New Results On Routing Via Matchings

Indranil Banerjee
with Dana Richards

George Mason University

richards@gmu.edu

December 1, 2017
• \(G(V, E) \) is an undirected graph. \(V = \{1, 2, 3, \ldots, n\} \).
• A pebble at vertex \(i \) is labeled \(\pi(i) \) if it is to be routed to vertex \(\pi(i) \), for a given permutation \(\pi \).
• Permutations written using cycle notation.
The Routing Model

Previous and Related Work

Computational Results

Structural Results

CCPP
Definitions

- A matching is a vertex disjoint subset of the edges.
- Swapping pebbles across the matched edges advances to a new permutation (stop at the identity permutation).
- **Routing time**, \(rt(G, \pi) \), \# of matchings necessary for \(\pi \)
- The maximum routing time over all permutations is called the *routing number* of \(G \), \(rt(G) \).
- If \(G \) is not connected, \(rt(G) = \infty \)
An Example

Figure: A 3-step routing scheme for \((G, \pi)\)
This routing model was first introduced by Alon et. al. (*)

Which is a special case of the minimum generator sequence (MGS) problem for permutation groups (G).

Given a set of generators S, the MGS problem asks one to determine the minimum number of generators required to generate every element of G (from the identity element).

This problem was shown to be PSPACE-complete (even with only generators of order 2).

• Every connected graph, has a spanning tree.
• Trivially, we can pick a pebble whose destination is some leaf vertex.
• Move it to its destination sequentially, then solve for the rest of the tree independently. Takes $O(n^2)$ steps.
• However we can do it faster ($O(n)$).
First partition the spanning tree around its centroid.

1. Route between the subtrees through the centroid using a matching chosen based on a simple odd-even greedy strategy.
2. Then route within the subtrees recursively (in parallel).

Figure: This strategy gives a $\leq 3n$ routing scheme
Current best upper bound for any tree is $3n/2 + O(\log n)$.

The best lower bound of $\lceil 3n/2 \rceil + 1$ is for the start graph.

Figure: A matching is just a singleton edge, the permutation $
\pi = (12)(34) \ldots (2m - 1, 2m)$, $n = 2m$ takes $\lceil 3n/2 \rceil + 1$ steps.
Routing Numbers of Familiar Graphs

- $rt(P_n) = 2 \lfloor n/2 \rfloor$ (path graph).
- $rt(K_n) = 2$ (complete graph)
- $rt(K_{n,n}) = 4$ (complete bipartite graph)
- $rt(Q_n) \leq 2n - 3$ (the n-cube with 2^n vertices)
- $rt(M_{n,n}) = O(n)$ ($n \times n$ mesh)
- If G is a bounded degree expander then $rt(G) = O(\log^2 n)$
It is known that:

$$rt(G \boxdot H) \leq 2 \min (rt(G), rt(H)) + \max (rt(G), rt(H))$$

Since $$Q_n = K_2 \boxdot Q_{n-1}$$

The upper bound $$rt(Q_n) \leq 2n - 3$$ follows. (the $$n$$-cube with $$2^n$$ vertices)

It is also the best known.

Lower bound $$\geq n + 1$$

It has been conjectured that $$rt(Q_n) \leq n + 1 + o(n)$$.
Figure: A bad permutation. The cycle crosses many non-adjacent vertices.

Figure: Step - 1
New Results
On Routing
Via Matchings

Indranil Banerjee

The Routing Model

Previous and Related Work
Computational Results
Structural Results
CCPP

Figure: Step - 2
New Results On Routing Via Matchings

Indranil Banerjee

The Routing Model

Previous and Related Work

Computational Results

Structural Results

CCPP

Figure: Step - 3
New Results
On Routing
Via Matchings

Indranil Banerjee

The Routing Model

Previous and Related Work

Computational Results

Structural Results

CCPP

Figure: Step - 4
Our results:

- Deciding if $rt(G, \pi) \leq 2$ can be done in polynomial time
- Determining $rt(G, \pi)$ is NP-complete
- It remains so when G is 2-connected and π is an involution

Later we show

- Decision version of MaxRoute is also NP-complete
- Connected colored partition problem (CCPP) is NP-complete
- An $O(n \log \log n / \log n)$-approximation algorithm for MaxRoute on a degree bounded graph.
Is $rt(G, \pi) \leq 2$?

$G[V_c] =$ induced subgraph over the vertices in cycle c

“Self-routing” a cycle c of π uses only using $G[V_c]$ in two steps.

Figure: One way to route a simple cycle $c = (12345678)$ in two steps. There are 8 possible ways on a complete graph

For a sparser graph there may not be 8 options. Can determine if there is at least one way in linear time.
“Mutual routing” of a pair of cycles \(c_1, c_2 \) in \(\pi \) uses only edges of the induced bipartite subgraph \(G[V_{c_1}, V_{c_2}] \), in two steps.

Figure: One way to route two cycles \(c_1 = (1\ 2\ 3\ 4\ 5\ 6\ 7) \) and \(c_2 = (8\ 9\ 10\ 11\ 12\ 13\ 14) \) in two steps.

Can determine if there is at least one way in linear time.
For each cycle we can determine if it can be self-routed.

For each pair we can determine their mutual-routability.

Create a graph G_{cycle} with:
- a vertex for each cycle of π
- edges and self-loops for mutual- and self-routability.

Then $rt(G, \pi) = 2$ iff G_{cycle} has a perfect matching.

All this can be carried out in the time it takes compute a maximum matching.
Hardness Proof: Reduction from 3-SAT

Figure: The involution \((ab)\) takes at least three steps to route for the graphs in figures (a)-(d)

A clause can be routed in 3 steps iff a vertex from \(\{x, y, z\}\) is available, i.e. not used to route any other pebbles.
Figure: Variable gadget.

Where the variable X is in $m_X = \text{clauses}$.
Figure: The entire G_ϕ that is built.
Hardness Proof: Observations

- $rt(G_\phi, \pi) = 3$ iff ϕ is satisfiable.
- The graph G_ϕ built in the reduction is 2-connected.
- The permutation π in the reduction is an involution.

The other hardness proof in this work extend this reduction.
Define the MaxRoute problem (partial routing) as follows:

- Given a graph G, a permutation π and number of steps k, route the most pebbles to their destination within k steps.
- $mr(G, \pi, k)$ is the max number of pebbles routed.
- The decision version of this problem is to determine if $mr(G, \pi, k) \geq t$.
We give an approximation algorithm for the restricted case where $\Delta^k = O(\log^2 n)$, $\Delta = \max$ degree of G.

- Our approximation algorithm is based on a reduction to the MaxClique problem.
- The best known approximation factor for MaxClique is $O(n \log \log n/(\log n)^3)$.
We enumerate all walks of length k for each pebble on G.

A pair of walks is “compatible” if:
 a. The walks belong to different pebbles.
 b. They do not intersect (same place at the same time).
 c. The pebbles reach their destinations at the end.

Build graph G' with a vertex for each walk and edges for compatible pairs.

A clique in G' gives a set of mutually compatible walks.
Three structural results

- If G is a h-connected graph and H is any h-vertex induced subgraph of G then $rt(G) = O((n/h)rt(H))$.
- If G has a clique of size at least κ then $rt(G) = O(n - \kappa)$.
- Routing number of the pyramid graph $\bigstar_{m,d}$ is $O(dN^{1/d})$

$$N = \frac{2^{md} - 1}{2^d - 1}$$
h-Connectivity

- Let A, B be a bi-partition of V for some min-cut of size h.
- Then it takes at least $\Omega(\min(|A|, |B|)/h)$ to move all pebbles between A and B.
- For some graphs this is $\Omega(n/h)$.

Figure: Lower bound.
The Gyori-Lovasz theorem: for all h-connected graphs and for any set of h vertices there is a partition:

- Where each of the h vertices is in a distinct block,
- We can insist the size of the blocks are nearly equal,
- Each block induces a connected subgraph.

This set of h vertices will induce a subgraph H of G. We can assume H is a subgraph which minimizes $rt(H)$.
Figure: A partition of G, with $h = 5$. Since each induced subgraph G_i is connected, there is a spanning tree T_i of G_i rooted at u_i.
Let each G_i have a distinct “color”.

- Each pebble knows the color of its destination block.
- By Hall’s theorem there is a set of permutations $\pi_1, \pi_2, \ldots, \pi_h$, one for each subgraph, such that each $(\pi_1(i), \pi_2(i), \ldots, \pi_h(i))$ contains h distinct colors.
- Hence each $(\pi_1(i), \pi_2(i), \ldots, \pi_h(i))$ is a permutation which we can route using only H in $rt(H)$ steps.
Routing proceeds in three stages

1. During the first stage we move pebbles within each T_i according to π_i. (This takes $O(n/h)$ steps in parallel)

2. We use H to route pebbles between the connected blocks using colors, n/h times. ($O((n/h)rt(H))$ steps)

3. Finally we move pebbles within each T_i to their final position. ($O(n/h)$ steps)

Conjecture

If G is h-connected then there is a H (as above) having $g(h)$ vertices with $rt(H)/g(h) = o(1)$.
• Recall that $rt(K_n) = 2$.
• Intuitively having a large clique should result in a smaller routing number.
• However this dependency is not multiplicative:

$$rt(G) \geq \frac{n}{2}$$

Figure: The barbell graph, although it has two large cliques, its routing number is still $\Omega(n)$.

So there is a $\Omega(n - \kappa)$ bound for such graph families.
Let H be a clique of size κ

$G \setminus H$ is the minor of G after contracting H to the vertex v

T is a spanning tree of $G \setminus H$

Figure: The (super) vertex v acts as any other vertex in $G \setminus H$, with the exception that pebbles exchanges takes three time steps.
In the first stage we route all pebbles that belong in the super vertex v into v. (Takes at most $3(n - \kappa) + O(1)$ steps).

Next we route the pebbles within T, treating v as any other vertex, using any optimal tree routing algorithm. (Takes $\leq 3(3/2)(n - \kappa) + o(n)$)

Finish up within v in two steps.

Hence it takes $O(n - \kappa)$ steps to route any permutation on G.
Figure: A pyramid $\triangle_3,2$ with 3 layers.
Figure: A multi-grid formed after stripping way some edges from $\mathcal{L}_{3,2}$

Use vertical paths of length k to move pebbles up to level k (from the base).
Connected Colored Partition Problem

This arises in the analysis of some approximation algorithms. Given a graph G and a vertex coloring with at most k colors, the problem asks whether there is a partition of the vertices such the following holds:

- Each block of the partition induces a connected subgraph.
- No color spans two blocks.
- Each block is of size $\leq p$
We reduce from 3-SAT.

The reduction is similar to the routing time proof.

If \((ab)\) is a 2-cycle of \(\pi\) then the vertices corresponding to \(a, b\) are assigned the same color.

Vertices with fixed pebbles are assigned a unique color.

Figure: An example using two blocks.
Questions?