Chapter 5: Threads

¢ Overview

¢ Multithreading Models
¢ Threading Issues

¢ Pthreads

Windows XP Threads
¢ Linux Threads

Java Threads

{

C

Operating System Concepts with Java 5.1 Silberschatz, Galvin and Gagne ©2003

ﬁ More About Processes

« A process encapsulates a running program,
providing an execution state along with certain

resources, including file handles and registers,
along with:

— a program counter (Instruction Pointer)

— a process id, a process group id, etc.

— a process stack

— one or more data segments

— a heap for dynamic memory allocation

— a process state (running, ready, waiting, etc.)

« Informally, a process is an executing program

Operating System Concepts with Java 5.2 Silberschatz, Galvin and Gagne ©2003

ﬁ Multiprocessing

¢ A multiprocessing or multitasking operating
system (like Unix, as opposed to DOS) can
have more than one process executing at
any given time

¢ This simultaneous execution may either be

— concurrent, meaning that multiple processes in a run state can be
swapped in and out by the OS

— parallel, meaning that multiple processes are actually running at
the same time on multiple processors

Operating System Concepts with Java 5.3 Silberschatz, Galvin and Gagne ©2003

ﬁ What is a Thread?

¢ A thread is an encapsulation of some flow of control
In a program, that can be independently scheduled

¢ Each process is given a single thread by default

¢ Athread is sometimes called a lightweight process,
because it is similar to a process in that it has its
own thread id, stack, stack pointer, a signal mask,
program counter, registers, etc.

¢ All threads within a given process share resource
handles, memory segments (heap and data
segments), and code.

Operating System Concepts with Java 5.4 Silberschatz, Galvin and Gagne ©2003

Single and Multithreaded Processes

code data files
registers stack
thread —»

single-threaded process

code data files
registers ||| registers ||| registers
stack stack stack

<4—— thread

multithreaded process

Operating System Concepts with Java

5.5

Silberschatz, Galvin and Gagne ©2003

Operating System Concepts with Java

Process/Thread

APROCESS

Process ID

A THREAD

Program Counter

Thread ID

SignalDispateh
Table

Program Counter

Registers

SignalDispatch
Table

Process Priority

Registers

Stack Pointer &
Stack

Thread Priority

Heap

Stack Pointer &
Stack

Memory Map

File Descriptor Table

5.6

Allthreads share
the sam e
memory, heap,
and file handles
(and offsets)

N _

Silberschatz, Galvin and Gagne ©2003

Benefits

¢ Responsiveness

¢ Resource Sharing

o

Economy

¢ Utilization of MP Architectures

Operating System Concepts with Java 5.7 Silberschatz, Galvin and Gagne ©2003

ﬁ Processes and Threads:
Creation Times

¢ Because threads are by definition lightweight, they can be
created more quickly that “heavy” processes:

— Sun Ultra5, 320 Meg Ram, 1 CPU
e 94 forks()/second
« 1,737 threads/second (18x faster)
— Sun Sparc Ultra 1, 256 Meg Ram , 1 CPU
e 67 forks()/second
« 1,359 threads/second (20x faster)
— Sun Enterprise 420R, 5 Gig Ram, 4 CPUs
« 146 forks()/second
« 35,640 threads/second (244x faster)
— Linux 2.4 Kernel, .5 Gig Ram, 2 CPUs
« 1,811 forks()/second
« 227,611 threads/second (125x faster)

Operating System Concepts with Java 5.8 Silberschatz, Galvin and Gagne ©2003

ﬁ Benefits of Multithreading

¢« Performance gains
— Amdahl’'s Law: speedup =1/((1 —p) + (p/n))

— the speedup generated from parallelizing code is the
time executing the parallelizable work (p) divided by
the number of processors (n) plus 1 minus the
parallelizable work (1-p)

— The more code that can run in parallel, the faster the
overall program will run

— If you can apply multiple processors for 75% of your
program’s execution time, and you’re running on a
dual processor box:

e 1/((1-.75) + (.75 / 2)) = 60% improvement
— Why is it not strictly linear? How do you calculate p?

Operating System Concepts with Java 5.9 Silberschatz, Galvin and Gagne ©2003

User Threads

¢ Thread management done by user-level threads library

¢ Three primary thread libraries:
s POSIX (IEEE Portable Operating System Interface) Pthreads
@ Java threads
@ Win32 threads

Operating System Concepts with Java 5.10 Silberschatz, Galvin and Gagne ©2003

Kernel Threads

¢ Supported by the Kernel

¢ Examples
s Windows XP/2000
@ Solaris
@ Linux
@ Tru64 UNIX
@ Mac OS X

Operating System Concepts with Java 5.11 Silberschatz, Galvin and Gagne ©2003

<
\ o0
N

¢ Many-to-One

Multithreading Models

¢ One-to-One

o

Many-to-Many

Operating System Concepts with Java 5.12 Silberschatz, Galvin and Gagne ©2003

Many-to-One

¢ Many user-level threads mapped to single kernel thread

¢ Examples
a Solaris Green Threads
@ used by early JVMs
@ GNU Portable Threads

Operating System Concepts with Java 5.13 Silberschatz, Galvin and Gagne ©2003

Many-to-One Model

<4—— yser thread

<4— kernel thread

Operating System Concepts with Java 5.14 Silberschatz, Galvin and Gagne ©2003

One-to-One

¢ Each user-level thread maps to kernel thread

¢ Examples
@ Windows NT/XP/2000
@ Linux
a Solaris 9 and later

Operating System Concepts with Java 5.15 Silberschatz, Galvin and Gagne ©2003

One-to-one Model

- user thread

=
PYoY Yo uu

Operating System Concepts with Java 5.16 Silberschatz, Galvin and Gagne ©2003

Many-to-Many Model

¢ Allows many user level threads to be mapped to many kernel
threads

¢ Allows the operating system to create a sufficient number of
kernel threads

Solaris prior to version 9
Windows NT/2000 with the ThreadFiber package

o

L&

Operating System Concepts with Java 517 Silberschatz, Galvin and Gagne ©2003

Many-to-Many Model

e user thread]

4— kernel thread

Operating System Concepts with Java 5.18 Silberschatz, Galvin and Gagne ©2003

Two-level Model

¢ Similar to M:M, except that it allows a user thread to be bound to
kernel thread

¢ Examples
s |RIX
a HP-UX
@ True4 UNIX
@ Solaris 8 and earlier

Operating System Concepts with Java 5.19 Silberschatz, Galvin and Gagne ©2003

Two-level Model

4——— User thread

@ “4+— kernel thread

Operating System Concepts with Java 5.20 Silberschatz, Galvin and Gagne ©2003

Threading Issues

¢ Semantics of fork() and exec() system calls
¢ Thread cancellation
¢ Signal handling
¢ Thread pools

Thread specific data

¢ Scheduler activations

¢ Does fork() duplicate only the calling thread or all threads?

T

Operating System Concepts with Java 5.21 Silberschatz, Galvin and Gagne ©2003

Thread Cancellation

¢ Terminating a thread before it has finished

¢ Two general approaches:
@ Asynchronous cancellation terminates the target thread immediately

s Deferred cancellation allows the target thread to periodically check if it
should be cancelled

Operating System Concepts with Java 5.22 Silberschatz, Galvin and Gagne ©2003

Signal Handling

aSignals are used in UNIX systems to notify a process that a
particular event has occurred

»A signal handler is used to process signals

s Signal is generated by particular event

a CPU interrupt, I/0 completion, mouse click, ...

s Signal is delivered to a process

» Signal is handled
aOptions:
Deliver the signal to the thread to which the signal applies
Deliver the signal to every thread in the process
a Deliver the signal to certain threads in the process
» Assign a specific threa to receive all signals for the process

Operating System Concepts with Java 5.23 Silberschatz, Galvin and Gagne ©2003

Thread Pools

¢ Create a number of threads in a pool where they await work

¢ Advantages:
@ Usually slightly faster to service a request with an existing thread
than create a new thread
@ Allows the number of threads in the application(s) to be bound to the
size of the pool

Silberschatz, Galvin and Gagne ©2003

Operating System Concepts with Java 5.24

Pthreads

<
\ o0
N

¢ A POSIX standard (IEEE 1003.1c) API for thread creation and
synchronization

¢ API specifies behavior of the thread library, implementation is up
to development of the library

Common in UNIX operating systems (Solaris, Linux, Mac OS X)

o

Operating System Concepts with Java 5.25 Silberschatz, Galvin and Gagne ©2003

5 oo

¢« Each OS had its own thread library and style

¢ That made writing multithreaded programs difficult

because:
— you had to learn a new APl with each new OS

— you had to modify your code with each port to a
new OS
¢« POSIX (IEEE 1003.1c-1995) provided a standard
known as Pthreads
¢ Unix International (Ul) threads (Solaris threads) are
available on Solaris (which also supports POSIX
threads)

Silberschatz, Galvin and Gagne ©2003

Operating System Concepts with Java 5.26

Windows XP Threads

slImplements the one-to-one mapping

sEach thread contains
@ Athreadid
s Register set
@ Separate user and kernel stacks
a Private data storage area

aThe register set, stacks, and private storage area are known as the
context of the threads

aThe primary data structures of a thread include:
s ETHREAD (executive thread block)
s KTHREAD (kernel thread block)
» TEB (thread environment block)

Operating System Concepts with Java 5.27 Silberschatz, Galvin and Gagne ©2003

Linux Threads

¢ Linux refers to them as tasks rather than threads

¢ Thread creation is done through clone() system call

¢ clone() allows a child task to share the address space of the
parent task (process)

Operating System Concepts with Java 5.28 Silberschatz, Galvin and Gagne ©2003

Java Threads

¢ Java threads are managed by the JVM

¢ Java threads may be created by:

¢ Extending Thread class
¢ Implementing the Runnable interface

Operating System Concepts with Java 5.29 Silberschatz, Galvin and Gagne ©2003

Java Thread States

is
available

blocked

Operating System Concepts with Java

5.30 Silberschatz, Galvin and Gagne ©2003

<
\ o0
N

On the Scheduling of Threads

¢« Threads may be scheduled by the system scheduler
(OS) or by a scheduler in the thread library

(depending on the threading model).
¢ The scheduler in the thread library:

— will preempt currently running threads on the
basis of priority

— does NOT time-slice (i.e., is not fair). A running
thread will continue to run forever unless:
 athread call is made into the thread library
 a blocking call is made

 the running thread calls sched_yield()

Operating System Concepts with Java 5.31 Silberschatz, Galvin and Gagne ©2003

Chapter 5 Homework

¢ Write a multithreaded program
¢ Java, or Pthreads
¢ pg 169, 5.9,5.10, 5.11, OR an MT program of your choice
¢ write, compile, run, and monitor your program as it runs
¢ show source code, output of run

¢ show results of monitoring the program run...execution time,
memory use, thread execution

¢ “write a program” means read/research/understand existing code
fragments and examples, prepare a source file, compile and run the
program, explain the execution and output

¢ it does NOT mean simply copy/modify other's solution to the
assignment

Operating System Concepts with Java 5.32 Silberschatz, Galvin and Gagne ©2003

