A Particle Swarm Optimization Sampler for Probabilistic Roadmap Motion Planning

Brian Hrolenok

George Mason University

CS 633 - Computational Geometry - Fall 2008

A Particle Swarm Optimization Sampler for Probabilistic Roadmap Motion Planning

George Mason University

Backgro	und
00	
0000	

Background Probabilistic Roadmap Motion Planning Particle Swarm Optimization

Implementation Fitness Function Fitness Function, Round 2

Summary Results Conclusion

A Particle Swarm Optimization Sampler for Probabilistic Roadmap Motion Planning

George Mason University

Э

1

nac

Background			
•0 0000			
Probabilistic	Roadman	Motion	Planning

Background Probabilistic Roadmap Motion Planning

Particle Swarm Optimization

mplementation Fitness Function Fitness Function, Round 2

Summary Results Conclusion

A Particle Swarm Optimization Sampler for Probabilistic Roadmap Motion Planning

George Mason University

Improving PRMP

- ► Key Idea: Estimate C_{free}
- Probabilistic Motion Planning
 - Uninformed Sampling
 - Model Aware
- ► The Narrow Passage Problem
 - Uniform Sampling sucks
 - ► Gaussian Sampling/Bridge-Test sucks *less*
- Population Based Search to the rescue!

Background
00
•000
Particle Swarm Optimization

Implementation

Summary 00 00

Outline

Background Probabilistic Roadmap Motion Planning Particle Swarm Optimization

Implementation Fitness Function Fitness Function, Round 2

Summary Results Conclusion

A Particle Swarm Optimization Sampler for Probabilistic Roadmap Motion Planning

George Mason University

Why Particle Swarm Optimization

- Benefits of PSO
 - ► Simple to set up
 - Lots of parameters to tweak
- Drawbacks of PSO
 - Hard to adapt to non-metric problem domains
 - Lots of parameters to tweak

DQ P

3

What is Particle Swarm Optimization

- ► Key idea: A set of **particles** moving in a **space** according to their **fitness**
 - Particles: $X = \{\mathbf{x_i} \in \mathbb{R}^m, i = 1, ..., n\}$
 - Velocities: $V = \{\mathbf{v_i} \in \mathbb{R}^m, i = 1, ..., n\}$
 - Fitness function: $f : \mathbb{R}^m \to \mathbb{R}$
- ► Things that affect a particle's velocity:
 - Current fitness
 - Personal best $(\hat{x_i})$
 - ► Neighborhood best (n̂i)
 - Random noise

Background
00
0000
Particle Swarm Optimization

What is Particle Swarm Optimization

```
The Algorithm:

Initialize X, V, personal and neighborhood bests

while not done do

foreach \mathbf{x}_i \in X do

\begin{vmatrix} \mathbf{x}_i \leftarrow \mathbf{x}_i + \mathbf{v}_i \\ \text{Create two random vectors } \mathbf{r}_1, \mathbf{r}_2 \\ \mathbf{v}_i \leftarrow \omega \mathbf{v}_i + c_1 \mathbf{r}_1 \circ (\hat{\mathbf{x}}_i - \mathbf{x}_i) + c_2 \mathbf{r}_2 \circ (\hat{\mathbf{n}}_i - \mathbf{x}_i) \\ \text{Calculate } f(\mathbf{x}_i) \text{ and update } \hat{\mathbf{x}}_i \text{ and } \hat{\mathbf{n}}_i \\ \text{end} \end{vmatrix}
```

end

- \blacktriangleright Select the components of r_1 and r_2 uniformly from [0,1]
- ω is the **momentum** coefficient
- ▶ *c*₁ and *c*₂ are weights
- ▶ "○" is Hadamard matrix multiplication

00
0000
Fitness Function

Background Probabilistic Roadmap Motion Planning Particle Swarm Optimization

Implementation Fitness Function

Fitness Function, Round 2

Summary Results Conclusion

A Particle Swarm Optimization Sampler for Probabilistic Roadmap Motion Planning

George Mason University

00
0000
Fitness Function

Keeping Track of Obstacles

- Key idea: map the **boundary** between C_{free} and C_{forb}
- Keep a list of known collisions
- Try to estimate the expected probability of collision
- Define the probability p_{ci}(x_j) that x_j will collide with the obstacle c_i collided with.

Background	Implementation
0000	
Fitness Function	

Fitness Function: Visualization

• One such function: $f(x) = w(\frac{1}{1+e^{-\sum_c pc_i(x_j)}} - 0.5)$

George Mason University

nan

Summary

Sackground	Implementation	Summary
	000 00	00
itness Function, Round 2		

Background Probabilistic Roadmap Motion Planning Particle Swarm Optimization

Implementation

Fitness Function Fitness Function, Round 2

Summary Results Conclusion

A Particle Swarm Optimization Sampler for Probabilistic Roadmap Motion Planning

George Mason University

Background 00 0000

Fitness Function, Round 2

Finding Narrow Passages

- Key idea: borrow techniques from the gaussian and bridge-test samplers, and optimize
- Use sub-samples to test if a configuration is in a narrow passage
- f(x) = average number of sub-samples that pass

0000	
00	
Backgr	ound

Background Probabilistic Roadmap Motion Planning Particle Swarm Optimization

Implementation Fitness Function Fitness Function, Round 2

Summary Results Conclusion

A Particle Swarm Optimization Sampler for Probabilistic Roadmap Motion Planning

George Mason University

Background	Implementation	Summary
00	000	00
Results		

Results

What?! NONE?!

A Particle Swarm Optimization Sampler for Probabilistic Roadmap Motion Planning

George Mason University

€ 990

▶ < E >

Image: A math a math

Background
00
0000
Conclusion

Background Probabilistic Roadmap Motion Planning Particle Swarm Optimization

Implementation Fitness Function Fitness Function, Round 2

Summary

Results Conclusion

A Particle Swarm Optimization Sampler for Probabilistic Roadmap Motion Planning

George Mason University

Background
00
0000
Conclusion

- ▶ PSO can be used for PRMP (should it?)
- Parameter tweaking sucks
- Dynamic fitness functions are *bad*
- Could be applied to RRT?

Э

DQC2