Schema Refinement & Normalization Theory 2

Week 15
How do we know R is in BCNF?

- If R has only two attributes, then it is in BCNF.
- If F only uses attributes in R, then:
 - R is in BCNF if and only if for each \(X \rightarrow Y \) in F (not \(F^+ \! \)), X is a superkey of R, i.e., \(X \rightarrow R \) is in \(F^+ \) (not F!).
Checking for BCNF Violations

• List all non-trivial FDs
• Ensure that left hand side of each FD is a superkey
• We have to first find all the keys!
Checking for BCNF Violations

• Is Courses(course_num, dept_name, course_name, classroom, enrollment, student_name, address) in BCNF?
• FDs are:
 – course_num, dept_name → course_name
 – course_num, dept_name → classroom
 – course_num, dept_name → enrollment
• What is (course_num, dept_name)⁺?
 – {course_num, dept_name, course_name, classroom, enrollment}
• Therefore, the key is
 {course_num, dept_name, course_name, classroom, enrollment, student_name, address}
• The relation is not in BCNF
BCNF and Dependency Preservation

• In general, there may not be a dependency preserving decomposition into BCNF.

• Example: schema CSZ (city, street_name, zip_code) with FDs: CS → Z, Z → C

 (city, street_name) → zip_code

 zip_code → city

• Can’t decompose while preserving CS → Z, but CSZ is not in BCNF.
Example Regarding Dependency Preservation

- \(R = (A, B, C) \)
 \(F = \{ A \rightarrow B, B \rightarrow C \} \)
 - Can be decomposed in two different ways

- \(R_1 = (A, B), \quad R_2 = (B, C) \)
 - Lossless-join decomposition:
 \[R_1 \cap R_2 = \{ B \} \text{ and } B \rightarrow BC \]
 - Dependency preserving

- \(R_1 = (A, B), \quad R_2 = (A, C) \)
 - Lossless-join decomposition:
 \[R_1 \cap R_2 = \{ A \} \text{ and } A \rightarrow AB \]
 - Not dependency preserving
 (cannot check \(B \rightarrow C \) without computing \(R_1 \bowtie R_2 \))
Dependency Preserving Decomposition

• Consider CSJDPQV, C is key, JP → C and SD → P.
 – BCNF decomposition: CSJDQV and SDP
 – Problem: Checking JP → C requires a join!

• Dependency preserving decomposition (Intuitive):
 – If R is decomposed into X, Y and Z, and we enforce the FDs that hold on X, on Y and on Z, then all FDs that were given to hold on R must also hold. *(Avoids Problem (3))*
What FD on a decomposition?

- **Projection of set of FDs F:** If R is decomposed into X, ... the projection of F onto X (denoted F_X) is the set of FDs $U \rightarrow V$ in F^+ (*closure of F*) such that U, V are in X.

Dependency Preserving Decompositions (Contd.)

- Decomposition of R into X and Y is dependency preserving if $(F_X \cup F_Y)^+ = F^+$
 - i.e., if we consider only dependencies in the closure F^+ that can be checked in X without considering Y, and in Y without considering X, these imply all dependencies in F^+.

- Important to consider F^+, not F, in this definition:
 - ABC, $A \rightarrow B$, $B \rightarrow C$, $C \rightarrow A$, decomposed into AB and BC.
 - Is this dependency preserving? Is $C \rightarrow A$ preserved?????

- Dependency preserving does not imply lossless join:
 - ABC, $A \rightarrow B$, decomposed into AB and BC.

- And vice-versa!
Another example

• Assume CSJDPQV is decomposed into
 SDP, JS, CJDQV
 It is not dependency preserving
 w.r.t. the FDs: JP → C, SD → P and J → S.
• However, it is a lossless join decomposition.
• In this case, adding JPC to the collection of relations gives
 us a dependency preserving decomposition.
• JPC tuples stored only for checking FD!
Summary of BCNF

• If a relation is in BCNF, it is free of redundancies that can be detected using FDs. Thus, trying to ensure that all relations are in BCNF is a good heuristic.

• If a relation is not in BCNF, we can try to decompose it into a collection of BCNF relations.
 – It is always possible to decompose a relation into a set of relations that are in BCNF such that:
 • the decomposition is lossless
 • it may not be possible to preserve dependencies.
Next: Third Normal Form

• There are some situations where
 – BCNF is not dependency preserving, and
 – efficient checking for FD violation on updates is important

• Solution: define a weaker normal form, called Third Normal Form (3NF)
 – Allows some redundancy (with resultant problems; we will see examples later)
 – But functional dependencies can be checked on individual relations without computing a join.
 – There is always a lossless-join, dependency-preserving decomposition into 3NF.
Third Normal Form (3NF)

- If R is in BCNF, obviously in 3NF.
- If R is in 3NF, some redundancy is possible. It is a compromise, used when BCNF not achievable (e.g., no “good” decomposition, or performance considerations).
 - Lossless-join, dependency-preserving decomposition of R into a collection of 3NF relations always possible.
3NF

• Relation R with FDs F is in 3NF if, for each FD $X \rightarrow A$ ($X \in R$ and $A \in R$) in F, one of the following statements is true:
 - $A \in X$ (trivial FD), or
 - X is a superkey, or
 - A is part of some key for R

If one of these two is satisfied for ALL FDs, then R is in BCNF

Not just superkey! (why not?)
What Does 3NF Achieve?

• If 3NF is violated by $X \rightarrow A$, one of the following holds:
 – X is a subset of some key K (partial redundancy)
 • We store (X, A) pairs redundantly.
 – X is not a proper subset of any key.
 • There is a chain of FDs $K \rightarrow X \rightarrow A$, which means that we cannot associate an X value with a K value unless we also associate an A value with an X value.

• But: even if reln is in 3NF, these problems could arise.
 – e.g., Reserves SBDC (sid, bid, date, credit_card). Keys are SBD, CBD. FD = \{S \rightarrow C, C \rightarrow S\}. R is in 3NF, but for each reservation of sailor S, same (S, C) pair is stored.

• Thus, 3NF is indeed a compromise relative to BCNF.
Decomposition into 3NF

- Obviously, the algorithm for lossless join decomps into BCNF can be used to obtain a lossless join decomps into 3NF (typically, can stop earlier).
- To ensure dependency preservation, one idea:
 - If \(X \rightarrow Y \) is not preserved, add relation \(XY \).
 - Problem is that \(XY \) may violate 3NF!
- Refinement: Instead of the given set of FDs \(F \), use a *minimal cover for* \(F \).
Minimal Cover for a Set of FDs

- **Minimal cover** G for a set of FDs F:
 - Closure of $F = \text{closure of } G$.
 - Right hand side of each FD in G is a single attribute.
 - If we modify G by deleting an FD or by deleting attributes from an FD in G, the closure changes.

- Intuitively, every FD in G is needed, and “as small as possible” in order to get the same closure as F.
Obtaining Minimal Cover

- Step 1: Put the FDs in a standard form (i.e. right-hand side should contain only single attribute)
- Step 2: Minimize the left side of each FD
- Step 3: Delete redundant FDs
• Find minimal cover for $F = \{ABH \rightarrow CK, A \rightarrow D, C \rightarrow E, BGH \rightarrow L, L \rightarrow AD, E \rightarrow L, BH \rightarrow E\}$
• Step 1: Make RHS of each FD into a single attribute:

\[F = \{ABH \rightarrow C, ABH \rightarrow K, A \rightarrow D, C \rightarrow E, BGH \rightarrow L, L \rightarrow A, L \rightarrow D, E \rightarrow L, BH \rightarrow E\} \]
• \(F = \{ABH \rightarrow C, ABH \rightarrow K, A \rightarrow D, C \rightarrow E, BGH \rightarrow L, L \rightarrow A, L \rightarrow D, E \rightarrow L, BH \rightarrow E\} \)

• **Step 2: Eliminate redundant attributes from LHS, e.g. Can an attribute be deleted from **\(ABH \rightarrow C \)**?

 – Compute \((AB)^+, (BH)^+, (AH)^+\) and see if any of them contains \(C \). (Why?)

 \[
 \begin{align*}
 (AB)^+ &= ABD, \\
 (BH)^+ &= ABCDEHKL, \\
 (AH)^+ &= ADH.
 \end{align*}
 \]

 Since \(C \in (BH)^+ \), \(BH \rightarrow C \) is entailed by \(F \). So \(A \) is redundant in \(ABH \rightarrow C \). Similarly, \(A \) is also redundant in \(ABH \rightarrow K \). Check further to see if \(B \) or \(H \) is redundant as well.

 – Similarly, for \(BGH \rightarrow L \), \(G \) is redundant since \(L \in (BH)^+ \).

 \[
 \begin{align*}
 F &= \{BH \rightarrow C, BH \rightarrow K, A \rightarrow D, C \rightarrow E, BH \rightarrow L, L \rightarrow A, L \rightarrow D, E \rightarrow L, BH \rightarrow E\}\]
 \]
• \(F = \{BH \rightarrow C, BH \rightarrow K, A \rightarrow D, C \rightarrow E, BH \rightarrow L, L \rightarrow A, L \rightarrow D, E \rightarrow L, BH \rightarrow E\} \)

• Step 3: Delete redundant FDs from \(F \).

 – If \(F - \{f\} \) infers \(f \), then \(f \) is redundant, i.e. if \(f \) is \(X \rightarrow A \), then check if \(X^+ \) using \(F - f \) still contains \(A \). If it does, then it means \(X \rightarrow A \) can be inferred by other FDs.

 – E.g. For \(BH \rightarrow L \), \((BH)^+ \) (not using \(BH \rightarrow L \)) = ACDEKL, which contains \(L \). This means \(BH \rightarrow L \) can be inferred by other FDs, so it’s a redundant FD.

 – In fact, \(BH \rightarrow L \) can be inferred by \(BH \rightarrow E \), \(E \rightarrow L \).

 – Check other FDs using the same algorithm.

• Note: the order of Step 2 and Step 3 should not be exchanged.
What to do with Minimal Cover?

• After obtaining the minimal cover, for each FD $X \rightarrow A$ in the minimal cover that is not preserved, create a table consisting of XA (so we can check dependency in this new table, i.e. dependency is preserved).

• Why is this new table guaranteed to be in 3NF (whereas if we created the new table from F, it might not?)
 – Since $X \rightarrow A$ is in the minimal cover, $Y \rightarrow A$ does not hold for any Y that is a strict subset of X.
 • So X is a key for XA (satisfies condition #2)
 • If any other dependencies hold over XA, the right side can involve only attributes in X because A is a single attribute (satisfies condition #3).
Comparison of BCNF and 3NF

• It is always possible to decompose a relation into a set of relations that are in 3NF such that:
 – the decomposition is lossless
 – the dependencies are preserved

• It is always possible to decompose a relation into a set of relations that are in BCNF such that:
 – the decomposition is lossless
 – it may not be possible to preserve dependencies.
Normalization Review

- Identify all FD’s in F⁺
- Identify candidate keys
- Identify (strongest, or specific) normal forms
 - BCNF, 3NF
- Schema decomposition
 - When to decompose
 - How to check if a decomposition is lossless-join and/or dependency preserving
 - Use projection of F⁺ to check for dependency preservation
 - Decompose into:
 - Lossless-join
 - Dependency preserving
 - Use minimal cover
Normalization Theory - Practice Questions
Example

<table>
<thead>
<tr>
<th></th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FDs with A as the left side:</th>
<th>Satisfied by the relation?</th>
</tr>
</thead>
<tbody>
<tr>
<td>A→A</td>
<td>Yes (trivial FD)</td>
</tr>
<tr>
<td>A→B</td>
<td>Yes</td>
</tr>
<tr>
<td>A→C</td>
<td>No: tuples 1&2</td>
</tr>
<tr>
<td>AB→A</td>
<td>Yes (trivial FD)</td>
</tr>
<tr>
<td>AC→B</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Example

Let $F=\{ A \rightarrow BC, B \rightarrow C \}$. Is $C \rightarrow AB$ in F^+?

Answer: No. Either of the following 2 reasons is ok:

Reason 1) $C^+=C$, and does not include AB.

Reason 2) We can find a relation instance such that it satisfies F but does not satisfy $C \rightarrow AB$.

\[
\begin{array}{ccc}
A & B & C \\
1 & 1 & 2 \\
2 & 1 & 2 \\
\end{array}
\]
List all the non-trivial FDs in F^+

- Given $F = \{ A \rightarrow B, B \rightarrow C \}$. Compute F^+ (with attributes A, B, C).

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>AB</th>
<th>AC</th>
<th>BC</th>
<th>ABC</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>B</td>
<td></td>
<td>√</td>
<td></td>
<td></td>
<td></td>
<td>√</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AB</td>
<td></td>
<td></td>
<td></td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>AC</td>
<td></td>
<td></td>
<td></td>
<td>√</td>
<td>√</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ABC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Attribute closure:

- $A^+ = ABC$
- $B^+ = BC$
- $C^+ = C$
- $AB^+ = ABC$
- $AC^+ = ABC$
- $BC^+ = BC$
- $ABC^+ = ABC$
Example

• Given $F = \{ A \rightarrow B, B \rightarrow C \}$. Find a relation that satisfies F:

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

• Given $F = \{ A \rightarrow B, B \rightarrow C \}$. Find a relation that satisfies F but does not satisfy $B \rightarrow A$. Well, the above example suffices.

• Can you find an instance that satisfies F but not $A \rightarrow C$? No. Because $A \rightarrow C$ is in F^+
Examples

R(A, B, C, D, E),
F = \{A \rightarrow B, C \rightarrow D\}

Candidate key: ACE. How do we know?

Intuitively,
- A is not determined by any other attributes (like E), and A has to be in a candidate key (because a candidate key has to determine all the attributes).
- Now if A is in a candidate key, B cannot be in the same candidate key, since we can drop B from the candidate without losing the property of being a “key”.
- So B cannot be in a candidate key
- Same reasoning apply to others attributes.
Example

R(A, B, C, D, E),
F = {A \rightarrow B, C \rightarrow D} [Same as previous]

Which normal form?

Not in BCNF. This is the case where all attributes in the FDs appear in R. We consider A, and C to see if either is a superkey of not. Obviously, neither A nor C is a superkey, and hence R is not in BCNF. More precisely, we have A \rightarrow B is in F^+ and non-trivial, but A is not a superkey of R.
Example

R(A, B, C, D, E)
F = \{A \rightarrow B, C \rightarrow D\} [Same as previous]

Which normal form?

We already know that it’s not in BCNF. Not in 3NF either. We have A \rightarrow B is in F^+ and non-trivial, but A is not a superkey of R. Furthermore, B is not in any candidate key (since the only candidate key is ACE).
Example

- \(R(A,B,F), F = \{ AC \rightarrow E, B \rightarrow F \} \).
- Candidate key? AB
- BCNF? No, because of \(B \rightarrow F \) (B is not a superkey).
- 3NF? No, because of \(B \rightarrow F \) (F is not part of a candidate key).
Example

- \(R(D, C, H, G), F = \{A \rightarrow I, I \rightarrow A\} \)
- Candidate key? DCHG
- BCNF? Yes
- 3NF? Yes
Example

- \(R(A, B, C, D, E, G, H) \)
 \(F=\{ AB \rightarrow C, AC \rightarrow B, B \rightarrow D, BC \rightarrow A, E \rightarrow G \} \)

- Candidate keys?
 - \(H \) has to be in all candidate keys
 - \(E \) has to be in all candidate keys
 - \(G \) cannot be in any candidate key (since \(E \) is in all candidate keys already).
 - Since \(AB \rightarrow C, AC \rightarrow B \) and \(BC \rightarrow A \), we know no candidate key can have \(ABC \) together.
 - \(AEH, BEH, CEH \) are not superkeys.
 - Try \(ABEH, ACEH, BCEH \). They are all superkeys. And we know they are all candidate keys (since above properties)
 - These are the only candidate keys: (1) each candidate key either contains \(A \), or \(B \), or \(C \) since no attributes other than \(A,B,C \) determine \(A, B, C \), and (2) if a candidate key contains \(A \), then it must contain either \(B \), or \(C \), and so on.
Example

- Same as previous
- Not in BCNF, not in 3NF
- Decomposition:

R(A, B, C, D, E, G, H)
F={AB → C, AC → B, B → D, BC → A, E → G}
Example

- $R(A, B, C, D, E, G, H)$
 - $F = \{AB \rightarrow C, AC \rightarrow B, B \rightarrow D, BC \rightarrow A, E \rightarrow G\}$

- Decomposition: BD, ABC, EG, ABEH

- Why good decomposition?
 - They are all in BCNF
 - Lossless-join decomposition
 - All dependencies are preserved.
Example

• R(A, B, D, E) decomposed into R1(A, B, D), R2 (A, B, E)
• F={AB → DE}
• It is a dependency preserving decomposition!
 – AB → D can be checked in R1
 – AB → E can be checked in R2
 – {AB → DE} is equivalent to {AB → D, AB → E}