
9.1 Silberschatz, Galvin and Gagne ©2003Operating System Concepts with Java

Chapters 9 & 10: Chapters 9 & 10:
Memory ManagementMemory Management

and and
Virtual MemoryVirtual Memory

Important concepts (for final, projects, papers)

addressing: physical/absolute, logical/relative/virtual

overlays

swapping and paging

memory protection

algorithms: free space fit, page replacement

segmentation

thrashing

locality

9.2 Silberschatz, Galvin and Gagne ©2003Operating System Concepts with Java

BackgroundBackground

Program must be brought into memory and placed within a
process for it to be run.

Input queue � collection of processes on the disk that are waiting
to be brought into memory to run the program.

User programs go through several steps before being run.

process varies by type of OS...following discussion is for shared-
resource, multi-user OS

What is an �address�?

How do we represent it?

How big can it be?

9.3 Silberschatz, Galvin and Gagne ©2003Operating System Concepts with Java

Binding of Instructions and Data to MemoryBinding of Instructions and Data to Memory

Compile time: If memory location known a priori,
absolute code can be generated; must recompile code if
starting location changes.

when do you need to know absolute address?

Load time: Must generate relocatable code if memory
location is not known at compile time.

relocatable? what does that mean?

Execution time: Binding delayed until run time if the
process can be moved during its execution from one
memory segment to another. Need hardware support for
address maps (e.g., base and limit registers).

Address binding of instructions and data to memory addresses can
happen at three different stages.

9.4 Silberschatz, Galvin and Gagne ©2003Operating System Concepts with Java

Multistep Processing of a User Program Multistep Processing of a User Program

9.5 Silberschatz, Galvin and Gagne ©2003Operating System Concepts with Java

Logical vs. Physical Address SpaceLogical vs. Physical Address Space

The concept of a logical address space that is bound to a
separate physical address space is central to proper memory
management.

Logical address � generated by the CPU; also referred to as virtual
address.

Physical address � address seen by the memory unit (also absolute
address)

Logical and physical addresses are the same in compile-time
and load-time address-binding schemes; logical (virtual) and
physical addresses differ in execution-time address-binding
scheme.

9.6 Silberschatz, Galvin and Gagne ©2003Operating System Concepts with Java

Memory-Management Unit (Memory-Management Unit (MMUMMU))

Hardware device that maps virtual to physical address.

WHERE is the MMU?

In MMU scheme, the value in the relocation register is added to
every address generated by a user process at the time it is sent
to memory.

The user program deals with logical addresses; it never sees the
real physical addresses.

9.7 Silberschatz, Galvin and Gagne ©2003Operating System Concepts with Java

Dynamic relocation using a relocation registerDynamic relocation using a relocation register

9.8 Silberschatz, Galvin and Gagne ©2003Operating System Concepts with Java

Dynamic LoadingDynamic Loading

Routine is not loaded until it is called

Better memory-space utilization; unused routine is never
loaded.

Useful when large amounts of code are needed to handle
infrequently occurring cases.

No special support from the operating system is required
implemented through program design.

9.9 Silberschatz, Galvin and Gagne ©2003Operating System Concepts with Java

Dynamic LinkingDynamic Linking

Linking postponed until execution time.

Small piece of code, stub, used to locate the appropriate
memory-resident library routine.

Stub replaces itself with the address of the routine, and executes
the routine.

Operating system needed to check if routine is in processes�
memory address.

Dynamic linking is particularly useful for libraries.

9.10 Silberschatz, Galvin and Gagne ©2003Operating System Concepts with Java

OverlaysOverlays

Keep in memory only those instructions and data that are
needed at any given time.

Needed when process is larger than amount of memory
allocated to it.

Implemented by user, no special support needed from operating
system, programming design of overlay structure is complex

still used for some OS/processor architectures

9.11 Silberschatz, Galvin and Gagne ©2003Operating System Concepts with Java

SwappingSwapping

A process can be swapped temporarily out of memory to a
backing store, and then brought back into memory for continued
execution.

Backing store � fast disk large enough to accommodate copies
of all memory images for all users; must provide direct access to
these memory images.

must it be disk?

Roll out, roll in � swapping variant used for priority-based
scheduling algorithms; lower-priority process is swapped out so
higher-priority process can be loaded and executed.

Major part of swap time is transfer time; total transfer time is
directly proportional to the amount of memory swapped.

Modified versions of swapping are found on many systems (i.e.,
UNIX, Linux, and Windows).

9.12 Silberschatz, Galvin and Gagne ©2003Operating System Concepts with Java

Schematic View of SwappingSchematic View of Swapping

9.13 Silberschatz, Galvin and Gagne ©2003Operating System Concepts with Java

Dynamic Storage-Allocation ProblemDynamic Storage-Allocation Problem

First-fit: Allocate the first hole that is big enough.

Best-fit: Allocate the smallest hole that is big enough;
must search entire list, unless ordered by size.
Produces the smallest leftover hole.

Worst-fit: Allocate the largest hole; must also search
entire list. Produces the largest leftover hole.

How to satisfy a request of size n from a list of free holes.

First-fit and best-fit better than worst-fit in terms of
speed and storage utilization.

9.14 Silberschatz, Galvin and Gagne ©2003Operating System Concepts with Java

FragmentationFragmentation

External Fragmentation � total memory space exists to satisfy a
request, but it is not contiguous.

Internal Fragmentation � allocated memory may be slightly larger
than requested memory; this size difference is memory internal
to a partition, but not being used.

Reduce external fragmentation by compaction

Shuffle memory contents to place all free memory together in one
large block.

what are the benefits & drawbacks?

Compaction is possible only if relocation is dynamic, and is done at
execution time.

I/O problem

Latch job in memory while it is involved in I/O.

Do I/O only into OS buffers.

why?

9.15 Silberschatz, Galvin and Gagne ©2003Operating System Concepts with Java

PagingPaging

Logical address space of a process can be noncontiguous;
process is allocated physical memory whenever the latter is
available.

Divide physical memory into fixed-sized blocks called frames
(size is power of 2, between 512 bytes and 8192 bytes).

Divide logical memory into blocks of same size called pages.

Keep track of all free frames.

To run a program of size n pages, need to find n free frames and
load program.

Set up a page table to translate logical to physical addresses.

Internal fragmentation.

9.16 Silberschatz, Galvin and Gagne ©2003Operating System Concepts with Java

Address Translation SchemeAddress Translation Scheme

Address generated by CPU is divided into:

Page number (p) � used as an index into a page table which
contains base address of each page in physical memory.

Page offset (d) � combined with base address to define the physical
memory address that is sent to the memory unit.

9.17 Silberschatz, Galvin and Gagne ©2003Operating System Concepts with Java

Address Translation Architecture Address Translation Architecture

9.18 Silberschatz, Galvin and Gagne ©2003Operating System Concepts with Java

Paging Example Paging Example

9.19 Silberschatz, Galvin and Gagne ©2003Operating System Concepts with Java

Memory ProtectionMemory Protection

Memory protection implemented by associating protection bit
with each frame.

Valid-invalid bit attached to each entry in the page table:

�valid� indicates that the associated page is in the process� logical
address space, and is thus a legal page.

�invalid� indicates that the page is not in the process� logical address
space.

what happens when process tries to access address not in
permitted address space?

who would DO such a thing?

9.20 Silberschatz, Galvin and Gagne ©2003Operating System Concepts with Java

SegmentationSegmentation

Memory-management scheme that supports user view of
memory.

A program is a collection of segments. A segment is a logical
unit such as:

main program,

procedure,

function,

method,

object,

local variables, global variables,

common block,

stack,

symbol table, arrays

9.21 Silberschatz, Galvin and Gagne ©2003Operating System Concepts with Java

User�s View of a ProgramUser�s View of a Program

9.22 Silberschatz, Galvin and Gagne ©2003Operating System Concepts with Java

Logical View of SegmentationLogical View of Segmentation

1

3

2

4

1

4

2

3

user space physical memory space

9.23 Silberschatz, Galvin and Gagne ©2003Operating System Concepts with Java

Segmentation Architecture Segmentation Architecture

Logical address consists of a two tuple:

<segment-number, offset>,

Segment table � maps two-dimensional physical addresses;
each table entry has:

base � contains the starting physical address where the segments
reside in memory.

limit � specifies the length of the segment.

Segment-table base register (STBR) points to the segment
table�s location in memory.

Segment-table length register (STLR) indicates number of
segments used by a program

segment number s is legal if s < STLR.

9.24 Silberschatz, Galvin and Gagne ©2003Operating System Concepts with Java

Example of SegmentationExample of Segmentation

9.25 Silberschatz, Galvin and Gagne ©2003Operating System Concepts with Java

Virtual MemoryVirtual Memory

Virtual memory � separation of user logical memory from
physical memory.

Only part of the program needs to be in memory for execution.

Logical address space can therefore be much larger than physical
address space.

larger? how much larger?

Allows address spaces to be shared by several processes.

Allows for more efficient process creation.

Virtual memory can be implemented via:

Demand paging

Demand segmentation

9.26 Silberschatz, Galvin and Gagne ©2003Operating System Concepts with Java

Virtual Memory That is Larger Than Physical MemoryVirtual Memory That is Larger Than Physical Memory

9.27 Silberschatz, Galvin and Gagne ©2003Operating System Concepts with Java

Demand PagingDemand Paging

Bring a page into memory only when it is needed.

Less I/O needed

Less memory needed

Faster response

More users

Page is needed => reference to it

invalid reference => abort

not-in-memory => bring to memory

9.28 Silberschatz, Galvin and Gagne ©2003Operating System Concepts with Java

Transfer of a Paged Memory to Transfer of a Paged Memory to ContiguousContiguous Disk Space Disk Space
Why contiguous?Why contiguous?

9.29 Silberschatz, Galvin and Gagne ©2003Operating System Concepts with Java

Page FaultPage Fault

If there is ever a reference to a page, first reference will trap to
OS => page fault

OS looks at another table to decide:

Invalid reference => abort.

Just not in memory.

Get empty frame.

Swap page into frame.

9.30 Silberschatz, Galvin and Gagne ©2003Operating System Concepts with Java

Steps in Handling a Page FaultSteps in Handling a Page Fault

9.31 Silberschatz, Galvin and Gagne ©2003Operating System Concepts with Java

What happens if there is no free frame?What happens if there is no free frame?

Page replacement � find some page in memory, but not really in
use, swap it out.

algorithm?

performance � want an algorithm which will result in minimum
number of page faults.

Same page may be brought into memory several times.

9.32 Silberschatz, Galvin and Gagne ©2003Operating System Concepts with Java

Process CreationProcess Creation

Virtual memory allows other benefits during process creation:

- Copy-on-Write

- Memory-Mapped Files

9.33 Silberschatz, Galvin and Gagne ©2003Operating System Concepts with Java

Copy-on-WriteCopy-on-Write

Copy-on-Write (COW) allows both parent and child processes to
initially share the same pages in memory.

If either process modifies a shared page, only then is the page
copied.

COW allows more efficient process creation as only modified
pages are copied.

Free pages are allocated from a pool of zeroed-out pages.

9.34 Silberschatz, Galvin and Gagne ©2003Operating System Concepts with Java

Memory-Mapped FilesMemory-Mapped Files

Memory-mapped file I/O allows file I/O to be treated as routine
memory access by mapping a disk block to a page in memory.

A file is initially read using demand paging. A page-sized portion
of the file is read from the file system into a physical page.
Subsequent reads/writes to/from the file are treated as ordinary
memory accesses.

Simplifies file access by treating file I/O through memory rather
than read() write() system calls.

Also allows several processes to map the same file allowing the
pages in memory to be shared.

9.35 Silberschatz, Galvin and Gagne ©2003Operating System Concepts with Java

Page ReplacementPage Replacement

Prevent over-allocation of memory by modifying page-fault
service routine to include page replacement.

Use modify (dirty) bit to reduce overhead of page transfers � only
modified pages are written to disk.

Page replacement completes separation between logical
memory and physical memory � large virtual memory can be
provided on a smaller physical memory.

9.36 Silberschatz, Galvin and Gagne ©2003Operating System Concepts with Java

Basic Page ReplacementBasic Page Replacement

1. Find the location of the desired page on disk.

2. Find a free frame:
- If there is a free frame, use it.
- If there is no free frame, use a page replacement

algorithm to select a victim frame.

how can we efficiently select a victim?

3. Read the desired page into the (newly) free frame. Update the
page and frame tables.

4. Restart the process.

9.37 Silberschatz, Galvin and Gagne ©2003Operating System Concepts with Java

Page Replacement AlgorithmsPage Replacement Algorithms

Want lowest page-fault rate.

Evaluate algorithm by running it on a particular string of memory
references (reference string) and computing the number of page
faults on that string.

In all our examples, the reference string is

1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5.

9.38 Silberschatz, Galvin and Gagne ©2003Operating System Concepts with Java

First-In-First-Out (FIFO) AlgorithmFirst-In-First-Out (FIFO) Algorithm

�Reference string: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

�3 frames (3 pages can be in memory at a time per process)

�

1

2

3

1

2

3

4

1

2

5

3

4

9 page faults

9.39 Silberschatz, Galvin and Gagne ©2003Operating System Concepts with Java

First-In-First-Out (FIFO) AlgorithmFirst-In-First-Out (FIFO) Algorithm

�Reference string: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

�3 frames (3 pages can be in memory at a time per process)

�4 frames

�

�

�

�

�FIFO Replacement � Belady�s Anomaly

�more frames does not always result in fewer page faults

1

2

3

1

2

3

4

1

2

5

3

4

9 page faults

1

2

3

1

2

3

5

1

2

4

5 10 page faults

44 3

9.40 Silberschatz, Galvin and Gagne ©2003Operating System Concepts with Java

Optimal AlgorithmOptimal Algorithm

�Replace page that will not be used for longest period of time.

�4 frames example

 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

�Can we know this?

�Used for measuring how well your algorithm performs.

1

2

3

4

6 page faults

4 5

9.41 Silberschatz, Galvin and Gagne ©2003Operating System Concepts with Java

Least Recently Used (LRU) AlgorithmLeast Recently Used (LRU) Algorithm

�Reference string: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

�

�

�Counter implementation

�Every page entry has a counter; every time page is referenced through
this entry, copy the clock into the counter.

�When a page needs to be changed, look at the counters to determine
which are to change.

1

2

3

5

4

4 3

5

9.42 Silberschatz, Galvin and Gagne ©2003Operating System Concepts with Java

Counting AlgorithmsCounting Algorithms

Keep a counter of the number of references that have been
made to each page.

LFU Algorithm: replaces page with smallest count.

MFU Algorithm: based on the argument that the page with the
smallest count was probably just brought in and has yet to be
used.

9.43 Silberschatz, Galvin and Gagne ©2003Operating System Concepts with Java

ThrashingThrashing

If a process does not have �enough� pages, the page-fault rate is
very high. This leads to:

low CPU utilization.

operating system thinks that it needs to increase the degree of
multiprogramming.

another process added to the system.

Thrashing => a process is busy swapping pages in and out.

9.44 Silberschatz, Galvin and Gagne ©2003Operating System Concepts with Java

Thrashing Thrashing

Why does paging work?
Locality model

Process migrates from one locality to another.

Localities may overlap.

Why does thrashing occur?
size of locality > total memory size

9.45 Silberschatz, Galvin and Gagne ©2003Operating System Concepts with Java

Locality In A Memory-Reference PatternLocality In A Memory-Reference Pattern

< what's happening here?

9.46 Silberschatz, Galvin and Gagne ©2003Operating System Concepts with Java

Other Considerations Other Considerations

�Program data structure

�int A[][] = new int[1024][1024];

�Each row is stored in one page

�Program 1 : for (j = 0; j < A.length; j++)
 for (i = 0; i < A.length; i++)

A[i,j] = 0;
1024 x 1024 page faults

�Program 2 for (i = 0; i < A.length; i++)
 for (j = 0; j < A.length; j++)

A[i,j] = 0;

1024 page faults

9.47 Silberschatz, Galvin and Gagne ©2003Operating System Concepts with Java

Other Considerations (Cont.)Other Considerations (Cont.)

�I/O Interlock � Pages must sometimes be locked into memory.

�Consider I/O. Pages that are used for copying a file from a device
must be locked from being selected for eviction by a page
replacement algorithm.

�why?

9.48 Silberschatz, Galvin and Gagne ©2003Operating System Concepts with Java

Reason Why Frames Used For I/O Must Be In MemoryReason Why Frames Used For I/O Must Be In Memory

9.49 Silberschatz, Galvin and Gagne ©2003Operating System Concepts with Java

Some interesting memory issuesSome interesting memory issues

where can the system get memory resources?

motherboard, system bus, network, ...

how big should pages be?

depends on type/size of system

what is NUMA?

should the OS or application be memory locality aware?

how to get significant functionality in small memory?

PDAs, cell phones, ...

what problems occur with extremely large memory systems?

for example, Sun F15K can have 500MB+ memory

what are advantages/disadvantages of �RAM disks�?

Reading assignment:

cne.gmu.edu/pjd/PUBS/bvm.pdf

