CS 656

Introduction

These slides are created by Dr. Yih Huang of George Mason University. Students registered in Dr. Huang’s courses at GMU can make a single machine-readable copy and print a single copy of each slide for their own reference, so long as each slide contains the copyright statement, and GMU facilities are not used to produce paper copies. Permission for any other use, either in machine-readable or printed form, must be obtained from the author in writing.

Communication

Transferring information over a distance.

- Requires a shared symbol set that can be transmitted as a signal a medium, received, and understood
- Medium can be anything capable of passing information.
 - Copper wire, glass fiber, radio waves, and so on
- Medium can be directional (point-to-point) or omnidirectional (broadcast).
- Some noise always exists to corrupt the signal.
networking

A set of hardware/software components that facilitates the communication among multiple (and potentially a large number of) users

- Complete mesh?
- Broadcast
- Switching

Broadcast-Based Networks

- All users share a broadcast medium, which is used even for one-to-one communications.
- Broadcast and multicast (sending a message to a subset of users) can be supported easily.
- Examples: Ethernet, token ring
- The main issue is medium access control (MAC).
 - When two nodes wish to broadcast simultaneously, who gets the “right of the road”?
- Performance is good with light traffic, but degenerates quickly when traffic is heavy.
Switching

- Use intermediate nodes, called switches or routers, to relay messages.

- One main issue is routing, the task of find a path from the source of a message to the destination.

Switching Technologies

- Circuit Switching: provides a continuous connection in the medium from sender to receiver over a path that is established a prior (consider the telephone network).

- Packet Switching: breaks information into discrete chunks, called packets, that are individually routed; different packets from a source may take different routes to reach the same destination.
Local Area Networks (LAN)

- Small area (e.g., a building)
- Privately owned media (twisted pair, coax, fiber)
- High capacity (1 mega bps to 100 mega bps)
- Few errors (10^{-6} to 10^{-8})
- Typically based on broadcast, but switching is emerging (ATM LANs, switched Ethernet)

Wide Area Networks (WAN)

- Large area (country or global)
- Generally lower capacity (up to 1.5 mega bps), but broadband is coming (45 mega bps to 155 mega bps and beyond).
- Older circuits have higher error rates (10^{-4} to 10^{-6}).
- Due to the large area and the large number of users, WANs must use switching technologies.
Network Services

- Connectionless Service
 - each message routed and delivered independently
 - examples: email and datagram
 - could be reliable or unreliable

- Connection-Oriented Service
 - establish connection, use it, disconnect (like a phone call)
 - could be reliable (FTP) or unreliable (voice data)
 - * why is the transmission of real-time voice unreliable?

Standards

- Reasons for networking standards
 - allow different computers to communicate
 - increase markets for products adhering to the same standard
 - decrease price through economies of scale

- Disadvantages of standards
 - Tend to freeze technology — by the time the standard is developed, reviewed, agreed upon, and distributed, better technologies are available.
 - Often, multiple conflicting standards for the same thing.
Standards Organizations

• ISO (International Organization for Standardization)
 - a voluntary organization that produces standards for “everything,” including networking protocols

• ITU (International Telecommunication Union)
 - U.N. treaty organization comprising primarily the PPT (Postal, Telegraph, and Telephone) authorities of member countries.

• ANSI (American National Standards Institute)
 - nonprofit, non-governmental organization composed of manufacturers, users, and carriers

• IEEE (Institute of Electrical & Electronic Engineering)
 - professional society and member of ANSI
 - Known for standards for LANs

• IETF (Internet Engineering Task Force)
 - responsible for the development of Internet protocols
Network Software

- Network software is organized as a series of layers, in order to reduce complexity.
- Each layer builds upon the one below it and provide services to the one above it.
- Between each layer is an interface.
- Well-defined layering minimizes information flow across layer boundaries and encourage software modulization.

- A set of protocols is called a protocol stack.
- A set of layers and protocols is called a network architecture.

Understanding a general purpose network architecture, namely, the Internet, is the main purpose of this course.

OSI Reference Model

- ISO defined a seven layer model – Open Systems Interconnection (OSI) reference model

- Lower four layers are concerned with providing reliable end-to-end communication.

- Upper three layers provide common, user-oriented services.
Layering Principles

Service interface with Layer N+1

Layer N Module in Node A

Layer N

Peer-to-peer communication

Layer N Module in Node B

Service interface with Layer N+1

Service interface with Layer N-1

Service interface with Layer N-1

Physical and Data Link Layers

- Physical Layer
 Transmit and receive bits on the physical medium

 - analog or digital transmission
 - definition of 0 and 1 bits
 - bit rate (bandwidth)

- Data Link Layer
 Provide error-free bit stream across the physical medium

 - error detection/correction
 - reliability
 - flow control
Network Layer

Controls the operations of the network

- Routing: determining the path from the source of a message to its destination
- Congestion control: handling heavy traffic
- Internetworking of both homogeneous and heterogeneous networks.

Transport Layer

Provides reliable end-to-end (host-to-host) connections

- Packetization: cut the messages into smaller chunks (packets)
 - Why?
 - An ensuing issue is ordering: the receiving end must make sure that the user receives the packets in the right order.
- Host-to-host flow control
Upper Layers

- Session Layer
 - user-to-user connection
 - synchronization and checkpoint
- Presentation Layer
 - data representation/compression
 - cryptography and authentication
- Application Layer
 - file transfer, email, WWW, and so on

Shortcomings of OSI Model

Just because someone says it is a model/standard does not mean you will have to follow it.

- Standard development squeezed between networking research and the rush to turn technologies into products.
- All layers do not have the same size and importance
 - session and presentation layers are seldom present
 - data link, network, and transport layers are often very full
- Little agreement on where to place various features
 - encryption, network management
- Large number of layers increases communication latency.
Internet Protocol Suite Reference Model

Application
Transport
Internet
Host-to-Network

Internetworking: Building Networks of Networks

Ethernet
Token Ring
Router
Host
ATM Switch
ATM LAN
To-Dos of This Week

- Send an email to Dr. Huang.
- Request a password for http://bacon.gmu.edu/cs656.
- Download and setup Networking Workbench.
- Start working on Project WAN 1.
 - due 7:20pm, Feb. 11th.
 - see nw33/assignments/wan1.txt for details.