
5.1 Silberschatz, Galvin and Gagne ©2003Operating System Concepts with Java

Chapter 5: ThreadsChapter 5: Threads

Overview

Multithreading Models

Threading Issues

Pthreads

Windows XP Threads

Linux Threads

Java Threads

5.2 Silberschatz, Galvin and Gagne ©2003Operating System Concepts with Java

More About ProcessesMore About Processes

A process encapsulates a running program,
providing an execution state along with certain
resources, including file handles and registers,
along with:
– a program counter (Instruction Pointer)

– a process id, a process group id, etc.

– a process stack

– one or more data segments

– a heap for dynamic memory allocation

– a process state (running, ready, waiting, etc.)

Informally, a process is an executing program

5.3 Silberschatz, Galvin and Gagne ©2003Operating System Concepts with Java

MultiprocessingMultiprocessing

A multiprocessing or multitasking operating
system (like Unix, as opposed to DOS) can
have more than one process executing at
any given time

This simultaneous execution may either be
– concurrent, meaning that multiple processes in a run state can be

swapped in and out by the OS

– parallel, meaning that multiple processes are actually running at
the same time on multiple processors

5.4 Silberschatz, Galvin and Gagne ©2003Operating System Concepts with Java

What is a Thread?What is a Thread?

A thread is an encapsulation of some flow of control
in a program, that can be independently scheduled

Each process is given a single thread by default

A thread is sometimes called a lightweight process,
because it is similar to a process in that it has its
own thread id, stack, stack pointer, a signal mask,
program counter, registers, etc.

All threads within a given process share resource
handles, memory segments (heap and data
segments), and code.

5.5 Silberschatz, Galvin and Gagne ©2003Operating System Concepts with Java

Single and Multithreaded ProcessesSingle and Multithreaded Processes

5.6 Silberschatz, Galvin and Gagne ©2003Operating System Concepts with Java

Process/ThreadProcess/Thread

P r o c e s s I D

S i g n a l D i s p a t c h

T a b l e

M e m o r y M a p

F i l e D e s c r i p t o r T a b l e

S t a c k P o i n t e r &

S t a c k

H e a p

R e g i s t e r s

P r o c e s s P r i o r i t y

A P R O C E S S

T h r e a d I D

S i g n a l D i s p a t c h

T a b l e

S t a c k P o i n t e r &

S t a c k

R e g i s t e r s

T h r e a d P r i o r i t y

A T H R E A D

P r o g r a m C o u n t e r P r o g r a m C o u n t e r

A l l t h r e a d s s h a r e

t h e s a m e

m e m o r y , h e a p ,

a n d f i l e h a n d l e s

(a n d o f f s e t s)

5.7 Silberschatz, Galvin and Gagne ©2003Operating System Concepts with Java

BenefitsBenefits

Responsiveness

Resource Sharing

Economy

Utilization of MP Architectures

5.8 Silberschatz, Galvin and Gagne ©2003Operating System Concepts with Java

Processes and Threads:Processes and Threads:
Creation TimesCreation Times

Because threads are by definition lightweight, they can be
created more quickly that �heavy� processes:

– Sun Ultra5, 320 Meg Ram, 1 CPU

• 94 forks()/second

• 1,737 threads/second (18x faster)

– Sun Sparc Ultra 1, 256 Meg Ram , 1 CPU

• 67 forks()/second

• 1,359 threads/second (20x faster)

– Sun Enterprise 420R, 5 Gig Ram, 4 CPUs

• 146 forks()/second

• 35,640 threads/second (244x faster)

– Linux 2.4 Kernel, .5 Gig Ram, 2 CPUs

• 1,811 forks()/second

• 227,611 threads/second (125x faster)

5.9 Silberschatz, Galvin and Gagne ©2003Operating System Concepts with Java

Benefits of MultithreadingBenefits of Multithreading

Performance gains

– Amdahl�s Law: speedup = 1 / ((1 � p) + (p/n))

– the speedup generated from parallelizing code is the
time executing the parallelizable work (p) divided by
the number of processors (n) plus 1 minus the
parallelizable work (1-p)

– The more code that can run in parallel, the faster the
overall program will run

– If you can apply multiple processors for 75% of your
program�s execution time, and you�re running on a
dual processor box:

• 1 / ((1 - .75) + (.75 / 2)) = 60% improvement

– Why is it not strictly linear? How do you calculate p?

5.10 Silberschatz, Galvin and Gagne ©2003Operating System Concepts with Java

User ThreadsUser Threads

Thread management done by user-level threads library

Three primary thread libraries:

 POSIX (IEEE Portable Operating System Interface) Pthreads

Java threads

Win32 threads

5.11 Silberschatz, Galvin and Gagne ©2003Operating System Concepts with Java

Kernel ThreadsKernel Threads

Supported by the Kernel

Examples

Windows XP/2000

Solaris

Linux

Tru64 UNIX

Mac OS X

5.12 Silberschatz, Galvin and Gagne ©2003Operating System Concepts with Java

Multithreading ModelsMultithreading Models

Many-to-One

One-to-One

Many-to-Many

5.13 Silberschatz, Galvin and Gagne ©2003Operating System Concepts with Java

Many-to-OneMany-to-One

Many user-level threads mapped to single kernel thread

Examples

Solaris Green Threads

used by early JVMs

GNU Portable Threads

5.14 Silberschatz, Galvin and Gagne ©2003Operating System Concepts with Java

Many-to-One ModelMany-to-One Model

5.15 Silberschatz, Galvin and Gagne ©2003Operating System Concepts with Java

One-to-OneOne-to-One

Each user-level thread maps to kernel thread

Examples

Windows NT/XP/2000

Linux

Solaris 9 and later

5.16 Silberschatz, Galvin and Gagne ©2003Operating System Concepts with Java

One-to-one ModelOne-to-one Model

5.17 Silberschatz, Galvin and Gagne ©2003Operating System Concepts with Java

Many-to-Many ModelMany-to-Many Model

Allows many user level threads to be mapped to many kernel
threads

Allows the operating system to create a sufficient number of
kernel threads

Solaris prior to version 9

Windows NT/2000 with the ThreadFiber package

5.18 Silberschatz, Galvin and Gagne ©2003Operating System Concepts with Java

Many-to-Many ModelMany-to-Many Model

5.19 Silberschatz, Galvin and Gagne ©2003Operating System Concepts with Java

Two-level ModelTwo-level Model

Similar to M:M, except that it allows a user thread to be bound to
kernel thread

Examples

IRIX

HP-UX

Tru64 UNIX

Solaris 8 and earlier

5.20 Silberschatz, Galvin and Gagne ©2003Operating System Concepts with Java

Two-level ModelTwo-level Model

5.21 Silberschatz, Galvin and Gagne ©2003Operating System Concepts with Java

Threading IssuesThreading Issues

Semantics of fork() and exec() system calls

Thread cancellation

Signal handling

Thread pools

Thread specific data

Scheduler activations

Does fork() duplicate only the calling thread or all threads?

5.22 Silberschatz, Galvin and Gagne ©2003Operating System Concepts with Java

Thread CancellationThread Cancellation

Terminating a thread before it has finished

Two general approaches:

Asynchronous cancellation terminates the target thread immediately

Deferred cancellation allows the target thread to periodically check if it
should be cancelled

5.23 Silberschatz, Galvin and Gagne ©2003Operating System Concepts with Java

Signal HandlingSignal Handling

Signals are used in UNIX systems to notify a process that a
particular event has occurred

A signal handler is used to process signals

Signal is generated by particular event

CPU interrupt, I/O completion, mouse click, ...

Signal is delivered to a process

Signal is handled

Options:

Deliver the signal to the thread to which the signal applies

Deliver the signal to every thread in the process

Deliver the signal to certain threads in the process

Assign a specific threa to receive all signals for the process

5.24 Silberschatz, Galvin and Gagne ©2003Operating System Concepts with Java

Thread PoolsThread Pools

Create a number of threads in a pool where they await work

Advantages:

Usually slightly faster to service a request with an existing thread
than create a new thread

Allows the number of threads in the application(s) to be bound to the
size of the pool

5.25 Silberschatz, Galvin and Gagne ©2003Operating System Concepts with Java

PthreadsPthreads

A POSIX standard (IEEE 1003.1c) API for thread creation and
synchronization

API specifies behavior of the thread library, implementation is up
to development of the library

Common in UNIX operating systems (Solaris, Linux, Mac OS X)

5.26 Silberschatz, Galvin and Gagne ©2003Operating System Concepts with Java

POSIXPOSIX
Each OS had its own thread library and style

That made writing multithreaded programs difficult
because:

– you had to learn a new API with each new OS

– you had to modify your code with each port to a
new OS

POSIX (IEEE 1003.1c-1995) provided a standard
known as Pthreads

Unix International (UI) threads (Solaris threads) are
available on Solaris (which also supports POSIX
threads)

5.27 Silberschatz, Galvin and Gagne ©2003Operating System Concepts with Java

Windows XP ThreadsWindows XP Threads

Implements the one-to-one mapping

Each thread contains

A thread id

Register set

Separate user and kernel stacks

Private data storage area

The register set, stacks, and private storage area are known as the
context of the threads

The primary data structures of a thread include:

ETHREAD (executive thread block)

KTHREAD (kernel thread block)

TEB (thread environment block)

5.28 Silberschatz, Galvin and Gagne ©2003Operating System Concepts with Java

Linux ThreadsLinux Threads

Linux refers to them as tasks rather than threads

Thread creation is done through clone() system call

clone() allows a child task to share the address space of the
parent task (process)

5.29 Silberschatz, Galvin and Gagne ©2003Operating System Concepts with Java

Java ThreadsJava Threads

Java threads are managed by the JVM

Java threads may be created by:

Extending Thread class

Implementing the Runnable interface

5.30 Silberschatz, Galvin and Gagne ©2003Operating System Concepts with Java

Java Thread States Java Thread States

5.31 Silberschatz, Galvin and Gagne ©2003Operating System Concepts with Java

On the Scheduling of ThreadsOn the Scheduling of Threads

Threads may be scheduled by the system scheduler
(OS) or by a scheduler in the thread library
(depending on the threading model).

The scheduler in the thread library:

– will preempt currently running threads on the
basis of priority

– does NOT time-slice (i.e., is not fair). A running
thread will continue to run forever unless:

• a thread call is made into the thread library

• a blocking call is made

• the running thread calls sched_yield()

5.32 Silberschatz, Galvin and Gagne ©2003Operating System Concepts with Java

Chapter 5 HomeworkChapter 5 Homework

Write a multithreaded program

Java, or Pthreads

pg 169, 5.9, 5.10, 5.11, OR an MT program of your choice

write, compile, run, and monitor your program as it runs

show source code, output of run

show results of monitoring the program run...execution time,
memory use, thread execution

�write a program� means read/research/understand existing code
fragments and examples, prepare a source file, compile and run the
program, explain the execution and output

it does NOT mean simply copy/modify other's solution to the
assignment

