
 Abstract:

For many types of computer applications, more than one process or program must
share access to a common data structure. This concurrent access requirement gives
rise to several classic problems: how to avoid deadlocks and race conditions. These
problems have been extensively studied, and numerous solutions have been proposed.

This paper introduces the concepts necessary for the beginning Java programmer to
understand process synchronization, and discusses how the Java language allows
programmers to write applications that avoid synchronization problems.

STOP

N

S
T

O
P

W

STOP

S

S
TO

P

E

narya:/home/hfoxwell/INFS601/javasync.aw

Introduction to Process Synchronization
Using the Java Language

Harry J. Foxwell, Java Technologist
Sun Microsystems Computer Corporation

harry.foxwell@east.sun.com

August 1997

Introduction - The Problems

Deadlock

Every workday, Neil, Sue, Ed, and Wayne drive
to their respective offices. They travel through
the intersection of Oak Street and Maple
Avenue, where there are "4-way" stop signs:

Each of these drivers strictly obeys the traffic
rule that says if two cars travelling in
perpendicular directions arrive at the
intersection at exactly the same time, then the
driver on the left yields to the driver on the
right. So, if Neil and Ed happen to arrive at the
intersection simultaneously, Ed must yield to
Neil.

Several days ago, Neil, Sue, Ed, and Wayne
happened to arrive at this intersection at exactly
the same moment. Each of them, following their
interpretation of the traffic rule, started waiting
for the driver on the right to move through the
intersection. They are still waiting.

This unfortunate situation is known as deadlock,
and it occurs frequently, although briefly, in
many real-life situations. When it happens with
people, someone usually grows impatient and
"breaks the rule", allowing activity to continue.
Computers, on the other hand, don’t grow
impatient no matter how long they wait, and
they have to be told explicitly what rules to
follow. The rules must prevent deadlock, or the
computer will stop working.

For example, suppose one computer program
has "locked" FILE.1 for exclusive use, and
another program has locked FILE.2. If the first
program also decides that it needs FILE.2, while
at the same time the second program decides
that it needs FILE.1, deadlock will occur if there
are no explicit rules for locking and releasing
files. Both programs, and perhaps the computer
itself, will stop executing instructions.

narya:/home/hfoxwell/INFS601/javasync.aw

Race Conditions

George and Martha have a joint account
containing $100 at Maxwell Bank. They each
have an ATM (Automatic Teller Machine) card
that allows them to check their account balance
and to withdraw funds. One day, both George
and Martha each decided that they needed $75.
George conducted the following ATM
transactions at 1:35PM:

�����������
	�������������������������
����� �!	"�������������$#%'&���(%(

�����%�����)	+*!#�,%-%.����0/1&�2�3
����� ��	54%6879.�����#;:��%��=<��%�%��>@?
����� ��	5�������������'#�A&�B�3

At 1:48PM, Martha, at a different location,
conducted this ATM transaction:

�C����,�-��D	�������������������������
�����!BD	5�������������'#�A&�B�3

Martha then assumes that George withdrew
money from the account.

However, suppose George and Martha both
arrive at two different ATMs at 1:35PM. They
start their transactions:

�����������)	��!��E�;���F�������������
�����G��	"�������������'#�'&���(%(

�H����,�-��
	��!��E�;���F�������������
�����CBD	"�������������'#�'&���(%(

�����������
	�*!#;,�-%.��%�I/1&%2�3
����� �!	"4%6879.�����#;:�����=<����%��>@?

�C����,�-��D	�*!#;,�-%.��%�I/1&%2�3
�����!B 	KJ���;LC�%��#���#�����,'M�L���.� N

At this point, Martha is puzzled because the
ATM told her there was $100 in the account and
she only asked for $75! This resulted from a race
condition, where the transaction component that
executed first did not block other transactions
until the first set completed. Even worse, if the
ATM software does not prevent certain race
conditions, both George and Martha could each
walk away with $75! Good for them, bad for the
bank.

Fortunately, real ATM software is designed to
prevent these race condition problems. How
this is accomplished is explained in the
Solutions section of this paper.

Producing and Consuming

In a now classic TV comedy routine, Lucille Ball
removes completed cakes from an automated
bakery, places them in boxes and stacks them
for shipment. She occasionally pauses to lick
some icing off a cake, causing her to fall behind
the continuous flow of cakes. Eventually, even
when she tries to work faster, the machine gets
the better of her, and cakes start falling to the
floor.

The automatic bakery is an example of a
"producer", and Lucy is a "consumer"; the
desired solution is for the producer to stop item
production until the consumer catches up, then
to resume production. Every item produced
must be consumed.

For computers, the solution to this problem is
critical. Data sent from one process or system
must arrive complete at another process or
system; no data can be lost. Copying files from
one location to another, sending email, and
establishing two-way communications via
modems or networks all require
synchronization of producer and consumer
processes. In most cases these processes work at
disparate speeds, requiring one process to pause
while the other continues.

Some Classic Computer Science Problems

The requirements of producer and consumer
processes, resource allocation, and the need to
avoid deadlocks and race conditions, are
highlighted by several classic problems in
computer science.

In 1965, E. Dijkstra proposed the "Dining
Philosophers" problem as a metaphor for
process synchronization[1]. In this problem, five
philosophers sit around a circular table either
thinking or eating. Each philosopher requires
two forks to eat and there is a single fork
between each philosopher. When hungry, a
philosopher tries to take a fork, waits to take a
second fork, then eats and puts down the forks.
The challenge is to design a set of rules and
signals that prevent a deadlock, which would
occur if each philosopher picked up his right
fork at the same time, then patiently waited
forever for a left fork. This problem is relevant

narya:/home/hfoxwell/INFS601/javasync.aw

to computer systems with multiple processors
(philosophers) that need shared resources
(forks) to run programs (food).

Another class of synchronization problems
concerns multiple processes that write to a
common data area while additional processes
read from that same data area. The "Readers
and Writers" problems, described by P. Courtois
in 1971[2], requires a solution that prevents race
conditions; reader processes must wait for
writer processes to start and complete.

Some synchronization problems involve waiting
in queues, such as the "Sleeping Barber
Problem"[3]. One or more barbers sleep in their
shop until customers arrive and wake them for a
haircut. If several customers arrive, they sleep
in a queue until a barber is ready. Rules are
required to prevent everyone in the shop from
falling asleep. In computer systems, processes
waiting for other processes to complete will
"sleep" until the events they are awaiting wake
them up, such as the completion of I/O
operations. Procedures are required that will
avoid sleeping processes waiting forever to
wake each other up, or processes missing
wakeup events entirely.

Solutions

Some Classic Solutions

Deadlocks and race conditions in computer
programs are extremely difficult to reproduce
and debug, because their occurrence depends on
the precise timing and order of sets of
instructions. Solutions were therefore devised
that were "provably correct" in the sense of a
mathematical algorithm or theorem.

One requirement of these solutions concerns
access to shared data: when one process is
modifying that data, other processes must be
excluded from accessing that data. The section
of a process that accesses shared data is called
its "critical section", and all processes must
follow the rule of "mutual exclusion": only one
process may be executing instructions in its
critical section at a given instant.

In order to both test whether another process
was in its critical section and exclude other

processes when necessary, an "atomic operation"
is required. Such an operation looks like a
single instruction to the programmer, and is
guaranteed by the hardware and operating
system to complete without interruption. The
"test-and-set-lock" instruction is an example of
this. A process tests whether a lock is set on its
critical section. If so, it continues to test until the
lock is removed, then it sets the lock itself, enters
and completes its own critical section, and
unsets the lock. While this procedure works, it
requires that all processes waiting to enter their
critical sections continuously run to test the lock,
a waste of CPU resources. This continuous
testing is called "busy waiting". There is a better
solution known as "sleep and wakeup".

Dijkstra proposed the use of "semaphores" to
solve the mutual exclusion problem. A
semaphore is a shared data item used to indicate
permission for a process to enter its critical
section, along with atomic operations for
changing the semaphore. Additionally,
processes waiting to enter their critical sections
would "block" or "sleep" instead of continuously
testing a lock. The blocking process must wake
up the sleeping process that was waiting for the
semaphore to change. This solves the process
synchronization problem, and it is widely used
in multiprocess programming. However,
correctly programming sleep and wakeup
semaphore actions to prevent deadlock can be
difficult, so additional solutions have been
proposed.

In 1974 C.Hoare[4] described the use of
"monitor" programs which simplify the
programmers task of managing the critical
sections of multiple processes. Implemented in
the operating system itself, a monitor guarantees
that only one process may be executing its
critical section; other processes controlled by the
monitor are suspended.

Current Solutions

As both computer hardware and operating
systems continued to evolve, simpler yet more
powerful concepts were needed to implement
multiple concurrent processes running on
multiprocessor systems. Starting in the late
1980s, operating systems such as Mach, OS/2,
and updated versions of UNIX implemented

narya:/home/hfoxwell/INFS601/javasync.aw

fine-grained control of sequences of instructions
called "threads".

A thread is the smallest sequence of instructions
schedulable as a unit by the operating system[5].
Threads in the same process share the same
address space and global variables. Each
thread, however, has its own program counter,
stack, register contents, and state. Each thread
can execute independently and concurrently,
although threads that share access to common
data should be synchronized. Modern
programming languages and operating systems
provide access to threads and the means to
control and synchronize them. Critical sections
of programs may be easily implemented as
independent, mutually exclusive threads.

The use of multi-threaded programming
techniques can significantly improve system
performance, improve interprocess
communications, and simplify the task of
writing multiprocess programs. Certain data
processing tasks are inherently multi-threaded,
for example a distributed file system server that
must handle multiple simultaneous client
requests, or a complex, multi-user database
program. Certain mathematical computations,
such as array or matrix calculations, may also
benefit by organization into groups of
independent threads. In fact, some FORTRAN
compilers can recognize independent
computation loops and produce multi-threaded
executables.

Multi-Threaded Programming in Java

Support for the Thread class of objects is one of
the Java language’s most important features.
Threads may be used in both application
programs and in applets, which are programs
embedded in a Web page and executed by the
Java interpreter built into the browser that is
displaying the page. The Java interpreter has a
thread "scheduler" that manages all the threads
of a program and decides which ones are to be
run.

Programs that need to perform several
independent or cooperating tasks should be
organized into threads, some of which may need
to be synchronized.

The Java programmer can create and execute
multiple threads in a program, and can
explicitly control these threads with methods
that are defined in the java.lang package. Most
of the interesting and useful Java applications
and applets require the use of threads, such as
those with concurrent animation and audio, or
applications that share access to data.

To create a thread in Java, the programmer
defines a subclass of the Thread class:

���������
	�������������
������������������������
�
�
����������	������
���
���! �"�#

�
$�$ ���%�
����&�&('�'�'
)

)

Then an instance of that thread must be created
with the new operator and executed with the
start() method:

'�'�'
������������������+*-,.���0/1��������������2 �"�#
���3*3'4�
�������5 �"
'�'�'

The start() method calls the run() method to
execute the thread.

The programmer can now manage this thread
with any of the following methods:

���3*3'4�������
�6 7�6"�# $�$ ���
�����8&0�����:9�����	
���3*3'4�
�����5 �"�# $�$ �����093�
���
���1;�	<�
�����
���
���3*3'4���<���������5 �"�# $�$ �0���0��������������	����<�����
���3*3'=�������
9��! �"�# $�$ �����0��9<�.������	������
���

A thread’s run() method may be declared to be
synchronized. The Java interpreter guarantees
that only one synchronized method may modify
an object at a given instant by setting a lock on
that object; no other thread may modify the
object until the lock is released.

In the example above, NuThread may be
defined as a synchronized thread as follows:

���������
	�������������
������������������������
�
�
����������	������
�%>0?�@�A�B�C�D�@<E�F
G�H1�
���! �"�#

�
$�$ ���%�
����&�&('�'�'
)

)

narya:/home/hfoxwell/INFS601/javasync.aw

Synchronized threads must inform each other
when one thread is finished and another waiting
thread may begin. Threads can be told to wait
until notified by another thread, or to wait until
a given time has expired:

/3���
�2 �"�# $�$ /3���
�:���������������<��&��
���

/3���
�2 �5"�# $�$ /3���
�:���������������<��&��
���
$�$ �����:93�
��	

A running thread may inform a single waiting
thread using the notify() method, or may notify
all waiting threads using the notifyAll() method.

A Simple Example

Suppose you want one Java thread to send
messages to another Java thread. That is, you
want to illustrate the Producer-Consumer
Problem using Java[7]. Listing PC1.java
(Appendix) defines a shared variable that
receives messages from the put() method, and is
then read by the get() method. The
Produce_Consume class creates and starts the
Producer thread and the Consumer thread, but
in program PC1.java these threads are not
synchronized. This means that the two threads
pay no attention to each other when writing or
reading the shared message variable, with
incorrect results:

� ��������	������������������
	 �����0��9<����

�����������
	 �����0��9<����

�����������
	 �����0��9<����

�����������
	 �����0��9<����

�����������
	 �����0��9<����

�����������
	 �����0��9<����

�����������
	 �����0��9<����

�����������
	 �����0��9<����

�����������
	 �����0��9<����

�����������
	 �����0��9<����

�����������
� ��������	������������-*�*�
� ��������	������������������
� ��������	������������������
� ��������	���������������*�
� ��������	������������������
� ��������	������������������
� ��������	������������������
� ��������	��������������
� ��������	������������-*���

The Consumer thread read the first message and
kept running, completing before the Producer
even sent its second message! What is needed is
for the Consumer to synchronize with the
Producer, so that all messages get consumed.
This is accomplished by declaring that the put()
and get() methods are synchronized threads (see

listing PC2.java in the Appendix), that they each
wait() while the other thread has locked access to
the shared variable, and notify() the waiting
thread when each of them are finished with
their task. When PC2 is run, the Producer
thread writes a message then waits for the
Consumer thread to read it. While the Producer
is writing, the Consumer is blocked from
running. When the Producer notifies the
Consumer that it is finished, the Consumer
thread runs and blocks the Producer. This
produces the desired alternation of producing
and consuming:

� ��������	������������������
	 �����0��9<����

�����������
� ��������	�����������������*
	 �����0��9<����

����������*
� ��������	�����������������
	 �����0��9<����

����������
� ��������	��������������
	 �����0��9<����

�������
� ��������	������������������
	 �����0��9<����

�����������
� ��������	������������������
	 �����0��9<����

�����������
� ��������	����������������
	 �����0��9<����

���������
� ��������	������������������
	 �����0��9<����

�����������
� ��������	������������-*���*
	 �����0��9<����

�����-*���*
� ��������	������������������
	 �����0��9<����

�����������

Every message produced gets consumed; no
messages are "lost".

The Shared_Buffer class in this example
implements a monitor for the synchronized put()
and get() methods, guaranteeing that only one
thread (critical section) may execute and access
the shared variable msg, ensuring mutual
exclusion.

Conclusion

Beginning Java programmers must understand
several important concepts beyond syntax,
control flow, and variable declaration: the
Object Oriented nature of the language, and the
control and synchronization of threads. Java was
designed to simplify the writing of multi-
threaded programs. Additional examples of
such programs may be found in the tutorial
books and Web pages mentioned in the
Bibliography.

narya:/home/hfoxwell/INFS601/javasync.aw

References

[1] Tannenbaum, pg. 56.
[2] Tannenbaum, pg. 58.
[3] Stallings, pg. 191.
[4] Stallings, pg. 198.
[5] Berg & Lewis, pg. 8.
[6] Flanagan, pg. 161.
[7] Student Guide, pg. 4.16.

Bibliography

Berg, D., Advanced Techniques for Java
Developers, John Wiley & Sons, 1997

Berg, D. and Lewis, B., Threads Primer, SunSoft
Press, Mountain View CA, 1996

Flanagan, D., Java in a Nutshell, 2nd Ed.,
O’Reilly & Associates, 1997

Lea, D., Concurrent Programming in Java, 2nd
Ed., Addison-Wesley, 1997

Oaks, S., Wong, H., Java Threads, O’Reilly &
Associates, 1997

Stallings, W., Operating Systems, 2nd Edition,
Prentice Hall, Englewood Cliffs NJ, 1995

Student Guide, Advanced Java Programming,
Sun Education Services, Mountain View CA,
1995

Tannenbaum, A., Modern Operating Systems,
Prentice Hall, Englewood Cliffs NJ, 1992

Suggested Reading

Campione, M., The Java Language Tutorial, 2nd
Ed., Addison-Wesley, 1997

Lemay, L., Teach Yourself Java in 21 Days, 2nd
Ed., Sams.net Publishing, Indianapolis IN, 1997

Suggested WWW Browsing

http://java.sun.com
http://www.gamelan.com

Trademarks

Java, and HotJava are registered trademarks of
Sun Microsystems, Inc.

narya:/home/hfoxwell/INFS601/javasync.aw

Appendix

// PC1.java
//
// Simple example of UNsynchronized producer and consumer
// threads...producer thread writes messages (random
// numbers between 0 and 1000) into a shared variable (m),
// while the consumer thread reads the messages.
//
// For simplicity, all classes are defined in this one
// source file. To compile the program, execute
// ’javac PC1.java’. This will produce 4 class files:
//
// Produce_Consume.class - the main program
// Consumer.class - the consumer thread
// Producer.class - the producer thread
// SharedBuffer.class - the "monitor", unsynchronized
//
// To run the program, enter ’java Produce_Consume’.
// This will display the messages as they are sent
// and received by each thread.
//

class Produce_Consume
 {
 public static void main(String args[])
 {
 SharedBuffer m = new SharedBuffer();
 Producer prod = new Producer(m);
 Consumer cons = new Consumer(m);

 prod.start();
 cons.start();
 }
 }

class SharedBuffer
 {
 private int msg;
 public int get()
 {
 return msg;
 }

 public void put(int message)
 {
 msg = message;
 }
 }

class Producer extends Thread
 {
 private SharedBuffer shbuf;

narya:/home/hfoxwell/INFS601/javasync.aw

 public Producer(SharedBuffer m)
 {
 shbuf = m;
 }

 public void run()
 {
 int j;
 for (int i = 0; i < 10; i++)
 {
 j = (int)(Math.random() * 1000);
 shbuf.put(j);
 System.out.println("Producer put: " + j);
 try
 {
 sleep((int)(Math.random() * 100));
 }
 catch (InterruptedException e) { }
 }
 }
 }

class Consumer extends Thread
 {
 private SharedBuffer shbuf;

 public Consumer(SharedBuffer m)
 {
 shbuf = m;
 }

 public void run()
 {
 int message = 0;
 for (int i = 0; i < 10; i++)
 {
 message = shbuf.get();
 System.out.println("Consumer got: " + message);
 }
 }
 }

narya:/home/hfoxwell/INFS601/javasync.aw

Appendix

// PC2.java
//
// Simple example of synchronized producer and consumer
// threads...producer thread writes messages (random
// numbers between 0 and 1000) into a shared variable (m),
// while the consumer thread reads the messages.
//
// For simplicity, all classes are defined in this one
// source file. To compile the program, execute
// ’javac PC2.java’. This will produce 4 class files:
//
// Produce_Consume.class - the main program
// Consumer.class - the consumer thread
// Producer.class - the producer thread
// SharedBuffer.class - the "monitor", synchronized
//
// To run the program, enter ’java Produce_Consume’.
// This will display the messages as they are sent
// and received by each thread.
//

class Produce_Consume
 {
 public static void main(String args[])
 {
 SharedBuffer m = new SharedBuffer();
 Producer prod = new Producer(m);
 Consumer cons = new Consumer(m);

 prod.start();
 cons.start();
 }
 }

class SharedBuffer
 {
 private int msg;
 private boolean locked = true;

 public synchronized int get()
 {
 while (locked == true)
 {
 try
 {
 wait();
 }
 catch (InterruptedException e) { }
 }
 locked = true;
 notify();

narya:/home/hfoxwell/INFS601/javasync.aw

 return msg;
 }

 public synchronized void put(int message)
 {
 while (locked == false)
 {
 try
 {
 wait();
 }
 catch (InterruptedException e) { }
 }
 msg = message;
 locked = false;
 notify();
 }
 }

class Producer extends Thread
 {
 private SharedBuffer shbuf;

 public Producer(SharedBuffer m)
 {
 shbuf = m;
 }

 public void run()
 {
 int j;
 for (int i = 0; i < 10; i++)
 {
 j = (int)(Math.random() * 1000);
 shbuf.put(j);
 System.out.println("Producer put: " + j);
 try
 {
 sleep((int)(Math.random() * 100));
 }
 catch (InterruptedException e) { }
 }
 }
 }

class Consumer extends Thread
 {
 private SharedBuffer shbuf;

 public Consumer(SharedBuffer m)
 {
 shbuf = m;
 }

narya:/home/hfoxwell/INFS601/javasync.aw

 public void run()
 {
 int message = 0;
 for (int i = 0; i < 10; i++)
 {
 message = shbuf.get();
 System.out.println("Consumer got: " + message);
 }
 }
 }

