as it’s own message. Extending
the previous construction in the natural way, to encryption a message m that contains ` blocks,
m1|| · · · ||m`, we could simply choose ` random strings, r1, . . . , r`, compute ci = F (k, ri) ⊕ mi,
and output (c1, r1), . . . , (c`, r`). Note that with this approach, the ciphertext is twice as long as
the original message. In practice, it is possible to do better. We now look at several different
encryption methods (often called modes of operation) that are more commonly used.
ECB mode (Insecure!): Although it is insecure, the electronic codebook mode of operation is
still frequently used, so it is good to know about. It shouldn’t be used unless you’re an expert
in the field, you understand the application and the risk, and you’re certain that it won’t creep
into other applications where the risk cannot be tolerated. We learn about it anyway, because it
is important to know it when you see it being used. The mode is extremely simple: given message
m = m1|| · · · ||m`, compute ci = F (k,mi), and output (c1, . . . , c`). Note that this is deterministic,
so it cannot be IND-CPA secure! If the same message is sent at different times, the adversary will
detect that. The adversary can also easily learn whether there are repeated blocks in the message.

CTR mode:

2-3

In counter mode, we choose a random initialization vector (IV) – this is called a nonce in the
above image – and increment this value for each block of the message. It is otherwise the same
construction described previously, but because each of the ` inputs to the PRF can be determined
by the first random IV, the remaining ` − 1 inputs do not need to be sent with the ciphertext.
Formally, letting m = m0|| · · · ||m`−1, ci = F (k, IV + i)⊕mi, and we output (IV, c0, . . . , c`−1). To
decrypt, the ith block, you simply compute mi = F (k, IV + i)⊕ ci. One nice feature of this mode
is that both encryption and decryption of each block can be parallelized.

OFB mode:

In the output feedback mode, we derive the next OTP by running the previous one through the
block cipher. That is, we start with a random IV, and let the first OTP be r1 = F (k, IV). We then
compute the ith OTP, ri as F (k, ri−1). We use these ` OTPs to encrypt the plaintext via XOR. As
with CTR mode, the ciphertext includes (IV, c1, . . . , c`). This is not as easily parallelized as CTR
mode, though, we can compute this stream of OTPs before we have the message for encryption.

CBC mode:

2-4

The cipher block chaining mode the most frequently used mode of operation. We start with a
random IV as a OTP for the first block of the plaintext, and the resulting value is fed through the
block cipher: c1 = F (k, IV ⊕m1). We output c1 as part of the ciphertext, but we also use it as
a OTP for the next block of plaintext, and feed that result through the cipher as well. Note that
c1 itself looks random, under the assumption that our block cipher is a good PRF. We proceed in
this way for all of the remaining blocks: ci = F (k, ci−1 ⊕mi), and we output (IV, c1, . . . , c`) as our
final output.

To decrypt, note that we actually have to invert the PRF, so our PRF has to be a psuedorandom
permutation, and it has to be easily invertible given the secret key. (In practice, all block ciphers are
designed with this property.) To recover the first block of the message, we compute F−1(k, c1) =
m1⊕ IV , and the use the IV to recover m1. To recover the mi, we compute mi = ci−1⊕F−1(k, ci).
Note that we can decrypt the ith block using only 2 blocks of the ciphertext, so decryption can be
parallelized.

One reason CBC became popular is that it appears to give some notion of tamper resilience: if
someone changes a bit of the ciphertext, intuitively it would seem that this would greatly change
the value of the resulting plaintext upon decryption. Unfortunately, this can’t be formalized, and
in fact there are some pretty bad attacks on this mode if we allow the adversary to observe what
happens when we try to decrypt ciphertexts that he has manipulated, as we will soon see. We now
know that authentication has to be handled carefully and correctly; ad hoc attempts do not suffice.

Messages of arbitrary length: Note that we have until now assumed that our plaintexts are
block aligned, but we will frequently have messages whose lengths are not multiples of our block
size. For CTR and OFB mode, we can generate our random pads for encryption, and just truncate

2-5

the end to match the length of the message. For CBC, this does not work, since we need the entire
last block in order to decrypt.

IV reuse: Coming up with a good source of randomness is not easy, so, rather than generating a
fresh IV every time, it is common for people to maintain the state of the last encryption, and to use
the IV generated for the last block of the prior encryption as the IV for the first block in the next
encryption. For example, with CTR mode, if the inputs to the PRF during the prior encryption were
(IV, IV +1, . . . , IV +`−1), then in the next encryption you could use IV +` as the new IV. In OFB
mode, if the OTPs from the previous encryption are (IV1, IV2 = F (k, IV1), . . . , IV` = F (k, IV`−1)),
then in the next encryption we can use IV` as the IV, and F (k, IV`) as the first OTP.

It is important to note that IV reuse (or, stateful encryption, as it is sometimes called) is not
secure in CBC mode. Consider the following attack. Suppose the adversary sees a ciphertext
(IV, c1, c2, c3), and he happens to know that the first block of the corresponding plaintext, m1, is
either m0

1 or m1
1. If the server holding the key is reusing IVs, then the IV for the next encryption is

c3. If the adversary can get the server to encrypt IV ⊕ c3⊕m0
1, he will receive c4 = F (k, IV ⊕m0

1).
If m1 = m0

1, then this is exactly the value of c1! Therefore, c1 = c4, then m1 = m0
1, and if c1 6= c4,

then he knows that m1 = m1
1.

1.5 Padding oracle attacks

We demonstrate an attack on CBC mode encryption, which demonstrates the need for authenti-
cating our communication, including our ciphertexts. (Authentication is the act of proving that
a message came from the party that shares your key, and that it has not been altered from the
original. We will deal with the topic of authentication next.) Recall that in CBC mode, our plain-
texts have to be padded to be a multiple of the block length. The PKCS7 standard describes the
following method for padding, so that the padding can be easily removed at the receiver’s end. If n
is our block length, and L is the number of bytes in n (i.e. L = n/8), let b be the number of bytes
needed to pad the message out to L bytes. Then, in each of those b bytes, you encode the value
of b in binary. So, if the last block of your message is seven bytes short of L, you would repeat
00000111 in the last 7 bytes of your last block. During decryption, Dec is modified to look for and
remove the padding: it first performs decryption as previously described for CBC mode, and then
analyzes the last byte of the last block. If that value is b, then it verifies that the last b bytes of the
last block all contain the value b. If they don’t, then Dec outputs a failure symbol and terminates.

Suppose an adversary sees an encryption of a message m = m1||m2, with the form (IV, c1, c2),
and he’d like to recover m2. Suppose he has access to a server that will attempt to decrypt whatever
message the adversary sends, and will give some indication if the decryption procedure fails. For
the attack to work, the adversary does not need anything more than an indication of decryption
failure. For example, it suffices if the server terminates the connection, or sends an error message.
Recall that in CBC mode, c1 = F (k,m1 ⊕ IV), and c2 = F (k,m2 ⊕ c1). It follows that that
m2 = c1⊕F−1(k, c2). The adversary knows nothing about F−1(k, c2), of course, but he does know
c1. By flipping the ith bit of c1, note that he exactly flips the ith bit of m2, and nothing else. This
observation is what leads to an attack.

To start, the adversary will submit a bunch of modified ciphertexts to the server to learn the
length of the padding, b. To do this, he modifies the first byte of c1, leaves IV and c2 as they
were, and submits the resulting ciphertext. Note that if the padding did not include the first byte,
then this modifies the plaintext value, but does not cause any changes with in the padding: there

2-6

are still b repetitions of the byte containing the value b. Decryption will not cause any error. The
adversary repeats this, modifying the second byte, then the third, and so forth, and submitting
each modified ciphertext. Eventually, when the adversary has modified byte L − b + 1, which is
the first byte of padding, m2 will contain b in the last b− 1 bytes, but some value other than b in
the byte just prior to that (i.e. in byte L − b + 1). This will lead to a decryption error, and the
adversary will have recovered the value of b.

The next step is to start recovering bytes of m2, one byte at a time, starting with byte L − b,
which is the byte just prior to the padding. The idea here is a bit more subtle. The adversary will
try to modify the plaintext in a particular way, again by modifying bits of c1. Note that, knowing
the value of b, one thing the adversary can do is replace the content of the last b bytes of m2 with
the value b + 1. To do that, he could compute

ĉ1 = c1 ⊕ (0, 0, . . . , 0,︸ ︷︷ ︸
L−b bytes

b⊕ b + 1, . . . , b⊕ b + 1︸ ︷︷ ︸
b bytes

).

If he submitted (IV, ĉ1, c2) for decryption, note that the first L−b bytes of m2 would be unchanged,
whereas in the last b bytes, the content of each byte would be b ⊕ (b ⊕ b + 1) = b + 1. Now, to
figure out the content of the byte just prior to the padding, the adversary will submit a bunch of
modified ciphertexts, each looking similar to ĉ1, but with a change in byte L − b. Suppose the
content that byte is B. If the adversary modifies the content of that byte such that it contains the
value b + 1, the modified m2 would have correct padding: it has b copies of b + 1 because of the
way ĉ1 is constructed in the last b bytes, and because this new modification to byte L− b adds one
more copy of b + 1, decryption can proceed without failure. On the other hand, if a modification
to byte L− b results in anything other than the value b + 1, then the padding is not well formed,
and a decryption error should result. This is because the last byte of m2 contains b + 1, so the
decryption procedure expects b+ 1 copies of that value, which should include a copy in byte L− b.
We therefore define 256 different ciphertexts, each a different variant of ĉ1:

∆i = c1 ⊕ (0, 0, . . . , 0,︸ ︷︷ ︸
L−b−1 bytes

i, b⊕ b + 1, . . . , b⊕ b + 1︸ ︷︷ ︸
b bytes

).

When the adversary submits (IV,∆i ⊕ c1, c2), the plaintext m2 is unchanged in the first L− b− 1,
it contains B ⊕ i in byte L − b, and it contains b + 1 in the last b bytes. If i = B ⊕ b + 1, then
decryption will continue without failure, whereas if i is any other value, it will fail due to invalid
padding. The adversary submits all 256 ciphertexts, and observes which one does not result in a
failure. Supposing c1⊕∆i did not lead to a failure. From the value of i, he computes B = b+ 1⊕ i
to recover B, and then moves on to the prior byte in a similar manner. (Note that because byte
L− b of m2 contains value B, the manipulation he uses in byte L− b when recovering byte L− b−1
should use an XOR value of B ⊕ b + 2, rather than b⊕ b + 2.)

It is worth asking where we went wrong, given that we claim to have a proof that CBC mode
encryption is secure. The answer is that our IND-CPA security definition (indistinguishability
under chosen plaintext attack) did not consider the ability of the adversary to request decryptions
of ciphertexts of his choosing. Indeed, there is a stronger security definition, called IND-CCA
(indistinguishability under chosen ciphertext attack) which does take this capability into account.
None of the modes that we discussed would meet this stronger security definition.

We won’t go into the proper way to define such security, but a crucial component for achieving
such security is message authentication. It is an important lesson that encryption does not provide

2-7

authentication: clever manipulation of ciphertexts can have devastating impacts on the plaintext
values. We will talk about message authentication in the next lecture.

2-8

