
 Abstract:

For many types of computer applications, more than one process or program must
share access to a common data structure.  This concurrent access requirement gives
rise to several classic problems:  how to avoid deadlocks and race conditions.  These 
problems have been extensively studied, and numerous solutions have been proposed.

This paper introduces the concepts necessary for the beginning Java programmer to 
understand process synchronization, and discusses how the Java language allows 
programmers to write applications that avoid synchronization problems.
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Introduction - The Problems

Deadlock

Every workday, Neil, Sue, Ed, and Wayne drive 
to their respective offices.  They travel through 
the intersection of Oak Street and Maple 
Avenue, where there are "4-way" stop signs:

 

 
Each of these drivers strictly obeys the traffic 
rule that says if two cars travelling in 
perpendicular directions arrive at the 
intersection at exactly the same time, then the 
driver on the left yields to the driver on the 
right.  So, if Neil and Ed happen to arrive at the 
intersection simultaneously, Ed must yield to 
Neil.

Several days ago, Neil, Sue, Ed, and Wayne 
happened to arrive at this intersection at exactly 
the same moment.  Each of them, following their 
interpretation of the traffic rule, started waiting 
for the driver on the right to move through the 
intersection.  They are still waiting.

This unfortunate situation is known as deadlock, 
and it occurs frequently, although briefly, in 
many real-life situations.  When it happens with 
people, someone usually grows impatient and 
"breaks the rule", allowing activity to continue.  
Computers, on the other hand, don’t grow 
impatient no matter how long they wait, and 
they have to be told explicitly what rules to 
follow.  The rules must prevent deadlock, or the 
computer will stop working.

For example, suppose one computer program 
has "locked" FILE.1 for exclusive use, and  
another program has locked FILE.2.  If the first 
program also decides that it needs FILE.2, while 
at the same time the second program decides 
that it  needs FILE.1, deadlock will occur if there 
are no explicit rules for locking and releasing 
files.  Both programs, and perhaps the computer 
itself, will stop executing instructions.
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Race Conditions

George and Martha have a joint account 
containing $100 at Maxwell Bank.  They each 
have an ATM (Automatic Teller Machine) card 
that allows them to check their account balance 
and to withdraw funds.  One day, both George 
and Martha each decided that they needed $75.  
George conducted the following ATM 
transactions at 1:35PM:
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At 1:48PM, Martha, at a different location, 
conducted this ATM transaction:
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Martha then assumes that George withdrew 
money from the account.

However, suppose George and Martha both 
arrive at two different ATMs at 1:35PM.  They 
start their transactions:
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At this point, Martha is puzzled because the 
ATM told her there was $100 in the account and 
she only asked for $75!  This resulted from a race 
condition, where the transaction component that 
executed first did not block other transactions 
until the first set completed.  Even worse, if the 
ATM software does not prevent certain race 
conditions, both George and Martha could each 
walk away with $75!  Good for them, bad for the 
bank.  

Fortunately, real ATM software is designed to 
prevent these race condition problems.  How 
this is accomplished is explained in the 
Solutions section of this paper. 

Producing and Consuming 

In a now classic TV comedy routine, Lucille Ball 
removes completed cakes from an automated 
bakery, places them in boxes and stacks them 
for shipment.  She occasionally pauses to lick 
some icing off a cake, causing her to fall behind 
the continuous flow of cakes.  Eventually, even 
when she tries to work faster, the machine gets 
the better of her, and cakes start falling to the 
floor. 

The automatic bakery is an example of a 
"producer", and Lucy is a "consumer"; the 
desired solution is for the producer to stop item 
production until the consumer catches up, then 
to resume production.  Every item produced 
must be consumed. 

For computers, the solution to this problem is 
critical.  Data sent from one process or system 
must arrive complete at another process or 
system; no data can be lost.  Copying files from 
one location to another, sending email, and 
establishing two-way communications via 
modems or networks all require 
synchronization of producer and consumer 
processes.  In most cases these processes work at 
disparate speeds, requiring one process to pause 
while the other continues. 

Some Classic Computer Science Problems 

The requirements of producer and consumer 
processes, resource allocation, and the need to 
avoid deadlocks and race conditions, are 
highlighted by several classic problems in 
computer science. 

In 1965, E. Dijkstra proposed the "Dining 
Philosophers" problem as a metaphor for 
process synchronization[1].  In this problem, five 
philosophers sit around a circular table either 
thinking or eating.  Each philosopher requires 
two forks to eat and there is a single fork 
between each philosopher.  When hungry, a 
philosopher tries to take a fork, waits to take a 
second fork, then eats and puts down the forks.  
The challenge is to design a set of rules and 
signals that prevent a deadlock, which would 
occur if each philosopher picked up his right 
fork at the same time, then patiently waited 
forever for a left fork.  This problem is relevant 
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to computer systems with multiple processors 
(philosophers) that need shared resources 
(forks) to run programs (food). 

Another class of synchronization problems 
concerns multiple processes that write to a 
common data area while additional processes 
read from that same data area.  The "Readers 
and Writers" problems, described by P. Courtois 
in 1971[2], requires a solution that prevents race 
conditions; reader processes must wait for 
writer processes to start and complete. 

Some synchronization problems involve waiting 
in queues, such as the "Sleeping Barber 
Problem"[3].  One or more barbers sleep in their 
shop until customers arrive and wake them for a 
haircut.  If several customers arrive, they sleep 
in a queue until a barber is ready.  Rules are 
required to prevent everyone in the shop from 
falling asleep. In computer systems, processes 
waiting for other processes to complete will 
"sleep" until the events they are awaiting wake 
them up, such as the completion of I/O 
operations.  Procedures are required that will 
avoid sleeping processes waiting forever to 
wake each other up, or processes missing 
wakeup events entirely. 

Solutions 

Some Classic Solutions 

Deadlocks and race conditions in computer 
programs are extremely difficult to reproduce 
and debug, because their occurrence depends on 
the precise timing and order of sets of 
instructions. Solutions were therefore devised 
that were "provably correct" in the sense of a 
mathematical algorithm or theorem. 

One requirement of these solutions concerns 
access to shared data: when one process is 
modifying that data, other processes must be 
excluded from accessing that data.  The section 
of a process that accesses shared data is called 
its "critical section", and all processes must 
follow the rule of "mutual exclusion": only one 
process may be executing instructions in its 
critical section at a given instant. 

In order to both test whether another process 
was in its critical section and exclude other 

processes when necessary, an "atomic operation" 
is required.  Such an operation looks like a 
single instruction to the programmer, and is 
guaranteed by the hardware and operating 
system to complete without interruption.  The 
"test-and-set-lock" instruction is an example of 
this.  A process tests whether a lock is set on its 
critical section.  If so, it continues to test until the 
lock is removed, then it sets the lock itself, enters 
and completes its own critical section, and 
unsets the lock.  While this procedure works, it 
requires that all processes waiting to enter their 
critical sections continuously run to test the lock, 
a waste of CPU resources.  This continuous 
testing is called "busy waiting".  There is a better 
solution known as "sleep and wakeup". 

Dijkstra proposed the use of "semaphores" to 
solve the mutual exclusion problem.  A 
semaphore is a shared data item used to indicate 
permission for a process to enter its critical 
section, along with atomic operations for 
changing the semaphore.  Additionally, 
processes waiting to enter their critical sections 
would "block" or "sleep" instead of continuously 
testing a lock.  The blocking process must wake 
up the sleeping process that was waiting for the 
semaphore to change. This solves the process 
synchronization problem, and it is widely used 
in multiprocess programming.  However, 
correctly programming sleep and wakeup 
semaphore actions to prevent deadlock can be 
difficult, so additional solutions have been 
proposed. 

In 1974 C.Hoare[4] described the use of 
"monitor" programs which simplify the 
programmers task of managing the critical 
sections of multiple processes.  Implemented in 
the operating system itself, a monitor guarantees 
that only one process may be executing its 
critical section; other processes controlled by the 
monitor are suspended. 

Current Solutions 

As both computer hardware and operating 
systems continued to evolve, simpler yet more 
powerful concepts were needed to implement 
multiple concurrent processes running on 
multiprocessor systems.  Starting in the late 
1980s, operating systems such as Mach, OS/2, 
and updated versions of UNIX implemented 
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fine-grained control of sequences of instructions 
called "threads". 

A thread is the smallest sequence of instructions 
schedulable as a unit by the operating system[5].  
Threads in the same process share the same 
address space and global variables.  Each 
thread, however, has its own program counter, 
stack, register contents, and state.  Each thread 
can execute independently and concurrently, 
although threads that share access to common 
data should be synchronized.  Modern 
programming languages and operating systems 
provide access to threads and the means to 
control and synchronize them.  Critical sections 
of programs may be easily implemented as 
independent, mutually exclusive threads. 

The use of multi-threaded programming 
techniques can significantly improve system 
performance, improve interprocess 
communications, and simplify the task of 
writing multiprocess programs.  Certain data 
processing tasks are inherently multi-threaded, 
for example a distributed file system server that 
must handle multiple simultaneous client 
requests, or a complex, multi-user database 
program.  Certain mathematical computations, 
such as array or matrix calculations, may also 
benefit by organization into groups of 
independent threads.  In fact, some FORTRAN 
compilers can recognize independent 
computation loops and produce multi-threaded 
executables. 

Multi-Threaded Programming in Java 

Support for the Thread class of objects is one of 
the Java language’s most important features.  
Threads may be used in both application 
programs and in applets, which are programs 
embedded in a Web page and executed by the 
Java  interpreter built into the browser that is 
displaying the page.  The Java interpreter has a 
thread "scheduler" that manages all the threads 
of a program and decides which ones are to be 
run.  

Programs that need to perform several 
independent or cooperating tasks should be 
organized into threads, some of which may need 
to be synchronized. 

The Java programmer can create and execute 
multiple threads in a program, and can 
explicitly control these threads with methods 
that are defined in the java.lang package.  Most 
of the interesting and useful Java applications 
and applets require the use of threads, such as 
those with concurrent animation and audio, or 
applications that share access to data. 

To create a thread in Java, the programmer 
defines a subclass of the Thread class:
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Then an instance of that thread must be created 
with the new operator and executed with the 
start() method:
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The start() method calls the run() method to 
execute the thread.

The programmer can now manage this thread 
with any of the following methods:
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A thread’s run() method may be declared to be 
synchronized.  The Java interpreter guarantees  
that only one synchronized method may modify 
an object at a given instant by setting a lock on 
that object; no other thread may modify the 
object until the lock is released.

In the example above, NuThread may be 
defined as a synchronized thread as follows:
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Synchronized threads must inform each other 
when one thread is finished and another waiting 
thread may begin.  Threads can be told to wait 
until notified by another thread, or to wait until 
a given time has expired:
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A running thread may inform a single waiting 
thread using the notify() method, or may notify 
all waiting threads using the notifyAll() method.

A Simple Example

Suppose you want one Java thread to send 
messages to another Java thread.  That is, you 
want to illustrate the Producer-Consumer 
Problem using Java[7].  Listing PC1.java 
(Appendix) defines a shared variable that 
receives messages from the put() method, and is 
then read by the get() method.  The 
Produce_Consume class creates and starts the 
Producer thread and the Consumer thread, but 
in program PC1.java  these threads are not 
synchronized.  This means that the two threads 
pay no attention to each other when writing or 
reading the shared message variable, with 
incorrect results:
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The Consumer thread read the first message and 
kept running, completing before the Producer 
even sent its second message!  What is needed is 
for the Consumer to synchronize with the 
Producer, so that all messages get consumed.  
This is accomplished by declaring that the put() 
and get() methods are synchronized threads (see 

listing PC2.java in the Appendix), that they each 
wait() while the other thread has locked access to 
the shared variable, and  notify() the waiting 
thread when each of them are finished with 
their task.  When PC2 is run, the Producer 
thread writes a message then waits for the 
Consumer thread to read it.  While the Producer 
is writing, the Consumer is blocked from 
running.  When the Producer notifies the 
Consumer that it is finished, the Consumer 
thread runs and blocks the Producer.  This 
produces the desired alternation of producing 
and consuming:
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Every message produced gets consumed; no 
messages are "lost".

The Shared_Buffer class in this example 
implements a monitor for the synchronized put() 
and get() methods, guaranteeing that only one 
thread (critical section) may execute and access 
the shared variable msg, ensuring mutual 
exclusion.

Conclusion

Beginning Java programmers must understand 
several important concepts beyond syntax, 
control flow, and variable declaration:  the 
Object Oriented nature of the language, and the 
control and synchronization of threads.  Java was 
designed to simplify the writing of multi-
threaded programs.  Additional examples of 
such programs may be found in the tutorial 
books and Web pages mentioned in the 
Bibliography.
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Appendix

// PC1.java
//
// Simple example of UNsynchronized producer and consumer
// threads...producer thread writes messages (random
// numbers between 0 and 1000) into a shared variable (m),
// while the consumer thread reads the messages.
//
// For simplicity, all classes are defined in this one
// source file.  To compile the program, execute
// ’javac PC1.java’.  This will produce 4 class files:
//
//      Produce_Consume.class    - the main program
//      Consumer.class           - the consumer thread
//      Producer.class           - the producer thread
//      SharedBuffer.class       - the "monitor", unsynchronized
//
// To run the program, enter ’java Produce_Consume’.
// This will display the messages as they are sent
// and received by each thread.
//

class Produce_Consume 
   {
   public static void main(String args[]) 
      {
      SharedBuffer m = new SharedBuffer();
      Producer prod = new Producer(m);
      Consumer cons = new Consumer(m);

      prod.start();
      cons.start();
      }
   }

class SharedBuffer 
   {
   private int msg; 
   public int get() 
      {
      return msg;
      }

   public void put(int message) 
      {
      msg = message;
      }
   }

class Producer extends Thread 
   {
   private SharedBuffer shbuf;
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   public Producer(SharedBuffer m) 
      {
      shbuf = m;
      }

   public void run() 
      {
      int j;
      for (int i = 0; i < 10; i++) 
         {
         j = (int)(Math.random() * 1000);
         shbuf.put(j);
         System.out.println("Producer put: " + j);
         try 
            {
            sleep((int)(Math.random() * 100));
            } 
         catch (InterruptedException e) { }
         }
      }
   }

class Consumer extends Thread 
   {
   private SharedBuffer shbuf;

   public Consumer(SharedBuffer m) 
      {
      shbuf = m;
      }

   public void run() 
      {
      int message = 0;
      for (int i = 0; i < 10; i++) 
         {
         message = shbuf.get();
         System.out.println("Consumer got: " + message);
         }
      }
   }
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Appendix

// PC2.java
//
// Simple example of synchronized producer and consumer
// threads...producer thread writes messages (random
// numbers between 0 and 1000) into a shared variable (m),
// while the consumer thread reads the messages.
//
// For simplicity, all classes are defined in this one
// source file.  To compile the program, execute
// ’javac PC2.java’.  This will produce 4 class files:
//
//      Produce_Consume.class    - the main program
//      Consumer.class           - the consumer thread
//      Producer.class           - the producer thread
//      SharedBuffer.class       - the "monitor", synchronized
//
// To run the program, enter ’java Produce_Consume’.
// This will display the messages as they are sent
// and received by each thread.
//

class Produce_Consume 
   {
   public static void main(String args[]) 
      {
      SharedBuffer m = new SharedBuffer();
      Producer prod = new Producer(m);
      Consumer cons = new Consumer(m);

      prod.start();
      cons.start();
      }
   }

class SharedBuffer 
   {
   private int msg; 
   private boolean locked = true;

   public synchronized int get() 
      {
      while (locked == true) 
         {
         try 
            {
            wait();
            } 
         catch (InterruptedException e) { }
         }
      locked = true;
      notify();
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      return msg;
      }

   public synchronized void put(int message) 
      {
      while (locked == false) 
         {
         try 
            {
            wait();
            } 
         catch (InterruptedException e) { }
         }
      msg = message;
      locked = false;
      notify();
      }
   }

class Producer extends Thread 
   {
   private SharedBuffer shbuf;

   public Producer(SharedBuffer m) 
      {
      shbuf = m;
      }

   public void run() 
      {
      int j;
      for (int i = 0; i < 10; i++) 
         {
         j = (int)(Math.random() * 1000);
         shbuf.put(j);
         System.out.println("Producer put: " + j);
         try 
            {
            sleep((int)(Math.random() * 100));
            } 
         catch (InterruptedException e) { }
         }
      }
   }

class Consumer extends Thread 
   {
   private SharedBuffer shbuf;

   public Consumer(SharedBuffer m) 
      {
      shbuf = m;
      }
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   public void run() 
      {
      int message = 0;
      for (int i = 0; i < 10; i++) 
         {
         message = shbuf.get();
         System.out.println("Consumer got: " + message);
         }
      }
   }


