
17.1 Silberschatz, Galvin and Gagne ©2003Operating System Concepts with Java

Distributed SystemsDistributed Systems

What is a distributed system?

need a �network�

wire or wireless, Ethernet, high-speed interconnect,
Myrnet, Infiniband, ...

CPU, disk (boot, data), memory, services, applications all
accessed �remotely�, not �locally�

Why use distributed systems?

share resources efficiently

parallel processing, manual or automated

reliability

communication over distance

Metcalfe's Law

Examples

Internet, clusters, grids, P2P, Kazaa, Napster, SETI@home

Types and topologies

LAN, WAN, Star, bus, tree, ...

17.2 Silberschatz, Galvin and Gagne ©2003Operating System Concepts with Java

Distributed System ProblemsDistributed System Problems

same as single-system / single-OS...

process scheduling, memory/resource management,synchgronization,
caching, efficiency, administration/managment

...but some are harder to solve

component failure

time synchronization

what TIME is it?

control coordination

who's in charge?

validatng actions

17.3 Silberschatz, Galvin and Gagne ©2003Operating System Concepts with Java

Deutsch's 8 Fallacies Deutsch's 8 Fallacies
of Distributed Computingof Distributed Computing

the network is reliable

latency is zero

bandwidth is infinite

the network is secure

topology doesn't change

there is ONE network administrator

transport cost is zero

the network is homogeneous

17.4 Silberschatz, Galvin and Gagne ©2003Operating System Concepts with Java

Distributed SystemsDistributed Systems
Papers and ProjectsPapers and Projects

must relate to core OS and core DS concepts

required:

2 short papers, AND...

...ONE of the following

long research paper

project

final exam

select topic from course website, or propose & get approval for DS
topic of your choice

submission requirements

PDF prefered for report

send to hfoxwell@cs.gmu.edu

include appropriate citations & bibliography

use formated tables or fixed-width font for columnar data

17.5 Silberschatz, Galvin and Gagne ©2003Operating System Concepts with Java

Chapter 17 Distributed CoordinationChapter 17 Distributed Coordination

Event Ordering

Mutual Exclusion

Atomicity

Concurrency Control

Deadlock Handling

Election Algorithms

Reaching Agreement

17.6 Silberschatz, Galvin and Gagne ©2003Operating System Concepts with Java

Event OrderingEvent Ordering

Happened-before relation (denoted by <).

If A and B are events in the same process, and A was executed
before B, then A < B.

If A is the event of sending a message by one process and B is the
event of receiving that message by another process, then A < B.

If A < B and B < C then A < C.

simple, right?

17.7 Silberschatz, Galvin and Gagne ©2003Operating System Concepts with Java

Implementation of Implementation of <<

Associate a timestamp with each system event. Require
that for every pair of events A and B, if A < B, then the
timestamp of A is less than the timestamp of B.

Within each process Pi a logical clock, LCi is associated.
The logical clock can be implemented as a simple
counter that is incremented between any two successive
events executed within a process.

A process advances its logical clock when it receives a
message whose timestamp is greater than the current
value of its logical clock.

why?

If the timestamps of two events A and B are the same,
then the events are concurrent. We may use the process
identity numbers to break ties and to create a total
ordering.

17.8 Silberschatz, Galvin and Gagne ©2003Operating System Concepts with Java

Distributed Mutual Exclusion (DME) Distributed Mutual Exclusion (DME)

Assumptions

The system consists of n processes; each process Pi resides at a
different processor.

Each process has a critical section that requires mutual exclusion.

Requirement

If Pi is executing in its critical section, then no other process Pj is
executing in its critical section.

We present two algorithms to ensure the mutual exclusion
execution of processes in their critical sections.

17.9 Silberschatz, Galvin and Gagne ©2003Operating System Concepts with Java

DME: Centralized ApproachDME: Centralized Approach
One of the processes in the system is chosen to
coordinate the entry to the critical section.

A process that wants to enter its critical section sends a
request message to the coordinator.

The coordinator decides which process can enter the
critical section next, and its sends that process a reply
message.

When the process receives a reply message from the
coordinator, it enters its critical section.

After exiting its critical section, the process sends a
release message to the coordinator and proceeds with its
execution.

This scheme requires three messages per critical-section
entry:

request

reply

release

what makes this difficult?

17.10 Silberschatz, Galvin and Gagne ©2003Operating System Concepts with Java

DME: Fully Distributed ApproachDME: Fully Distributed Approach

When process Pi wants to enter its critical section, it generates a
new timestamp, TS, and sends the message request (Pi, TS) to
all other processes in the system.

When process Pj receives a request message, it may reply
immediately or it may defer sending a reply back.

When process Pi receives a reply message from all other
processes in the system, it can enter its critical section.

After exiting its critical section, the process sends reply
messages to all its deferred requests.

what makes this difficult?

17.11 Silberschatz, Galvin and Gagne ©2003Operating System Concepts with Java

DME: Fully Distributed Approach (Cont.)DME: Fully Distributed Approach (Cont.)

The decision whether process Pj replies immediately to a
request(Pi, TS) message or defers its reply is based on three
factors:

If Pj is in its critical section, then it defers its reply to Pi.

If Pj does not want to enter its critical section, then it sends a reply
immediately to Pi.

If Pj wants to enter its critical section but has not yet entered it, then
it compares its own request timestamp with the timestamp TS.

If its own request timestamp is greater than TS, then it sends a
reply immediately to Pi (Pi asked first).

Otherwise, the reply is deferred.

17.12 Silberschatz, Galvin and Gagne ©2003Operating System Concepts with Java

Desirable Behavior of Fully Distributed ApproachDesirable Behavior of Fully Distributed Approach

Freedom from Deadlock is ensured.

Freedom from starvation is ensured, since entry to the critical
section is scheduled according to the timestamp ordering. The
timestamp ordering ensures that processes are served in a first-
come, first served order.

The number of messages per critical-section entry is

2 x (n � 1).

This is the minimum number of required messages per critical-
section entry when processes act independently and
concurrently.

this is a lot of overhead

17.13 Silberschatz, Galvin and Gagne ©2003Operating System Concepts with Java

Three Undesirable ConsequencesThree Undesirable Consequences

The processes need to know the identity of all other processes in
the system, which makes the dynamic addition and removal of
processes more complex.

If one of the processes fails, then the entire scheme collapses.
This can be dealt with by continuously monitoring the state of all
the processes in the system.

Processes that have not entered their critical section must pause
frequently to assure other processes that they intend to enter the
critical section. This protocol is therefore suited for small, stable
sets of cooperating processes.

17.14 Silberschatz, Galvin and Gagne ©2003Operating System Concepts with Java

Atomicity Atomicity

Either all the operations associated with a program unit are
executed to completion, or none are performed.

Ensuring atomicity in a distributed system requires a transaction
coordinator, which is responsible for the following:

Starting the execution of the transaction.

Breaking the transaction into a number of subtransactions, and
distribution these subtransactions to the appropriate sites for
execution.

Coordinating the termination of the transaction, which may result in
the transaction being committed at all sites or aborted at all sites.

17.15 Silberschatz, Galvin and Gagne ©2003Operating System Concepts with Java

Two-Phase Commit Protocol (2PC)Two-Phase Commit Protocol (2PC)

Assumes fail-stop model.

Execution of the protocol is initiated by the coordinator after the
last step of the transaction has been reached.

When the protocol is initiated, the transaction may still be
executing at some of the local sites.

The protocol involves all the local sites at which the transaction
executed.

Example: Let T be a transaction initiated at site Si and let the
transaction coordinator at Si be Ci.

17.16 Silberschatz, Galvin and Gagne ©2003Operating System Concepts with Java

Phase 1: Obtaining a DecisionPhase 1: Obtaining a Decision

Ci adds <prepare T> record to the log.

Ci sends <prepare T> message to all sites.

When a site receives a <prepare T> message, the transaction
manager determines if it can commit the transaction.

If no: add <no T> record to the log and respond to Ci with <abort
T>.

If yes:

add <ready T> record to the log.

force all log records for T onto stable storage.

transaction manager sends <ready T> message to Ci.

17.17 Silberschatz, Galvin and Gagne ©2003Operating System Concepts with Java

Phase 1 (Cont.)Phase 1 (Cont.)

Coordinator collects responses

All respond �ready�,
decision is commit.

At least one response is �abort�,
decision is abort.

At least one participant fails to respond within time out period,
decision is abort.

17.18 Silberschatz, Galvin and Gagne ©2003Operating System Concepts with Java

Phase 2: Recording Decision in the DatabasePhase 2: Recording Decision in the Database

Coordinator adds a decision record

<abort T> or <commit T> to its log and forces record onto stable
storage.

Once that record reaches stable storage it is irrevocable (even if
failures occur).

Coordinator sends a message to each participant informing it of the
decision (commit or abort).

Participants take appropriate action locally.

17.19 Silberschatz, Galvin and Gagne ©2003Operating System Concepts with Java

Failure Handling in 2PC � Site FailureFailure Handling in 2PC � Site Failure

The log contains a <commit T> record. In this case, the site
executes redo(T).

The log contains an <abort T> record. In this case, the site
executes undo(T).

The contains a <ready T> record; consult Ci. If Ci is down, site
sends query-status T message to the other sites.

The log contains no control records concerning T. In this case,
the site executes undo(T).

17.20 Silberschatz, Galvin and Gagne ©2003Operating System Concepts with Java

Failure Handling in 2PC � Coordinator Failure Handling in 2PC � Coordinator CCii FailureFailure

If an active site contains a <commit T> record in its log, the T
must be committed.

If an active site contains an <abort T> record in its log, then T
must be aborted.

If some active site does not contain the record <ready T> in its
log then the failed coordinator Ci cannot have decided to
commit T. Rather than wait for Ci to recover, it is preferable to
abort T.

All active sites have a <ready T> record in their logs, but no
additional control records. In this case we must wait for the
coordinator to recover.

Blocking problem � T is blocked pending the recovery of site Si.

17.21 Silberschatz, Galvin and Gagne ©2003Operating System Concepts with Java

Distributed System TechnologiesDistributed System Technologies

Cluster

Generally configured for availability, then scalability

�Five nines� (0.99999 uptime)

No singe points of failure

Grid

Generally configured for scalability, then availability

Needed for highly parallelizable tasks

Expecially high-performance scientific computing

Hundreds or thousands of small systems

Self-organizing networks

Jini

Peer-to-Peer

JXTA

17.22 Silberschatz, Galvin and Gagne ©2003Operating System Concepts with Java

Typical ClusterTypical Cluster
Goal: Availability, No SPFGoal: Availability, No SPF

17.23 Silberschatz, Galvin and Gagne ©2003Operating System Concepts with Java

Cluster �Heartbeat�Cluster �Heartbeat�

17.24 Silberschatz, Galvin and Gagne ©2003Operating System Concepts with Java

Typical Cluster StorageTypical Cluster Storage
Goal: Availability, No SPFGoal: Availability, No SPF

17.25 Silberschatz, Galvin and Gagne ©2003Operating System Concepts with Java

Beowulf �Cluster�Beowulf �Cluster�
Goal: ScalabilityGoal: Scalability

17.26 Silberschatz, Galvin and Gagne ©2003Operating System Concepts with Java

Typical Grid ArchitectureTypical Grid Architecture

17.27 Silberschatz, Galvin and Gagne ©2003Operating System Concepts with Java

Grid Network InterconnectsGrid Network Interconnects

17.28 Silberschatz, Galvin and Gagne ©2003Operating System Concepts with Java

Grid Job SubmissionGrid Job Submission

17.29 Silberschatz, Galvin and Gagne ©2003Operating System Concepts with Java

JiniJini
Self-Configuring NetworksSelf-Configuring Networks

29

Read �A Note on Distributed Computing�
by Jim Waldo

See www.jini.org, java.sun.com

Lookup Service
Services register
Clients discover and lookup and lookup services
Events and Transactions

Services (Includes Lookup Service)
Lease Jini resources
Register by supplying info and code

Client
Discovery - Bootstrap
Lookup Service using templates
Access Service through downloaded java code
Interact directly with the service

17.30 Silberschatz, Galvin and Gagne ©2003Operating System Concepts with Java

JiniJini

30

Jini Core

Jini
Enabled
Service

01010

Client
01010

01010

request
(multicast)

respon
se
(unicast
)

service ID

register

01010

announce
(multicast)

request
(unicast)

response
(unicast)

01010

Lookup
Service

01010

17.31 Silberschatz, Galvin and Gagne ©2003Operating System Concepts with Java

JiniJini

31

Spontaneous and Self recovering
Services come and go
No Jini administration required
�Plug and Play�

Redundant
Scalable

Instances
Performance

17.32 Silberschatz, Galvin and Gagne ©2003Operating System Concepts with Java

Jini/JavaSpacesJini/JavaSpaces

32

A Jini Service
Distributed Shared Memory

Replication
Persistent Storage

Object Based
Search

Entry: values, class�
Entry Interface

Write, Read, Take - IfExists

17.33 Silberschatz, Galvin and Gagne ©2003Operating System Concepts with Java

Jini/JavaSpacesJini/JavaSpaces

33

Jini Core

JavaSpace
Service

01010

Client
01010

01010

Lookup
Service

01010

17.34 Silberschatz, Galvin and Gagne ©2003Operating System Concepts with Java

JiniJini

34

Jini
Lookup Services, Additional
Knowledge Base Services

JavaSpaces
Object Storage

Knowledge Base
Application

Motive
Needed tool to store, share, and
manage information
Community friendly knowledge base
Emerging technology
Learn best by doing, experiments!

17.35 Silberschatz, Galvin and Gagne ©2003Operating System Concepts with Java

JXTAJXTA
Goal: P2PGoal: P2P

17.36 Silberschatz, Galvin and Gagne ©2003Operating System Concepts with Java

JXTAJXTA
see see www.jxta.orgwww.jxta.org, , java.sun.comjava.sun.com

17.37 Silberschatz, Galvin and Gagne ©2003Operating System Concepts with Java

JXTAJXTA

