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Threads!

  Overview!
  Multithreading!
  Example Applications!
  User-level Threads!
  Kernel-level Threads!
  Hybrid Implementation!
  Observing Threads!
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Threads!

  A process, as defined so far, has only one 
thread of execution.!

  Idea: Allow multiple threads of execution within 
the same process environment, to a large degree 
independent of each other.!
•  Why?  To take advantage of ||ism!

  Multiple threads running in parallel in one 
process is analogous to having multiple 
processes running in parallel in one computer. !
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Threads (Cont.)!

  Multiple threads within a process will share!
•  The address space!

  and data!
•  Open files!
•  Other resources!

  Potential for efficient and close cooperation!
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Single and Multithreaded Processes!
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Multithreading!

  When a multithreaded process is run on a single 
CPU system, the threads take turns running. !

  All threads in the process have exactly  the 
same address space.!

Per Process Items!
Address Space!
Global Variables!
Open Files!
Accounting Information!

Per Thread Items!
Program Counter!
Registers!
Stack!
State!
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Thread 1! Thread 2! Thread 3!

Thread 1ʼs stack! Thread 3ʼs stack!

Process!

Kernel!

  Each thread can be in any one of the several 
states, just like processes.!

  Each thread has its own stack.!

Multithreading (Cont.)!
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Benefits!
  Responsiveness!

•  Multithreading an interactive application may allow  a 
program to continue running even if part of it is blocked or 
performing  a lengthy operation.!

  Resource Sharing!
•  Sharing the address space and other resources may result 

in high degree of cooperation!
  Economy!

•  Creating / managing processes is much more time 
consuming than managing threads.!

  Better Utilization of Multiprocessor Architectures!
•  in particular, CMT (SPARC), HyperThreading (Intel, AMD)!
•  thread switching is FAST!
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Example Multithreaded Applications!

  A word-processor with three threads!
•  Re-formatting!
•  Interacting with user!
•  Disk back-up!

  What would happen with a single-threaded 
program? !
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Example Multithreaded Applications!

  A multithreaded web server!
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Example Multithreaded Applications!
  The outline of the code for the dispatcher thread (a), and 

the worker thread (b).!

    while (TRUE) {                    while(TRUE) {!
      get_next_request(&buf);     wait_for_work(&buf); 

 handoff_work(&buf);            check_cache(&buf; &page);!
    }                                                 if_not_in_cache(&page) 

                                                 read_page_from_disk(&buf,  &page); 
                                                       return_page(&page);!

                                                              }  

     (a)                                                  (b)       !
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Threads in Multicore Platforms!

  Concurrent and parallel execution of threads!
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Threads in Multicore Platforms (Cont.)!

  Challenge: modify old programs and design new 
programs that are multithreaded!

  Issues:!
•  Dividing activities!
•  Balance!
•  Data splitting!
•  Data dependency !!!!

  synchronization !!!
•  Testing and debugging!
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Implementing Threads!

  Processes usually start with a single thread!
  Usually, library procedures are invoked to 

manage threads!
•  Thread_create: typically specifies the name of the 

procedure for the new thread to run!
•  Thread_exit!
•  Thread_join: blocks the calling thread until 

another (specific) thread has exited!
•  Thread_yield: voluntarily gives up the CPU  to let 

another thread run!
  Threads may be implemented in the user space 

or in the kernel space!
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Thread !

Process Table!Kernel!

Process!

Run-time system!

Thread table!

User!

Space!

Kernel!

Space!

User-level Threads!
  User threads are supported above the kernel and are 

implemented by a thread library at the user level.!
  The library (or run-time system) provides support for 

thread creation, scheduling and management with 
no support from the kernel.!
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User-level Threads (Cont.)!

  When threads are managed in user space, each process 
needs its own private thread table to keep track of the 
threads in that process. !

  The thread-table keeps track only of the per-thread 
items (program counter, stack pointer, register, state..) !

  When a thread does something that may cause it to 
become blocked locally (e.g. wait for another thread), it 
calls a run-time system procedure.!

  If the thread must be put into blocked state, the 
procedure performs thread switching.!
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User-level Threads: Advantages!

  The operating system does not need to support 
multi-threading.!

  Since the kernel is not involved, thread 
switching may be very fast.!

  Each process may have its own customized 
thread scheduling algorithm. !

  Thread scheduler may be implemented in the 
user space very efficiently.!
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User-level Threads: Problems!
  The implementation of  blocking system calls  is 

highly problematic (e.g. read from the keyboard). 
All the threads in the process risk being 
blocked!!

  Possible Solutions:!
•  Change all system calls to non-blocking!

•  Sometimes it may be possible to tell in advance if 
a call will block (e.g. select system call in some 
versions of Unix)  “jacket code” around system 
calls!

  How to deal with page faults?!
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Thread !

Process Table!Kernel!

Process!

Thread table!

Kernel-level threads!
  Kernel threads are supported directly by the OS: 

The kernel performs thread creation, scheduling 
and management in the kernel space!
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Kernel-level threads!

  The kernel has a thread table that keeps track of 
all threads in the system.!

  All calls that might block a thread are 
implemented as system calls (greater cost).!

  When a thread blocks, the kernel may choose 
another thread from the same process, or a 
thread from a different process.!

  Some kernels recycle their threads, new threads 
use the data-structures of already completed 
threads.!
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Hybrid Implementations!
  An alternative solution is to use kernel-level 

threads, and then multiplex user-level threads 
onto some or all of the kernel threads. !

  A kernel-level thread has some set of user-level 
threads that take turns using it. !
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Pthreads!

  A POSIX standard (IEEE 1003.1c) API for thread 
creation and synchronization.!

  API specifies behavior of the thread library, 
implementation is up to development of the 
library.!

  Common in UNIX operating systems!

  Pthread programs use various statements to 
manage threads: pthread_create, pthread_join, 
pthread_exit, pthread_attr_init,…!
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Thread Calls in POSIX!
Thread Call! Description!

pthread_create! Create a new thread in the callerʼs 
address space!

pthread_exit! Terminate the calling thread!

pthread_join! Wait for a thread to terminate!

pthread_mutex_init! Create a new mutex!

pthread_mutex_destroy! Destroy a mutex!

pthread_mutex_lock! Lock a mutex!

pthread_mutex_unlock! Unlock a mutex!

pthread_cond_init! Create a condition variable!

pthread_cond_destroy! Destroy a condition variable!

pthread_cond_wait! Wait on a condition variable!

pthread_cond_signal! Release one thread waiting on a condition 
variable!
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Windows XP Threads!
  Windows XP supports kernel-level threads!
  The primary data structures of a thread are:!

•  ETHREAD (executive thread block)!
  Thread start address!
  Pointer to parent process!
  Pointer to the corresponding KTHREAD!

•  KTHREAD (kernel thread block)!
  Scheduling and synchronization information!
  Kernel stack (used when the thread is running in 

kernel mode)!
  Pointer to TEB!

•  TEB (thread environment block)!
  Thread identifier!
  User-mode stack!
  Thread-local storage!
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Linux Threads!

  In addition to fork() system call, Linux provides 
the clone() system call, which may be used to 
create threads!

  Linux uses the term task (rather than process or 
thread) when referring to a flow of control!

  A set of flags, passed as arguments to the clone
() system call determine how much sharing is 
involved (e.g. open files, memory space, etc.)!
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Observing Threads!

  top –H!
  ps –eLf!
  pstree!
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