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Dimensionality Reduction

* Purpose:
— Avoid curse of dimensionality
— Reduce amount of time and memory required by data
mining algorithms
— Allow data to be more easily visualized

— May help to eliminate irrelevant features or reduce
noise

e Techniques
— Principle Component Analysis
— Singular Value Decomposition

— Others: supervised and non-linear techniques



Principal Component Analysis
* Goal of PCA

— To reduce the number of dimensions.

— Transfer interdependent variables into single
and independent components.

* What does PCA do ?

— Transforms the data into a lower dimensional
space, by constructing dimensions that are
linear combinations of the input dimensions/
features.

— Find independent dimensions along which
data have the largest variance.



Goal 1s to find a projection that captures the largest amount of
variation in data
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Fig 1: Football-shaped data set with two main components.

http://www.chem.agilent.com/cag/bsp/sig/downloads/pdf/pca.pdf
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B .
Feature Subset Selection

* Another way to reduce dimensionality of data

 Redundant features

— duplicate much or all of the information contained in
one or more other attributes

— Example: purchase price of a product and the amount of
sales tax paid

e [rrelevant features

— contain no information that 1s useful for the data mining
task at hand

— Example: students' ID 1s often irrelevant to the task of
predicting students' GPA



B .
Feature Subset Selection

e Techniques:
— Brute-force approach:

» Try all possible feature subsets as input to data mining
algorithm

— Embedded approaches:

» Feature selection occurs naturally as part of the data mining
algorithm

— Filter approaches:
« Features are selected before data mining algorithm is run

— Wrapper approaches:

« Use the data mining algorithm as a black box to find best
subset of attributes

— Feature Weighting
I



Filter Approach
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B .
Feature Creation

* Create new attributes that can capture the
important information in a data set much
more efficiently than the original attributes

* Three general methodologies:

— Feature Extraction
* domain-specific
— Mapping Data to New Space

— Feature Construction

e combining features



N
Mapping Data to a New Space

® Fourier transform

® Wavelet transform
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Dangers of Dimensionality Reduction

* https://cs.gmu.edu/~jessica/
DimReducDanger.htm
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What 1s Similarity?
The quality or state of being similar; likeness;
resemblance; as, a similarity of features. webster's bictionary

Similarity is hard to
define, but...

“We know it when we
see it’

The real meaning of
similarity 1s a

philosophical question.

We will take a more
L pragmatic approach.
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EETT
Similarity and Dissimilarity

e Similarity
— Numerical measure of how alike two data objects are.
— Is higher when objects are more alike.
— Often falls 1n the range [0,1]

 Dissimilarity

— Numerical measure of how different are two data
objects

— Lower when objects are more alike
— Minimum dissimilarity 1s often 0
— Upper limit varies

e Proximity refers to a similarity or dissimilarity



Similarity/Dissimilarity for Simple Attributes

p and g are the attribute values for two data objects.

Attribute Dissimilarity Similarity
Type
. 0 iftp=q 1 ifp=gq
Nominal = . s = _
1 ifp#gq 0 ifp#gq
d = p=d
. n—1 Jﬂ[
Ordinal (values mapped to integers 0 ton—1, | s =1 - *—
where n is the number of values)
[nterval or Ratio | d = |p — ¢ s=—d,s= ﬁ or
s=1— d—min_d
maz_.d—min_d

Table 5.1. Similarity and dissimilarity for simple attributes
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N
Defining Distance Measures

Definition: Let O, and O, be two objects from the universe of possible
objects. The distance (dissimilarity) is denoted by D(0O,,0,)

What properties should a distance measure have?

* D(A,.B)=D(B,A) Symmetry

* D(ALA)=0 Constancy of Self-Similarity
* D(A.B)=0I{ff A=B Positivity

* D(A,B) < D(A,C) + D(B,C) Triangular Inequality

Measures for which all properties hold are referred to as distance metrics.



Intuitions behind desirable distance
measure properties I

D(A,B) = D(B,A) Symmetry
Otherwise you could claim:

“Fairfax is close to D.C., but D.C is not close to
Fairfax.”
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Intuitions behind desirable distance
measure properties 11

D(AA)=0 Constancy of Self-Similarity
Otherwise you could claim:

“Fairfax is closer to D.C than D.C. itself! "
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Intuitions behind desirable distance
measure properties 111

D(A,B)=01if A=B Positivity
Otherwise you could claim:

“Fairfax is exactly at the same location as DC”~



Intuitions behind desirable distance
measure properties 1111

D(A,B) = D(A,C) + D(B,C) Triangular
Inequality

Otherwise you could claim:

"My house is very close to Fairfax, your house
is very close to Fairfax, but my house is very
far from your house .



B .
Euclidean Distance

 FEuclidean Distance

. n 2
dist = kE 1(pk - q)

Where n 1s the number of dimensions (attributes) and p, and g, are,
respectively, the k™ attributes (components) or data objects p and g.

« Standardization is necessary, if scales differ.



Euclidean Distance
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Minkowski Distance

» Minkowski Distance 1s a generalization of Euclidean
Distance

1
e O N
dlSt—(kEI\Pk—‘Ik\)

Where 7 is a parameter, n is the number of dimensions (attributes) and
p, and g, are, respectively, the kth attributes (components) or data
objects p and gq.



Minkowski Distance: Examples

 r=1. City block (Manhattan, taxicab, L1 norm) distance.

— A common example of this 1s the Hamming distance,
which is just the number of bits that are different
between two binary vectors

 r=2. Euclidean distance
« r— o, “supremum’ (Lmax norm, Lo norm) distance.

— This 1s the maximum difference between any
component of the vectors

* Do not confuse r with n, 1.e., all these distances are defined
for all numbers of dimensions.



|
Minkowski Distance

L1 pl p2 p3 p4
pl 0 4 4 6
p2 4 0 2 4
p3 4 2 0 2
p4 6 4 2 0
L2 pl p2 p3 p4
point < v pl 0 2.828 3.162 5.099
pl 0 5 p2 2.828 0 1.414 3.162
n2 7 0 p3 3.162 1.414 0 2
D3 3 " p4 5.099 3.162 2 0
p4 S 1 Lo pl p2 p3 p4
pl 0 2 3 5
p2 2 0 1 3
p3 3 1 0 2
p4 5 3 2 0

Distance Matrix



Mahalanobis Distance
*mahalanobis(p,q)=(p-q)> (p-q)"

> 1s the covariance matrix of the
input data X

1 3 - -
T DICIERD A

For red points, the Euclidean distance is 14.7, Mahalanobis distance is 6.
* In some literature, this is the “squared” distance



Mahalanobis Distance

3 Covariance Matrix:
2or1 .. ] 0.3 0.2
: s Z -
2r - 0.2 0.3
15} . i
1k i A: (0.5, 0.5)
B: (0, 1)
05F _
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0r _
05F . T i Mahal(A,B) =5
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Common Properties of Similarity

 Similarities also have some well known
properties.

—s(p, @) = 1 (or maximum similarity) only if p =
q.

—s(p, q) =s(q, p) for all pand q. (Symmetry)

where s(p, q) 1s the similarity between points

(data objects), p and q.
I



B
Similarity Between Binary Vectors

« Common situation 1is that objects, p and g, have only binary
attributes

«  Compute similarities using the following quantities
M,, = the number of attributes where p was 0 and q was 1
M,, = the number of attributes where p was 1 and q was 0
M,, = the number of attributes where p was 0 and q was 0
M, = the number of attributes where p was 1 and q was 1

 Simple Matching and Jaccard Coefficients

SMC = number of matches / number of attributes
= M;; + M) / My, + M+ M, + M)

J = number of 11 matches / number of not-both-zero attributes values
= (Mu) / (Mm T M1o T Mn)



N
SMC versus Jaccard: Example

p=1000000000
g=0000001001

M,; =2 (the number of attributes where p was 0 and q was 1)
M,,=1 (the number of attributes where p was 1 and q was 0)
My, =7 (the number of attributes where p was 0 and q was 0)
M,, =0 (the number of attributes where p was 1 and q was 1)

SMC = (M, + My )/(M,, + M, + M,, + M,,) = (0+7) / (2+1+0+7) = 0.7

J=(M,))/ (M, + M, +M,)=0/2+1+0)=0



Cosine Similarity

* If d, and d, are two document vectors, then
cos(d, d,)= (d,*d,) / (Hd]” ||d2||) )
where ® indicates vector dot product and || d || is the length of vector d.

« Example:

d,=3205000200
d,=1000000102

d, ® dy= 3*1 +2%0 + 0%0 + 5%0 + 0%0 + 0*0 + 0*0 + 2*1 + 0*0 + 0*2 =5
Id,[| = (3%3+2%2-+0%0+5%5+0%0-+0*0+0*0+2*2-+0*0+0*0)05 = (42) 05 = 6.481
|d,]| = (1*1+0*0+0*0+0*0+0*0+0*0+0*0+1*1+0*0+2*2) 05 = (6) 05 = 2.45

cos(d, d,)=.3150



Cosine Similarity

1.0
D, =(0.8,0.3)
08 D, =(0.2,0.7)
06 0 =(04,0.8)
04 cosa, =0.74
0.2 cosa, =0.98
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I
Extended Jaccard Coefficient (Tanimoto)

e Variation of Jaccard for continuous or count
attributes

— Reduces to Jaccard for binary attributes

peqg

Tip,q)=
P9 = EF [ =peq




Correlation

Correlation measures the linear relationship
between objects

Covariance(x, )
standard dev(x)*standard dev(y)

corr(x,y) =




Correlation (cont.)

. I & — —
covariance(X,y)= 5 Z (x, —x)(y, - y)
n—1f3

standard_dev(x)=S. = \/ % Z (x, = x)?
n—1%=

standard_dev(y)=Sy = \/ ﬁ Z (v, - ;)2
— =1



Exercise

e x=(11000),y=(0001 1). Compute
their correlation.
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EETT
Visually Evaluating Correlation

-1.00 -0.90 -0.80 -0.70 -0.60 -0.50 -0.40

0.40 0.50 0.60 0.70 0.80 0.90 1.00




General Approach for Combining
Similarities

* Sometimes attributes are of many different
types, but an overall similarity 1s needed.

1. For the k** attribute, compute a similarity, s, in the range [0, 1].

2. Define an indicator variable, d;, for the k;;, attribute as follows:

a value of 0, or if one of the objects has a missing values for the k** attribute

0 if the k% attribute is a binary asymmetric attribute and both objects have
0 =
1 otherwise

3. Compute the overall similarity between the two objects using the following formula:

_ k=1 Ok
2 k=1 Ok

stmilarity(p, q)



Using Weights to Combine Similarities

* May not want to treat all attributes the
same.

— Use weights wk which are between 0 and 1 and

sum to 1.
Y1 Wik Sk
E;::l Ok

similarity(p,q) =

n 1/r
distance(p,q) = (Zwk pr — qk|") |
k=1



Which similarity function to use ?

* Depends on the application.
— Analyze the attributes.
— See their properties, min, max, etc
— See their dependency on other attributes
— Do you need similarity or distance ?
— Do you need a metric ?
— Try several functions.
— Combine/merge.

e Active area of research!
EEE S T



Discretization Without Using Class Labels
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I
Discretization Using Class Labels

* Entropy based approach:

— If you have class labels, compute the entropy per
discretized bin, and then try to minimize the same.

— The entropy e, for the i bin is given by (k = # of classes):
k
€ = Epij log, p;
j=1

where p;; = prob(class j in the i interval)
— If entropy = 0 then it 1s a pure grouping



Attribute Transformation

A function that maps the entire set of
values of a given attribute to a new set
of replacement values such that each
old value can be 1dentified with one of
the new values

— Simple functions: x¥, log(x), €, |X|

— Standardization and Normalization



