
7a.1 Silberschatz, Galvin and Gagne ©2003Operating System Concepts with Java

Module 7a: Classic SynchronizationModule 7a: Classic Synchronization

Background

The Critical-Section Problem

Synchronization Hardware

Semaphores

Classical Problems of Synchronization

7a.2 Silberschatz, Galvin and Gagne ©2003Operating System Concepts with Java

BackgroundBackground

Concurrent access to shared data may result in data
inconsistency

where is this shared data?

Maintaining data consistency requires mechanisms to ensure
the orderly execution of cooperating processes

Shared-memory solution to bounded-butter problem (Chapter
4) has a race condition on the class data count.

what is a race condition?

7a.3 Silberschatz, Galvin and Gagne ©2003Operating System Concepts with Java

Race ConditionRace Condition

The Producer calls

 while (1) {

while (count == BUFFER_SIZE)

; // do nothing

// produce an item and put in nextProduced

buffer[in] = nextProduced;

in = (in + 1) % BUFFER_SIZE;

count++;

}

7a.4 Silberschatz, Galvin and Gagne ©2003Operating System Concepts with Java

Race ConditionRace Condition

The Consumer calls

 while (1) {

while (count == 0)

; // do nothing

nextConsumed = buffer[out];

out = (out + 1) % BUFFER_SIZE;

count--;

// consume the item in nextConsumed

}

7a.5 Silberschatz, Galvin and Gagne ©2003Operating System Concepts with Java

Race ConditionRace Condition

�count++ could be implemented as

 register1 = count
 register1 = register1 + 1
 count = register1

�count-- could be implemented as

 register2 = count
 register2 = register2 - 1
 count = register2

�Consider this execution interleaving:

S0: producer execute register1 = count {register1 = 5}
S1: producer execute register1 = register1 + 1 {register1 = 6}
S2: consumer execute register2 = count {register2 = 5}
S3: consumer execute register2 = register2 - 1 {register2 = 4}
S4: producer execute count = register1 {count = 6 }
S5: consumer execute count = register2 {count = 4}

7a.6 Silberschatz, Galvin and Gagne ©2003Operating System Concepts with Java

Solution to Critical-Section ProblemSolution to Critical-Section Problem

� 1. Mutual Exclusion - If process Pi is executing in its critical
section, then no other processes can be executing in their
critical sections
� critical section? what's that?

� 2. Progress - If no process is executing in its critical section
and there exist some processes that wish to enter their critical
section, then the selection of the processes that will enter the
critical section next cannot be postponed indefinitely
� why?

� 3. Bounded Waiting - A bound must exist on the number of
times that other processes are allowed to enter their critical
sections after a process has made a request to enter its
critical section and before that request is granted
� Assume that each process executes at a nonzero speed

� No assumption concerning relative speed of the N processes

7a.7 Silberschatz, Galvin and Gagne ©2003Operating System Concepts with Java

Algorithm 1Algorithm 1

Threads share a common integer variable turn

If turn == i, thread i is allowed to execute

Does not satisfy progress requirement

Why?

7a.8 Silberschatz, Galvin and Gagne ©2003Operating System Concepts with Java

Algorithm 2Algorithm 2

Add more state information

Boolean flags to indicate thread�s interest in entering critical
section

Progress requirement still not met

Why?

7a.9 Silberschatz, Galvin and Gagne ©2003Operating System Concepts with Java

Algorithm 3Algorithm 3

Combine ideas from 1 and 2

Can this meet critical section requirements?

7a.10 Silberschatz, Galvin and Gagne ©2003Operating System Concepts with Java

Synchronization HardwareSynchronization Hardware

Many systems provide hardware support for critical
section code

Uniprocessors � could disable interrupts, but...

Currently running code would execute without preemption

Generally too inefficient on multiprocessor systems

Operating systems using this not broadly scalable

Modern machines provide special atomic hardware
instructions

no, NOT nuclear powered!

7a.11 Silberschatz, Galvin and Gagne ©2003Operating System Concepts with Java

Synchronization HardwareSynchronization Hardware

Many systems provide hardware support for critical
section code

Uniprocessors � could disable interrupts, but...

Currently running code would execute without preemption

Generally too inefficient on multiprocessor systems

Operating systems using this not broadly scalable

Modern machines provide special atomic hardware
instructions

no, NOT nuclear powered!

Atomic = non-interruptable

Either test memory word and set value

Or swap contents of two memory words

7a.12 Silberschatz, Galvin and Gagne ©2003Operating System Concepts with Java

Thread Using get-and-set LockThread Using get-and-set Lock

// lock is shared by all threads

HardwareData lock = new HardwareData(false);

while (true) {

while (lock.getAndSet(true))

Thread.yield();

criticalSection();

lock.set(false);

nonCriticalSection();

}

7a.13 Silberschatz, Galvin and Gagne ©2003Operating System Concepts with Java

Thread Using swap InstructionThread Using swap Instruction

// lock is shared by all threads

HardwareData lock = new HardwareData(false);

// each thread has a local copy of key

HardwareData key = new HardwareData(true);

while (true) {

key.set(true);

do {

lock.swap(key);

}

while (key.get() == true);

criticalSection();

lock.set(false);

nonCriticalSection();

}

7a.14 Silberschatz, Galvin and Gagne ©2003Operating System Concepts with Java

SemaphoreSemaphore
Synchronization tool that does not require busy waiting
(spin lock)

Semaphore S � integer variable

Two standard operations modify S: acquire() and release()

Originally called P() and V()

Less complicated

Can only be accessed via two indivisible (atomic) operations

acquire(S) {

while S <= 0

; // no-op

S--;

}

release(S) {

S++;

}

7a.15 Silberschatz, Galvin and Gagne ©2003Operating System Concepts with Java

Semaphore as General Synchronization ToolSemaphore as General Synchronization Tool

Counting semaphore � integer value can range over an
unrestricted domain

Binary semaphore � integer value can range only between 0
and 1; can be simpler to implement

Also known as mutex locks

Can implement a counting semaphore S as a binary semaphore

Provides mutual exclusion

Semaphore S; // initialized to 1

acquire(S);

criticalSection();

release(S);

7a.16 Silberschatz, Galvin and Gagne ©2003Operating System Concepts with Java

Semaphore ImplementationSemaphore Implementation

Must guarantee that no two processes can execute acquire()
and release() on the same semaphore at the same time

Thus implementation becomes the critical section problem

Could now have busy waiting in critical section implementation

But implementation code is short

Little busy waiting if critical section rarely occupied

Applications may spend lots of time in critical sections

Performance issues addressed throughout this lecture

7a.17 Silberschatz, Galvin and Gagne ©2003Operating System Concepts with Java

Deadlock and StarvationDeadlock and Starvation

Deadlock � two or more processes are waiting indefinitely for an
event that can be caused by only one of the waiting processes

Let S and Q be two semaphores initialized to 1

P0 P1

 acquire(S); acquire(Q);

 acquire(Q); acquire(S);

. .

. .

. .

 release(S); release(Q);

 release(Q); release(S);

Starvation � indefinite blocking. A process may never be
removed from the semaphore queue in which it is suspended.

7a.18 Silberschatz, Galvin and Gagne ©2003Operating System Concepts with Java

Dining-Philosophers ProblemDining-Philosophers Problem

7a.19 Silberschatz, Galvin and Gagne ©2003Operating System Concepts with Java

Dining-Philosophers Problem (Cont.)Dining-Philosophers Problem (Cont.)

Philosopher i:

while (true) {

// get left chopstick

chopStick[i].acquire();

// get right chopstick

chopStick[(i + 1) % 5].acquire();

eating();

// return left chopstick

chopStick[i].release();

// return right chopstick

chopStick[(i + 1) % 5].release();

thinking();

}

What �data� is being shared? What problem can occur?

What REAL OS problem is being modeled?

7a.20 Silberschatz, Galvin and Gagne ©2003Operating System Concepts with Java

Program DemosProgram Demos

7a.21 Silberschatz, Galvin and Gagne ©2003Operating System Concepts with Java

Classical Problems of SynchronizationClassical Problems of Synchronization

Chapter 7.6

Bounded-Buffer Problem

Readers and Writers Problem

Dining-Philosophers Problem

Chapter 7 Homework

Read Java Synchronization paper (course website)

Read Pg 278, problem 7.16 (Sleeping Barber Problem), and Pg 278,
7.17 (Cigarette Smokers Problem). Choose ONE of these, and:

Read about, research (use Google), and discuss briefly what
REAL operating system synchronization challenge is modeled by
the problem. Describe what synchronization methods can be
used to solve the problem

Possible short paper topic: One-Lane Bridge Synchronization
Problem

Describe & discuss the problem...what REAL OS challenge is
modeled? How is it solved? Write a simple program that
illustrates the solution.

7a.22 Silberschatz, Galvin and Gagne ©2003Operating System Concepts with Java

Synchronization & DeadlocksSynchronization & Deadlocks
Chapters 7 & 8Chapters 7 & 8

To be continued next week...

