Data Link Layer, Part 4

Exemplary Protocols

These slides are created by Dr. Yih Huang of George Mason University. Students registered in Dr. Huang’s courses at GMU can make a single machine-readable copy and print a single copy of each slide for their own reference, so long as each slide contains the copyright statement, and GMU facilities are not used to produce paper copies. Permission for any other use, either in machine-readable or printed form, must be obtained from the author in writing.

High-Level Data Link Control (HDLC)

- a standard of DLL adopted by ISO
- originally created by IBM for mainframe-terminal communications
- also supports point-to-point, peer-to-peer links
- formed the basis of many other data link layer protocols, for example the LABP of X.25
- bit oriented framing (FLAG = 01111110)
- go-back-n sliding window protocol using 3-bit sequence number, piggybacking, and negative acknowledgments.
 ※ 7-bit sequence number is supported as an extension
HDLC Frame Format

- **Address**: destination DLL address
 - to identify a terminal in configurations where a link connects a mainframe and multiple terminals
 - not used in point-to-point configurations
- **Control**: determines the purpose of the frame; see next slide
- **Data**: frame data
- **Checksum**: 16-bit CRC Checksum using CRC-CCITT

Frame Types

The Control field is used to distinguish three types of frames:

1. **Information Frame** (that is, data frame)

 - Seq: the sequence number of this frame
 - Next: piggybacked ACK, indicating the next expected frame (rather than the last received one)
 - P/F: used in mainframe-terminal communications; not to be discussed further
2. Supervisory Frame

<table>
<thead>
<tr>
<th>1</th>
<th>0</th>
<th>Type</th>
<th>P/F</th>
<th>Next</th>
</tr>
</thead>
</table>

- type 0: Receive Ready
 an ACK frame indicating the successful receipt of data frame Next-1
- type 1: Reject
 a NACK frame requesting the retransmission of the data frame indicated by Next; the sender must retransmit all frames starting at Next
- type 2: Receiver Not Ready
 explicitly acknowledging the “Next-1” frame and informing the sender to stop

3. Unnumbered Frame (control frame)

<table>
<thead>
<tr>
<th>1</th>
<th>1</th>
<th>Type</th>
<th>P/F</th>
<th>Modifier</th>
</tr>
</thead>
</table>

- the Type and Modifier together are interpreted as a control command
- some commands are used to negotiate the configuration of the link (mainframe-to-terminal or peer-to-peer)
- some commands are used to negotiate the length of sequence numbers
- reliability of control frames are provided by stop-and-wait
 if the command “Unnumbered Ack” is used as the ACK for other commands
PPP: Point-to-Point Protocol

The PPP protocols comprises three components:

1. A method to encapsulate datagrams (packets) over serial lines
 • the chosen format confirms with the HDLC format
2. A link control protocol (LCP) to establish, configure, and test
 the link
3. A family of network control protocols (NCPs) specific to
 protocols (IP, OSI, AppleTalk, etc.)
 • this enables network-layer specific optimizations

PPP Frame Format

<table>
<thead>
<tr>
<th>1 byte</th>
<th>1</th>
<th>1</th>
<th>2</th>
<th>up to 1500</th>
<th>2</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>flag 7E</td>
<td>addr FF</td>
<td>control 03</td>
<td>Protocol</td>
<td>Data</td>
<td>CRC</td>
<td>flag 7E</td>
</tr>
</tbody>
</table>

- Addr 0xFF is an “All-Station” address in HDLC
- Control 0x03 is the “Unnumbered Information” command (with P/F set to 0) in HDLC
Link Control Protocol

In order to establish communications over a point-to-point link, each end must first use the LCP to configure and test the link.

To improve link performance, the LCP further supports:

- negotiation of maximum frame size
- negotiation of address and control field compression
- negotiation of protocol field compression

Subsequently, each network layer protocol must be configured by its respective network control protocol.

IP Network Control Protocol

- Dynamic negotiation of the IP address for each end
- TCP/IP header compression

This compression of transport layer information (TCP header) by a data link layer protocol (PPP) violates the OSI reference model.