
Sampling Beats Fixed Estimate Predictors for Cloning Stochastic Behavior in
Multiagent Systems

Brian Hrolenok and Byron Boots and Tucker Hybinette Balch
School of Interactive Computing
Georgia Institute of Technology

{bhroleno,bboots,tucker}@cc.gatech.edu

Abstract

Modeling stochastic multiagent behavior such as fish school-
ing is challenging for fixed-estimate prediction techniques be-
cause they fail to reliably reproduce the stochastic aspects of
the agents behavior. We show how standard fixed-estimate
predictors fit within a probabilistic framework, and suggest
the reason they work for certain classes of behaviors and not
others. We quantify the degree of mismatch and offer alterna-
tive sampling-based modeling techniques. We are specifically
interested in building executable models (as opposed to sta-
tistical or descriptive models) because we want to reproduce
and study multiagent behavior in simulation. Such models
can be used by biologists, sociologists, and economists to
explain and predict individual and group behavior in novel
scenarios, and to test hypotheses regarding group behavior.
Developing models from observation of real systems is an
obvious application of machine learning. Learning directly
from data eliminates expensive hand processing and tuning,
but introduces unique challenges that violate certain assump-
tions common in standard machine learning approaches. Our
framework suggests a new class of sampling-based methods,
which we implement and apply to simulated deterministic
and stochastic schooling behaviors, as well as the observed
schooling behavior of real fish. Experimental results show
that our implementation performs comparably with standard
learning techniques for deterministic behaviors, and better on
stochastic behaviors.

Introduction
Executable models of agent behavior are increasingly com-
mon in the work of biologists, ethologists, and sociolo-
gists as part of the growing trend in Agent Based Modeling
(ABM) within these sciences. In the study of collective de-
cision making by social insects, ABMs are commonly used,
such as in the work of Pratt et al. on the ability of Temnotho-
rax rugatulus to collectively choose nest sites (2005), or the
work of List, Elsholtz, and Seeley on forage site selection
by honeybees (2009). Tunstrøm et al. examine the schooling
behavior of Notemigonus crysoleucas and classify emergent
properties of the school using an ABM in simulation (2013).
Hemelrijk has studied the social interactions and group
dynamics of monkeys, and compared competing theories
of behavior in simulation by examining the characteristics

Copyright c© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

of simulations run with different ABMs (Hemelrijk 2000;
Hemelrijk, Wantia, and Gygax 2005).

The ABMs in each of these examples have varying de-
grees of complexity, in terms of number of parameters and
the interactions between those parameters. Increasingly
complex models allow researchers to study more complex
individual behaviors, but at the same time require more tun-
ing, which in turn requires more observational data.

With improvements in computational capacity, the abil-
ity to execute more and more complex simulations to ex-
plore the ramifications of particular theories of behavior has
become part of the standard toolkit, and demands a corre-
sponding increase in the ability of researchers to automate
the process of fitting behavior models to observational data.
However, as we discuss throughout the rest of this work, ap-
plying standard techniques from machine learning directly
can lead to poor performance. In the remainder of this paper
we present two novel contributions. First we show that some
stochastic behaviors cannot be reproduced well by fixed-
estimate predictors, and in the experiments section we in-
troduce K-L divergence as a measure of similarity between
observed and generated behavior. In the next section we dis-
cuss some previous work in this area.

Related Work
While the automatic construction of executable models of
behavior is relatively new, it has precedents within the ma-
chine learning community under categories such as behavior
or activity recognition. Ethograms, a concept from ethology,
are one way of categorizing, describing, and understanding
the relationships between various behaviors. Recent work
on automating the process of collating observational data
into these ethograms in the case of fruit flies illustrates the
utility of machine learning approaches (Branson et al. 2009;
Dankert et al. 2009), though the ethograms produced in this
way are descriptive, rather than executable.

Egerstedt et al. present a technique for automatically con-
structing minimal control sequences from tracking data, and
use this to build models of ant foraging behavior using tracks
of ants (2005). These are executable models, however this
approach does not address how the recovered control se-
quence should handle unexpected sensor values, and the au-
thors note that this is an open question that needs to be an-
swered if the learned controllers are to be used in a simula-

tion.
Oh et al. present a method for using switching linear dy-

namical systems (SLDS) to model and predict the distinct
states in the “honey bee waggle dance” — a mechanism
for communicating direction and quality of food sources
— using Markov chain Monte Carlo (MCMC) sampling
for approximate inference (2005). While SLDS models are
generative, this work focuses only on the predictive capa-
bilities of the model. In fact, most generative models in
use in behavior recognition are not in fact used to gen-
erate behavior. Notable exceptions to this include work
from the behavioral cloning, Learning from Demonstra-
tion (LfD), and robotics communities where hidden Markov
models (HMMs) are used in action reproduction, however
the resulting trajectories are often post-processed to ensure
smoothness and continuity constraints (Inamura et al. 2004;
Sugiura and Iwahashi 2008; Kulić, Takano, and Nakamura
2008).

More directly related to the construction of executable
models is some recent preliminary work on learning mod-
els of fish schooling behavior, and assessing the qual-
ity of these learned models (Hrolenok and Balch 2013;
2014). It’s within the context of assessing executable models
that the unique challenges of this domain make themselves
most apparent, in that standard measures of predictive per-
formance do not capture some important qualities of an ex-
ecutable model, especially in the case of unpredictable or
stochastic behaviors. In the next section, we discuss the dif-
ference between deterministic and stochastic behaviors, and
some specific consequences of that difference for a common
class of predictors and the executable models that rely on
them.

Deterministic and Stochastic Behaviors
Consider the behavior of an agent which reacts to its envi-
ronment in a deterministic way. It is reasonable to cast the
problem of predicting the behavior of the agent as a super-
vised learning problem, where the function to be predicted
f : Rd → B is the behavior of the agent, which is a function
of some (known) features φ : S → Rd of the current state
of the environment s ∈ S that are relevant to the agent’s be-
havior. We train a predictor f̂ of the true behavior f using a
set of training data

D = {(φ(si), bi) : bi = f(φ(si))} (1)

where each bi in the dataset is the observed behavior of an
agent, given state si. We can collect such a dataset by ob-
serving the behavior of the agent and the state of the environ-
ment. The key design decisions in this formulation are the
features φ, the form of the model f̂ , and the learning proce-
dure that fits f̂ to f givenD. Although the selection of φ has
a significant impact on the performance of f̂ , we will con-
sider it as given for the remainder since it typically requires
significant domain knowledge and has been discussed previ-
ously (Hrolenok and Balch 2014).

If we assume that our observations are noise free, we can
collect sufficient data, and our predictor f̂ has the expres-
sive capability to reproduce f , then we can simulate what

Figure 1: Graphical representation of a realistic distribution
of behavior who’s expected value has low probability. The
observed frequency of turning left versus right are equal, so
the distribution of behavior has two equal modes. The mean
θ, which minimizes expected error, has very low probability,
and if used in an executable model would generate unrealis-
tic behavior.

the agent would do for any given environmental state s, and
this simulation should reproduce the observed behavior as
well as accurately predict behavior in unobserved states. Of
these three assumptions, the least reasonable is that of noise,
which we address next.

In the typical supervised learning setting, training data D
is assumed to be noisy in the sense that some uncontrollable
aspect of the data collection process introduces an unknown
(but small and normally distributed) amount of noise to the
true output of f , that is,

D = {(φ(si), bi) : bi = f(φ(si)) + εi} (2)

where εi ∼ N (0, Iσ). Frequently, it is assumed that vari-
ance in the observed behavior for a given point in the feature
space is due to the noise process, and as a result many learn-
ing algorithms use estimates of central tendency which are
robust to noise. The least-squares solution for linear regres-
sion is one such example, where our predicted output for an
unobserved state s would be

f̂(φ(s)) = 〈Ŵ , φ(s)〉 (3)

where Ŵ are the weights found by the least-squares solu-
tion. This estimate minimizes expected difference between
the predicted output and the training data, which is achieved
by predicting along a line as close to the central tendency of
the training data as is possible, under the given assumptions
that f is linear, and the noise process is normally distributed,
and importantly that the underlying behavior is in fact deter-
ministic.

If the behavior is instead stochastic, that is, it contains
some unpredictable element that can be treated as non-
deterministic, the variance in the observed behavior is not

completely due to the noise process and should be accounted
for by f̂ . In this case it is more natural to think of f as a dis-
tribution over the behavior space B. The observations of the
agents behavior are then seen as samples drawn from f :

D = {(φ(si), bi) : bi ∼ f(φ(si))} (4)

Note that we can cast the “noisy observation” formulation
in (2) to this stochastic behavior version by assuming that f
takes a particular form. For example, in the case of least
squares linear regression, f(φ(s)) = N (〈W,φ(s)〉, Iσ),
while keeping f̂ as defined in (3). This highlights an issue
with using fixed estimates as predictors for behavior. If f
is symmetric, unimodal, and falls to zero rapidly as distance
from the mode increases, having f̂ predict a behavior near
the mode (as in (3)) will often be a good estimate, and so can
be fixed for any specific φ(s). However, if f is multimodal,
asymmetric, or has “fat tails”, the probability of behaviors
far from any central tendency of f can grow significantly,
and while the sample mean may in fact minimize the predic-
tive error, the probability of behaviors near the mean may be
arbitrarily small.

To illustrate this, take for example the behavior of a fish
swimming in a shallow tank of water, which we illustrate
in Figure 1. As the fish approaches the wall of the tank, it
can choose to turn left or right. From the perspective of the
fish, it does not matter which direction it turns, so long as
it does not collide with the wall. The argument could be
made that a deterministic behavior is still feasible since the
probability of approaching a wall exactly along the perpen-
dicular is effectively zero, but it is also true that fish can
only perceive their environment through the filter of imper-
fect sensors (which notably have a limited field of view with
minimal overlap specifically along the perpendicular) and
so may be prone to misperception or perceptual aliasing. It
makes sense then that the distribution of behavior for a fish
approaching a wall would exhibit two modes corresponding
to both choices1. It is also clear that in this scenario the
mean or median behaviors correspond to a perfectly unnat-
ural behavior (moving directly towards the wall) that never-
theless minimizes the expected difference between predicted
and observed behavior training examples, and as such is the
“best” fixed estimate of behavior. If the goal is to produce
realistic predictions of behaviors of this kind, it’s clear we
cannot rely on fixed-estimate predictors.

An obvious alternative is for f̂ to estimate the true density
f directly, and then sample under f̂ . Since the benefit of this
sampling is only evident in cases where the distribution of
behaviors are not accurately modeled by Gaussian or sim-
ilar distributions, and in general we do not know the form
f takes a priori, we will rely on non-parametric density es-
timation. The standard approach to non-parametric density
estimation is kernel density estimation, which takes the fol-
lowing form (for univariate b)

1It may even be advantageous for the fish to exhibit higher vari-
ance of behavior if we consider the context of fleeing in response
to a perceived threat, since any highly predictable behavior could
be exploited by a predator.

f̂h(b) =
1

|D|h
∑
bi∈D

K

(
b− bi
h

)
(5)

where K is a chosen kernel function, and h is the bandwidth
parameter. Note that this formulation is independent of φ,
which is not useful if we want our agents to vary their be-
havior as a function of their environment, and so we augment
the above definition by restricting the range of the sum:

f̂h(b;φ(s)) =
1

|N(φ(s))|h
∑

bi∈N(φ(s))

K

(
b− bi
h

)
(6)

where N is a neighborhood selection function that selects a
subset of the bi training examples from the training dataset
D based on the distance of their corresponding φ(si) values
to the given query point φ(s). We note that there exists an
efficient method for approximating samples from this dis-
tribution if we use a kernel that decreases exponentially as
distance increases, with small bandwidth, and that our train-
ing data is sampled from the same distribution as the testing
data. We use k-Nearest Neighbors to obtain the k tuples
whose φ(si) values are closest to φ(s), which will have the
greatest effect on f̂ , and then sample uniformly from this
set. In addition to being faster than rejection sampling un-
der (6), it has the added benefit of not requiring a bandwidth
parameter, the tuning of which is a problem of considerable
complexity in itself. By contrast, the k parameter is a pos-
itive integer that is relatively straightforward to tune using
cross validation.

In the next section we will use this approach to construct
predictors for both stochastic and deterministic behaviors,
and we will compare their performance with fixed-estimate
predictors.

Experiments
To illustrate the difficulties in using fixed-estimate predic-
tors and how sampling predictors can address these issues,
we hand constructed simulations of a group of agents with
homogeneous behaviors, both deterministic and stochastic,
collected tracks of the agents performing these behaviors,
and then compared the performance of two fixed-estimate
predictors, linear regression and kNN regression, with a
sampling predictor, neighborhood sampling kNN, in terms
of both typical measures of prediction accuracy and sim-
ilarity in terms of the distribution of behaviors. In brief
we find that sampling based predictors perform on-par with
or slightly worse than fixed-estimate predictors in terms
of RMSE and trajectory error, but significantly outperform
fixed-estimate predictors in terms of matching the distribu-
tion of behaviors.

Constructing an executable model using a trained predic-
tor is straightforward: the output of the executable model is
just the predicted output for the given feature values, which
are in turn computed from the given environmental state. For
each of these experiments we built such an executable model
using each of our predictors and then ran these models in

simulation. This allowed us to compute not just RMSE by
comparing the predicted output on a hold-out set, but also
end-point error by initializing the simulation at starting con-
figurations from sequences in the hold-out set, and calculat-
ing the difference between the final pose in the simulation
and the final pose in the withheld sequence, and a measure
of the difference between the distribution of behavior gener-
ated by the executable model and the observed distribution
of behavior generated by the original agent.

Motivated by our earlier example, and our overarching
goal of learning complex multiagent behaviors of physical
systems, we focus on two models of schooling behavior for
a small number of fish confined to a shallow tank.

Deterministic Behavior
We base our deterministic model on the well known Boids
(Reynolds 1987) model, which produces realistic flocking
and schooling behaviors with each agent following a set of
local rules which correspond to a linear combination of fea-
ture vectors. We choose a linear model specifically to focus
on the differences between deterministic and stochastic be-
haviors, and to show that any limitations of a linear regres-
sion based predictor are not due to the expressiveness of the
model or the complexity of the underlying behavior.

In this model, the behavior space ranges over desired ve-
locities b = (ẋ, ẏ, θ̇), and the features correspond to vectors
that capture characteristics of the school in a local area near
the agent, which are summarized in Table 1 in the second
column. These vectors are distance-weighted averages with
the following form:

φi(s) =
1

n

∑
j 6=i

exp

{
d2j (s)

2σ2
i

}
vi,j(s) (7)

where n is the number of agents in the school, dj(s) is the
distance to agent j, and vi,j(s) is a unit directional vector
unique to φi. We use four φi: a separation component, an
orientation component, a cohesion component, and an ob-
stacle avoidance component. By choosing appropriate σi,
we can tune the sensitivity of each component so that they
respond to agents or obstacles at different ranges. The range
of each σi is reported in the second column of Table 1.

The actual behavior f is defined as a simple linear com-
bination of these features:

f(φ(s)) = 〈W,φ(s)〉 (8)

where φ(s) is the concatenation of the four feature vec-
tors described above, along with a constant term: φ(s) =
[φsep(s), φori(s), φcoh(s), φobs(s), 1], and W is described in
Table 2. Both W and each σi were hand tuned to pro-
duce reasonable looking schooling behavior where agents
avoided collisions with each other and obstacles and pre-
ferred to stay grouped and aligned when possible.

Given this model, we train a predictor f̂ with a set of ob-
servations collected from a simulation running the model.
These observations are recorded directly by the simulator,
and since all of the features can be computed from the pose
(x, y, θ) of all the agents at any given time, they can stand

in for tracking information gathered from video of live ani-
mals, as we show in a subsequent section.

Training a linear regression model from these samples
works well, unsurprisingly, and examining the learned
weights shows that we’ve recovered the parameters of the
generating model quite closely (Table 2, right). Similarly,
kNN with neighborhood averaging (which we call kNN-
Reg from here on) performs well, while kNN with neigh-
borhood sampling (kNN-Sample) performs slightly worse.
The first three rows in Table 3 show the performance of all
three methods in terms of average prediction error (RMSE)
and average end-point error in the first two columns. For
this simple model, this result is as expected, since the bene-
fit of sampling from the predicted distribution doesn’t come
in to play for deterministic models and comes at the cost of
increasing the variance of the error of the prediction.

Stochastic Behavior

In order to illustrate the benefit of sampling based predictors
we introduce a slight variation of the model in the previous
section, which incorporates an element of randomness into
the behavior. We start with the same φi, the same linear
combination of these weights, but we add a random vari-
able sampled from an exponential distribution with mean
β = 0.05 to the desired forward velocity (ẋ). Since this
random variable is non-negative, we adjust the bias term
in W down to 0.00625 so that the mean forward velocity
would remain approximately the same. This generates a be-
havior similar at a high level to what was generated before,
but where the agents exhibit some unpredictable variation in
forward speed. Since this variation is non-symmetric, we
expect it to cause the fixed-estimate predictors Lin-Reg and
kNN-Reg to produce behavior distributions that are signifi-
cantly different from the generating behavior.

To highlight the effect of this inherent unpredictability, we
introduce a third performance metric in addition to RMSE
and end-point error, namely the Kullback-Leibler diver-
gence which we apply to histograms of forward velocity
under the generating behavior and the predictor behavior.
The third column in Table 3 represents the degree of differ-
ence between the two distributions where a K-L divergence
of zero means the two distributions match exactly. Figure
2 shows the histograms graphically for a more qualitative
comparison. As these figures show, the sampling based pre-
dictor produces a distribution of behavior that more closely
matches the generating behavior, while the fixed estimate
predictors do not, even though the three predictors perform
similarly in terms of end-point and RMSE error.

Live Fish Behavior

In the previous two experiments, we generate the training
data from a simulation without noise, and for which we
know the ground truth parameters. This setup is useful
for illustrative purposes, but unrealistic. In this section we
move to a more interesting domain that motivated our choice
of behaviors and examples in previous sections. Given
pose information (x, y, θ) from video of a small school of

Table 1: Description of features σi.

Component vi,j σi
vsep,j Away from agent j (−(xj − x)) Near, 1-2 body lengths (0.1)
vori,j Heading of agent j (θj) Somewhat near, 2-3 body lengths (0.2)
vcoh,j Towards agent j ((xj − x)) Majority of school (1.0)
vsep,j Away from obstacle j Short, within 1 body length (0.05)

Table 2: Feature weights W for the deterministic behavior. Left are the hand-tuned parameters for the generating behavior, and
right are the parameters recovered by linear regression. The recovered parameters nearly match the generating parameters, with
the Frobenius norm of their difference being less than 0.894.

Generating f(φ(s)) ẋ ẏ θ̇
φsepx −1.0 0.0 0.0
φsepy 0.0 0.0 −20.0
φorix 0.0 0.0 0.0
φoriy 0.0 0.0 0.1
φcohx 0.0 0.0 0.0
φcohy 0.0 0.0 0.8
φobsx −1.0 0.0 0.0
φobsy 0.0 0.0 −40.0
bias 0.0125 0.0 0.0

Recovered f̂(φ(s)) ẋ ẏ θ̇
φsepx −0.9998 0.0 0.0015
φsepy −5.1436× 10−4 0.0 −19.9995
φorix −1.3071× 10−5 0.0 −9.3309× 10−6

φoriy 1.1432× 10−7 0.0 0.0998
φcohx −3.3333× 10−6 0.0 2.8271× 10−4

φcohy 3.1213× 10−5 0.0 0.8004
φobsx −0.9753 0.0 −0.3991
φobsy 4.6335× 10−4 0.0 −38.7059
bias 0.01250 0.0 −3.5565× 10−5

Figure 2: Comparison of predicted x-velocity distribution for (left) linear regression, (center) kNN-Reg, and (right) kNN-
Sample in green (dotted line), versus actual x-velocity distribution in blue (solid line) for the stochastic simulated behavior.
Note that while both of the fixed-estimate predictors produce behavior that has a similar mean, the shape of the distribution
does not match the training data while kNN-sample does.

Figure 3: Comparison of predicted x-velocity distribution for (left) linear regression, (center) kNN-Reg, and (right) kNN-
Sample in green (dotted line), versus actual x-velocity distribution in blue (solid line) for the data collected from real fish.
Similar to the case with the stochastic simulated behavior, linear regression and kNN-Reg both do a better job of matching the
mean value than the shape of the training distribution.

Table 3: Performance of linear regression, kNN-Reg, and kNN-Sample. Reported values are mean and standard deviation for
10-fold cross validation. Lower is better for all three error metrics.

Deterministic
Predictor RMSE end-point K-L divergence
Lin-Reg 0.0356± 0.0050 0.0023± 0.0006 —
kNN-Reg 5.9675± 0.3665 0.0070± 0.0021 —

kNN-Sample 4.4097± 0.3328 0.0069± 0.0020 —
Stochastic

Predictor RMSE end-point K-L divergence
Lin-Reg 6.1099± 0.0361 0.0067± 0.0009 482.6036± 0.7310
kNN-Reg 13.5425± 0.4549 0.0150± 0.0017 51.1153± 12.3740

kNN Sample 15.1933± 0.4574 0.0154± 0.0014 0.0465± 0.0282
Live Fish

Predictor RMSE end-point K-L divergence
Lin-Reg 308.6853± 22.4447 0.2164± 0.0148 1.5865± 0.1894
kNN-Reg 375.9885± 24.2010 0.1877± 0.0156 1.0020± 0.5021

kNN Sample 570.9620± 29.3125 0.2136± 0.0160 0.2957± 0.2497

Notemigonus crysoleucas in a shallow tank2 we can ap-
ply the same prediction methods and performance metrics
to create executable models of real fish schooling behavior.
The selection of φi for this problem is by no means straight-
forward, as discussed in (Hrolenok and Balch 2014), but it is
beyond the scope this paper to perform a full ablative anal-
ysis of all reasonable features. So instead we use those φi
described earlier, as well as a few additional features that
we found improved the performance of all predictors, with
the intuition that these features provide reasonable cover-
age of the information that is relevant to schooling behavior
for an individual agent. To the set of φi already described
we add the mean (φµ), variance (φσ), and maximum mag-
nitude (φmax) of the forward velocity of all other fish in the
school. For both kNN methods, the selection of k was han-
dled by 10-fold cross validation on a parameter sweep from
k ∈ {1 . . . 100}. We found that for both methods, the max-
imum performance was found at k = 5. The entire dataset
was taken from a one hour video shot at 30 frames per sec-
ond, with 30 fish visible in each frame, roughly 1.4 million
data points after filtering.

The performance of linear regression, kNN-Reg, and
kNN-Sample are given numerically in Table 3, and graph-
ically in Figure 3. Note that the distribution of forward ve-
locity for the real fish is an asymmetric Poisson-like curve,
which is what motivated the stochastic model from the pre-
vious experiment. The form of the true behavior f for real
fish is not known, and we have no strong evidence that it
is linear, so it is not surprising that linear regression does
not outperform non-parametric methods. As before, the in-
creased variance in the expected difference between predic-
tion and actual behavior for kNN-Sample leads to larger
RMSE and end-point error than the fixed-estimate predic-
tors, but a closer match between the distribution of predicted
and actual behavior.

2Data was originally collected in (Katz et al. 2011), which de-
tails the specifics of the environment, and the tracking method used.

Conclusion

We’ve identified that stochastic agent behavior represents
a challenging but important subset of agent behavior. By
considering behaviors from a probabilistic viewpoint, we’ve
explained why and under what circumstances using fixed-
estimate predictors to construct executable models can lead
to poor performance. This probabilistic viewpoint suggests a
new class of predictors that match the distribution of behav-
ior, and we’ve shown how to implement one such predictor
in a simple and efficient way. Using this predictor, we con-
ducted two simulation experiments to empirically validate
our method, and to highlight the differences between deter-
ministic and stochastic behaviors in terms of each predic-
tors performance. In our third experiment, we’ve shown that
our sampling predictor outperforms two fixed-estimate pre-
dictors in learning the schooling behavior of real fish from
tracking data, suggesting that the behavior of these animals
is in fact stochastic.

While we’ve used fairly simple learning methods in this
work for the purposes of illustration, we are working to ap-
ply these same principles to more sophisticated methods due
to recent developments in time-series prediction. Some pre-
liminary results using methods based on work from Venka-
traman, Hebert, and Bagnell (2015) show improvement over
the base methods presented here, and we are working to de-
velop a more fully grounded theory to explain this effect.
In this work, we use a measure of distribution similarity
mainly to highlight the challenges unique to constructing
executable models of inherently stochastic behaviors, but
we believe that using distribution similarity as a measure of
performance has more general applicability for the problem
of constructing executable models. Specifically, distribution
similarity provides a framework that allows us to assess high
level qualitative similarity in a quantitative way. Using this
measure of performance as the underlying cost function for
novel machine learning algorithms is an interesting direction
for future work that we are currently exploring.

References
Branson, K.; Robie, A. A.; Bender, J.; Perona, P.; and Dick-
inson, M. H. 2009. High-throughput ethomics in large
groups of drosophila. Nature methods 6(6):451–457.

Dankert, H.; Wang, L.; Hoopfer, E. D.; Anderson, D. J.;
and Perona, P. 2009. Automated monitoring and analysis
of social behavior in drosophila. Nature methods 6(4):297–
303.

Egerstedt, M.; Balch, T.; Dellaert, F.; Delmotte, F.; and
Khan, Z. 2005. What are the ants doing? vision-based
tracking and reconstruction of control programs. In Pro-
ceedings of the IEEE International Conference on Robotics
and Automation (ICRA 2005), 18–22.

Hemelrijk, C.; Wantia, J.; and Gygax, L. 2005. The con-
struction of dominance order: comparing performance of
five methods using an individual-based model. Behaviour
142(8):1037–1058.

Hemelrijk, C. K. 2000. Towards the integration of so-
cial dominance and spatial structure. Animal Behaviour
59(5):10351048.

Hrolenok, B., and Balch, T. 2013. Learning schooling be-
havior from observation. Advances in Artificial Life, ECAL
12:686–691.

Hrolenok, B., and Balch, T. 2014. Assessing learned models
of fish schooling behavior. In Proceedings of the 2014 inter-
national conference on Autonomous agents and multi-agent
systems, AAMAS, 1435–1436. International Foundation for
Autonomous Agents and Multiagent Systems.

Inamura, T.; Toshima, I.; Tanie, H.; and Nakamura, Y. 2004.
Embodied symbol emergence based on mimesis theory. The
International Journal of Robotics Research 23(4-5):363–
377.

Katz, Y.; Tunstrøm, K.; Ioannou, C. C.; Huepe, C.; and
Couzin, I. D. 2011. Inferring the structure and dynamics of
interactions in schooling fish. Proceedings of the National
Academy of Sciences 108(46):18720–18725.

Kulić, D.; Takano, W.; and Nakamura, Y. 2008. Incremental
learning, clustering and hierarchy formation of whole body
motion patterns using adaptive hidden markov chains. The
International Journal of Robotics Research 27(7):761–784.

List, C.; Elsholtz, C.; and Seeley, T. D. 2009. Indepen-
dence and interdependence in collective decision making: an
agent-based model of nest-site choice by honeybee swarms.
Philosophical transactions of The Royal Society B: biologi-
cal sciences 364(1518):755–762.

Oh, S. M.; Rehg, J. M.; Balch, T.; and Dellaert, F. 2005.
Data-driven MCMC for learning and inference in switching
linear dynamic systems. In Proceedings of the 20th national
conference on Artificial intelligence - Volume 2, 944–949.
Pittsburgh, Pennsylvania: AAAI Press.

Pratt, S. C.; Sumpter, D. J.; Mallon, E. B.; and Franks, N. R.
2005. An agent-based model of collective nest choice by the
ant Temnothorax albipennis. Animal Behaviour 70(5):1023–
1036.

Reynolds, C. W. 1987. Flocks, herds and schools: A dis-
tributed behavioral model. In ACM SIGGRAPH Computer
Graphics, volume 21, 25–34.
Sugiura, K., and Iwahashi, N. 2008. Motion recognition and
generation by combining reference-point-dependent proba-
bilistic models. In Intelligent Robots and Systems, 2008.
IROS 2008. IEEE/RSJ International Conference on, 852–
857.
Tunstrøm, K.; Katz, Y.; Ioannou, C. C.; Huepe, C.; Lutz,
M. J.; and Couzin, I. D. 2013. Collective states, multistabil-
ity and transitional behavior in schooling fish. PLoS Comput
Biol 9(2):e1002915.
Venkatraman, A.; Hebert, M.; and Bagnell, J. A. 2015. Im-
proving multi-step prediction of learned time series models.
In Twenty-Ninth AAAI Conference on Artificial Intelligence.

