
 CS 571 - Lecture 3!
Threads!

George Mason University!
Spring 2010!

2.2!GMU – CS 571!

Threads!

  Overview!
  Multithreading!
  Example Applications!
  User-level Threads!
  Kernel-level Threads!
  Hybrid Implementation!
  Observing Threads!

2.3!GMU – CS 571!

Threads!

  A process, as defined so far, has only one
thread of execution.!

  Idea: Allow multiple threads of execution within
the same process environment, to a large degree
independent of each other.!
•  Why? To take advantage of ||ism!

  Multiple threads running in parallel in one
process is analogous to having multiple
processes running in parallel in one computer. !

2.4!GMU – CS 571!

Threads (Cont.)!

  Multiple threads within a process will share!
•  The address space!

  and data!
•  Open files!
•  Other resources!

  Potential for efficient and close cooperation!

2.5!GMU – CS 571!

Single and Multithreaded Processes!

2.6!GMU – CS 571!

Multithreading!

  When a multithreaded process is run on a single
CPU system, the threads take turns running. !

  All threads in the process have exactly the
same address space.!

Per Process Items!
Address Space!
Global Variables!
Open Files!
Accounting Information!

Per Thread Items!
Program Counter!
Registers!
Stack!
State!

2.7!GMU – CS 571!

Thread 1! Thread 2! Thread 3!

Thread 1ʼs stack! Thread 3ʼs stack!

Process!

Kernel!

  Each thread can be in any one of the several
states, just like processes.!

  Each thread has its own stack.!

Multithreading (Cont.)!

2.8!GMU – CS 571!

Benefits!
  Responsiveness!

•  Multithreading an interactive application may allow a
program to continue running even if part of it is blocked or
performing a lengthy operation.!

  Resource Sharing!
•  Sharing the address space and other resources may result

in high degree of cooperation!
  Economy!

•  Creating / managing processes is much more time
consuming than managing threads.!

  Better Utilization of Multiprocessor Architectures!
•  in particular, CMT (SPARC), HyperThreading (Intel, AMD)!
•  thread switching is FAST!

2.9!GMU – CS 571!

Example Multithreaded Applications!

  A word-processor with three threads!
•  Re-formatting!
•  Interacting with user!
•  Disk back-up!

  What would happen with a single-threaded
program? !

2.10!GMU – CS 571!

Example Multithreaded Applications!

  A multithreaded web server!

2.11!GMU – CS 571!

Example Multithreaded Applications!
  The outline of the code for the dispatcher thread (a), and

the worker thread (b).!

 while (TRUE) { while(TRUE) {!
 get_next_request(&buf); wait_for_work(&buf); 

 handoff_work(&buf); check_cache(&buf; &page);!
 } if_not_in_cache(&page) 

 read_page_from_disk(&buf, &page); 
 return_page(&page);!

 }  

 (a) (b) !

2.12!GMU – CS 571!

Threads in Multicore Platforms!

  Concurrent and parallel execution of threads!

2.13!GMU – CS 571!

Threads in Multicore Platforms (Cont.)!

  Challenge: modify old programs and design new
programs that are multithreaded!

  Issues:!
•  Dividing activities!
•  Balance!
•  Data splitting!
•  Data dependency !!!!

  synchronization !!!
•  Testing and debugging!

2.14!GMU – CS 571!

Implementing Threads!

  Processes usually start with a single thread!
  Usually, library procedures are invoked to

manage threads!
•  Thread_create: typically specifies the name of the

procedure for the new thread to run!
•  Thread_exit!
•  Thread_join: blocks the calling thread until

another (specific) thread has exited!
•  Thread_yield: voluntarily gives up the CPU to let

another thread run!
  Threads may be implemented in the user space

or in the kernel space!

2.15!GMU – CS 571!

Thread !

Process Table!Kernel!

Process!

Run-time system!

Thread table!

User!

Space!

Kernel!

Space!

User-level Threads!
  User threads are supported above the kernel and are

implemented by a thread library at the user level.!
  The library (or run-time system) provides support for

thread creation, scheduling and management with
no support from the kernel.!

2.16!GMU – CS 571!

User-level Threads (Cont.)!

  When threads are managed in user space, each process
needs its own private thread table to keep track of the
threads in that process. !

  The thread-table keeps track only of the per-thread
items (program counter, stack pointer, register, state..) !

  When a thread does something that may cause it to
become blocked locally (e.g. wait for another thread), it
calls a run-time system procedure.!

  If the thread must be put into blocked state, the
procedure performs thread switching.!

2.17!GMU – CS 571!

User-level Threads: Advantages!

  The operating system does not need to support
multi-threading.!

  Since the kernel is not involved, thread
switching may be very fast.!

  Each process may have its own customized
thread scheduling algorithm. !

  Thread scheduler may be implemented in the
user space very efficiently.!

2.18!GMU – CS 571!

User-level Threads: Problems!
  The implementation of blocking system calls is

highly problematic (e.g. read from the keyboard).
All the threads in the process risk being
blocked!!

  Possible Solutions:!
•  Change all system calls to non-blocking!

•  Sometimes it may be possible to tell in advance if
a call will block (e.g. select system call in some
versions of Unix)  “jacket code” around system
calls!

  How to deal with page faults?!

2.19!GMU – CS 571!

Thread !

Process Table!Kernel!

Process!

Thread table!

Kernel-level threads!
  Kernel threads are supported directly by the OS:

The kernel performs thread creation, scheduling
and management in the kernel space!

2.20!GMU – CS 571!

Kernel-level threads!

  The kernel has a thread table that keeps track of
all threads in the system.!

  All calls that might block a thread are
implemented as system calls (greater cost).!

  When a thread blocks, the kernel may choose
another thread from the same process, or a
thread from a different process.!

  Some kernels recycle their threads, new threads
use the data-structures of already completed
threads.!

2.21!GMU – CS 571!

Hybrid Implementations!
  An alternative solution is to use kernel-level

threads, and then multiplex user-level threads
onto some or all of the kernel threads. !

  A kernel-level thread has some set of user-level
threads that take turns using it. !

2.22!GMU – CS 571!

Pthreads!

  A POSIX standard (IEEE 1003.1c) API for thread
creation and synchronization.!

  API specifies behavior of the thread library,
implementation is up to development of the
library.!

  Common in UNIX operating systems!

  Pthread programs use various statements to
manage threads: pthread_create, pthread_join,
pthread_exit, pthread_attr_init,…!

2.23!GMU – CS 571!

Thread Calls in POSIX!
Thread Call! Description!

pthread_create! Create a new thread in the callerʼs
address space!

pthread_exit! Terminate the calling thread!

pthread_join! Wait for a thread to terminate!

pthread_mutex_init! Create a new mutex!

pthread_mutex_destroy! Destroy a mutex!

pthread_mutex_lock! Lock a mutex!

pthread_mutex_unlock! Unlock a mutex!

pthread_cond_init! Create a condition variable!

pthread_cond_destroy! Destroy a condition variable!

pthread_cond_wait! Wait on a condition variable!

pthread_cond_signal! Release one thread waiting on a condition
variable!

2.24!GMU – CS 571!

Windows XP Threads!
  Windows XP supports kernel-level threads!
  The primary data structures of a thread are:!

•  ETHREAD (executive thread block)!
  Thread start address!
  Pointer to parent process!
  Pointer to the corresponding KTHREAD!

•  KTHREAD (kernel thread block)!
  Scheduling and synchronization information!
  Kernel stack (used when the thread is running in

kernel mode)!
  Pointer to TEB!

•  TEB (thread environment block)!
  Thread identifier!
  User-mode stack!
  Thread-local storage!

2.25!GMU – CS 571!

Linux Threads!

  In addition to fork() system call, Linux provides
the clone() system call, which may be used to
create threads!

  Linux uses the term task (rather than process or
thread) when referring to a flow of control!

  A set of flags, passed as arguments to the clone
() system call determine how much sharing is
involved (e.g. open files, memory space, etc.)!

2.26!

Observing Threads!

  top –H!
  ps –eLf!
  pstree!

GMU – CS 571!

