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Advanced Queueing Theory

These slides are created by Dr. Yih Huang of 
George Mason University. Students registered 

in Dr. Huang's courses at GMU can make a 
single machine-readable copy and print a 
single copy of each slide for their own 

reference, so long as each slide contains the 
copyright statement, and GMU facilities are 
not used to produce paper copies. Permission 
for any other use, either in machine-readable 
or printed form, must be obtained from the 

author in writing.
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M/G/1 Queueing Systems
� Service times have a general distribution.

� Other assumptions of M/M/1 are retained.

Implications:

� We can no longer rely on the the memoryless 
property of service times. 

� If we were to use the state transition diagram 
approach, then each state must contain                       
where          is the number of customers at time t
and A(t) represents how long the customer in the 
server has been served up to time t.

� Can you explain why we don't need           in 
M/M/* ? 

)),(),(( tAtN
)(tN

)(tA



2

CS 756 3

Notations

� --- waiting time in queue of the ith
customer

� --- residual service time of the 
currently served customer upon the arrival 
of the ith customer

� --- service time of the ith customer

� --- number of customers found waiting 
in queue by the ith customer upon his arrival
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Analysis
By definition, 

where R is the average residual service time.
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Residual Times

� --- the residual service time at time t

� --- the number of service completions 
up to time t.
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Let us compute the time average of         in 
the interval        :

Recalling that                        we now have 

the Pollaczek-Khinchin (P-K) formula:
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Average time in system (                is the 
average service time):

Average number of customers in queue:

Average number of customers in system:
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G/M/1 Queueing Systems

� Interarrival times form a general distribution 
with pdf .

�All other M/M/1 assumptions are retained.
�As in the case of M/G/1 queues, we cannot 

summarize the state of the entire system in a 
single number, the number of customers in 
system.

� Instead, we will focus on the behavior of the 
system at some “special moments” when the 
state of the system can be summarized in 
one number.
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State Probability Revisited
� For M/M/1 queues, we solved       , the probability 

for the system to be in state i.
� If you think carefully, the state probability 

changes over time.
– consider a barbershop whose             customers 

per hour and whose              customers per hour
– according to our formula, 
– however, what is the chance of seeing 3 

customers in the shop in the first 1 second ?  
– must be very very small ! (certainly less than 

10%)
� What does       really mean ? 
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�Let           be the probability of having i
customers during the interval [0,t], that is

� is defined as 

�That is,      is the average probability of state 
i over an indefinitely long period of time, 
taking all time points into account.

� It turns out that       is difficult to obtain with 
G/M/1 queues.
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� Rather than finding the probability over all time 
points, we shall content ourselves with the system's 
behavior only at the moments of customer arrivals.

� Precisely, let       be the probability that an arriving 
customer sees i customers in the system.

� Can you see that the knowledge of       is rather 
limited ? 
– with       , we know the probability of state i at 

all times, as long as the system has been running 
long enough

– with       , we know the probability of state i
only at the moments of customer arrivals

� On the positive side, the system CAN be 
summarized in a single number at such moments.  
Why ?
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State Transition Diagram

� A transition represents a customer arrival.
� represents the probability of moving from i to 

j upon a new arrival.
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Reading the Diagram
�How do we enter state i from i ? 

– the system had i customers when the 
previous customer arrived

– it has i customers when the next customer 
arrives

– this means that exactly one customer has 
been served and left the system between 
the two arrivals

� In general, a transition from i to i +1-j means 
j customers have been served between two 
consecutive arrivals.
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� It can be shown that (see Appendix):
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�We can obtain the value of β through 
numeric methods.
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� Notice that, when an arrival sees k customers in 
system, then he spends k+1 service periods in the 
system, implying 

� Finally, the average number of customers in the 
system is

� Amazingly, the above T and N formulas are 
unconditional, that is, they are valid at all times, 
not just the moments of arrivals.
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Appendix
�By definition,

�By the nature of π, we have

and
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�The above can be reduced to 

and 

�Let us try a solution of the form                  
That is,
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�However,

�We can obtain the value of     through 
numeric methods.

�Since                             we have     

� It follows that the conditional probability 
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