
1

CS 365 1

IA-32 Instruction Set
Architecture

CS 365 Lecture 4

Prof. Yih Huang

CS 365 2

General-Purpose Registers

EAX

Reg #

EBX

ECX

EDX

ESP

EDP

ESI

EDI

Assembly Name

000

001

010
011

100

101

110

111

2

CS 365 3

�We also have BX, BH, BL, CX, CH CL,
DX, DH, DL.

�SP, BP, SI, DI are lower-halves of the other
4 registers.

EAX

031 16 15 8 7

AX

AH AL

CS 365 4

�When operating on 16-bit data, the 8 register
numbers (000 – 111) refers to AX, BX, CX,
DX, SP, BP, SI and DI.

�When operating on 8-bit data, the 8 register
numbers (000 – 111) refers to AL, CL, DL,
BL, AH, CH, DH and BH.

�Data width is specified by the opcode.

3

CS 365 5

Instruction Format

�Opcode: determine the action

�ModR/M: Addressing modes register/memory

�SIB: Scale-Index-Base

�Not all fields are present in all instr.

� If present, must be in the above order

Opcode

1 or 2 bytes

ModR/M

1 byte,
If required

SIB

1 byte,
If required

displacement Immediate

1,2 or 4 bytes
If required

1,2 or 4 bytes
If required

CS 365 6

ModR/M

�Mod=00,
– First operand a register, specified by Reg #
– Second operand in memory; address stored

in a register numbered by R/M.
�That is, Memory[Reg[R/M]]

– Exceptions:
�R/M=100 (SP): SIB needed
�R/M=101 (BP): disp32 needed

Mod

2 bits

Reg #

3 bits

R/M

3 bits

4

CS 365 7

�Mod=01, same as Mod 00 with 8-bit
displacement.

– Second operand: Memory[disp8+Reg[R/M]]

– Exception: SIB needed when R/M=100

�Mod=10, same as Mod 01 with 32-bit
displacement

�Mod=11

– Second operand is also a register, numbered
by R/M.

CS 365 8

�Do not confuse displacement width with data
width.

– Data width is specified by the opcode.

– For example, the use of disp8 does not
imply 8-bit data.

�For some opcodes, the reg# is used as an
extension of the opcode.

5

CS 365 9

SIB

�Specify how a memory address is calculated

�Address=Reg[base] + Reg[Index]*2
scale

�Exceptions:

– SP cannot be an index, and

– BP cannot be a base.

Scale

2 bits

Index

3 bits

Base

3 bits

CS 365 10

Example: Add Instructions

�The first operand is the destination.

– Can be register or memory

�The second operand is the source

– Can be register or memory

�The two operands cannot be both memory.

�Action: dest += source

6

CS 365 11

11 000

000

04 AL += immd8

00

Rm8 += immd8

immd32 EAX += immd32

immd8

05

modRM

01 Rm32 += r32modRM

03 r32 += rm32modRM

80 immd8

Rm8 += r8

Rm32 += immd32
81 immd3211

CS 365 12

Multiplication

�Action: EDX:EAX ← EAX × Rm32

�Notice that the multiplier is fixed. It must be
EAX.

�The multiplicand can be register or memory.

100F7 SIB/displacement if required

7

CS 365 13

Special Purpose Instructions

�Decimal arithmetic

�Strings

�MMX

�SIMD (single instruction multiple data)

CS 365 14

MIPS versus IA32

�Fixed instruction formats of MIPS

– Simple decoding logic

– Waste of memory space

– Limited addressing modes

�Variable length formats of IA32

– Difficult to decode; sequential decoding

– Compact machine codes

– Versatile addressing modes

8

CS 365 15

�Large pool of general purpose registers in
MIPS.

– No special considerations for particular
opcodes/registers; everything is born
equal.
�Well, there are exceptions. Can you name

one?

– Simplify programming and program
optimizations

– Good for compilations

CS 365 16

�Small pool of registers in IA32

– Small amount of data stored inside CPU
�Recall that moving data between CPU and

memory is slow, compared to register
operations.

�Usually lead to inefficient code

– Many registers serve special purposes;
making programmer/compiler’s job
difficult
�Again could lead to inefficient code

9

CS 365 17

�Operand architecture of MIPS

– Uses three register operands

– All data must be (explicitly) moved into
registers before the CPU and manipulate
them.

– Results have to be explicitly stored back to
memory.

– Creates longer machine codes but reflects
the reality.

CS 365 18

�Operand architecture of IA32

– One or two operands

– Operands in some instructions are fixed
and implied
�Compact code but lack flexibilities

�Makes code optimizations difficult

– One operand can be memory
�No explicit load/stores; compact code

�Data are moved in/out of CPU anyway; no
gain in performance

10

CS 365 19

� IA32 has to be backward compatible with
previous 8/16 bit architectures.

– This contributes to its complexities, many
of which unnecessarily so

– However, Intel gets to keep its software
and customer base. BIG PLUS.

– Intel commands huge resources to push
improvements.

– The result is IA32 chips are generally on
par with other modern ISAs.

CS 365 20

�MIPS represents a new generation of
computer architectures.

– Called Reduced Instruction Set
Computer (RISC)

– No corpses to carry; clean designs

– Design is purposely kept simple.

– In theory, this shortens design cycles and
produces efficient implementations.

– In reality, you need people and money to
compete with Intel. Very difficult.

