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Dimensionality Reduction 
•  Purpose: 

–  Avoid curse of dimensionality 
–  Reduce amount of time and memory required by data 

mining algorithms 
–  Allow data to be more easily visualized 
–  May help to eliminate irrelevant features or reduce 

noise 
•  Techniques 

–  Principle Component Analysis 
–  Singular Value Decomposition 
–  Others: supervised and non-linear techniques 
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Principal Component Analysis 
•  Goal of PCA 

– To reduce the number of dimensions. 
– Transfer interdependent variables into single 

and independent components. 
•  What does PCA do ? 

– Transforms the data into a lower dimensional 
space, by constructing dimensions that are 
linear combinations of the input dimensions/
features. 

– Find independent dimensions along which 
data have the largest variance. 3 



http://www.chem.agilent.com/cag/bsp/sig/downloads/pdf/pca.pdf 4 

Goal is to find a projection that captures the largest  amount of 
variation in data 



Feature Subset Selection 

•  Another way to reduce dimensionality of data 
•  Redundant features  

–  duplicate much or all of the information contained in 
one or more other attributes 

–  Example: purchase price of a product and the amount of 
sales tax paid 

•  Irrelevant features 
–  contain no information that is useful for the data mining 

task at hand 
–  Example: students' ID is often irrelevant to the task of 

predicting students' GPA 
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Feature Subset Selection 
•  Techniques: 

–  Brute-force approach: 
•  Try all possible feature subsets as input to data mining 

algorithm 

–  Embedded approaches: 
•   Feature selection occurs naturally as part of the data mining 

algorithm 

–  Filter approaches: 
•   Features are selected before data mining algorithm is run 

–  Wrapper approaches: 
•   Use the data mining algorithm as a black box to find best 

subset of attributes 

–  Feature Weighting 
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Filter Approach 
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Feature Creation 
•  Create new attributes that can capture the 

important information in a data set much 
more efficiently than the original attributes 

•  Three general methodologies: 
– Feature Extraction 

•   domain-specific 
– Mapping Data to New Space 
– Feature Construction 

•   combining features  
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Mapping Data to a New Space 

Two Sine Waves Two Sine Waves + Noise Frequency 

 Fourier transform 
 Wavelet transform  
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Dangers of Dimensionality Reduction 

•  https://cs.gmu.edu/~jessica/
DimReducDanger.htm 
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What is Similarity? 
The quality or state of being similar; likeness; 
resemblance; as, a similarity of features.  

Similarity is hard to 
define, but…  
“We know it when we 
see it” 
 
The real meaning of 
similarity is a 
philosophical question.  
 
We will take a more 
pragmatic approach.   

Webster's Dictionary 
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Similarity and Dissimilarity 
•  Similarity 

–  Numerical measure of how alike two data objects are. 
–  Is higher when objects are more alike. 
–  Often falls in the range [0,1] 

•  Dissimilarity 
–  Numerical measure of how different are two data 

objects 
–  Lower when objects are more alike 
–  Minimum dissimilarity is often 0 
–  Upper limit varies 

•  Proximity refers to a similarity or dissimilarity 
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Similarity/Dissimilarity for Simple Attributes 

p and q are the attribute values for two data objects. 
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Measures for which all properties hold are referred to as distance metrics. 

Defining Distance Measures 

Definition: Let O1 and O2 be two objects from the universe of possible 
objects. The distance (dissimilarity) is denoted by D(O1,O2) 
 
What properties should a distance measure have? 
 
•  D(A,B) = D(B,A)    Symmetry  
•  D(A,A) = 0     Constancy of Self-Similarity 
•  D(A,B) = 0 Iff A= B   Positivity 
•  D(A,B) ≤ D(A,C) + D(B,C)  Triangular Inequality  
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Intuitions behind desirable distance 
measure properties I 

D(A,B) = D(B,A)    Symmetry  
 
Otherwise you could claim: 
 
“Fairfax is close to D.C., but D.C is not close to 
Fairfax.” 
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Intuitions behind desirable distance 
measure properties II 

D(A,A) = 0  Constancy of Self-Similarity 
 
Otherwise you could claim: 
 
“Fairfax is closer to D.C than D.C. itself!”. 
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Intuitions behind desirable distance 
measure properties III 

D(A,B) = 0 iff  A=B   Positivity 
 
Otherwise you could claim: 
 
“Fairfax is exactly at the same location as DC” 

21 



Intuitions behind desirable distance 
measure properties IIII 

D(A,B) ≤ D(A,C) + D(B,C) Triangular 
Inequality  
 
Otherwise you could claim: 
 
“My house is very close to Fairfax, your house 
is very close to Fairfax, but my house is very 
far from your house”. 
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Euclidean Distance 

•  Euclidean Distance 

    
   Where n is the number of dimensions (attributes) and pk and qk are, 

respectively, the kth attributes (components) or data objects p and q. 
 

•  Standardization is necessary, if scales differ. 
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Euclidean Distance 
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p3 p4

point x y
p1 0 2
p2 2 0
p3 3 1
p4 5 1

Distance Matrix 

p1 p2 p3 p4
p1 0 2.828 3.162 5.099
p2 2.828 0 1.414 3.162
p3 3.162 1.414 0 2
p4 5.099 3.162 2 0
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Minkowski Distance 
•  Minkowski Distance is a generalization of Euclidean 

Distance 

    
 
   Where r is a parameter, n is the number of dimensions (attributes) and 

pk and qk are, respectively, the kth attributes (components) or data 
objects p and q. 
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Minkowski Distance: Examples 

•  r = 1.  City block (Manhattan, taxicab, L1 norm) distance.  
–  A common example of this is the Hamming distance, 

which is just the number of bits that are different 
between two binary vectors 

•  r = 2.  Euclidean distance 
•  r → ∞.  “supremum” (Lmax norm, L∞ norm) distance.  

–  This is the maximum difference between any 
component of the vectors 

•  Do not confuse r with n, i.e., all these distances are defined 
for all numbers of dimensions. 
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Minkowski Distance 

Distance Matrix 

point x y
p1 0 2
p2 2 0
p3 3 1
p4 5 1

L2 p1 p2 p3 p4
p1 0 2.828 3.162 5.099
p2 2.828 0 1.414 3.162
p3 3.162 1.414 0 2
p4 5.099 3.162 2 0

L∞ p1 p2 p3 p4
p1 0 2 3 5
p2 2 0 1 3
p3 3 1 0 2
p4 5 3 2 0
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Mahalanobis Distance 
*mahalanobis(p,q) = (p− q)∑−1(p− q)T

For red points, the Euclidean distance is 14.7, Mahalanobis distance is 6. 

Σ is the covariance matrix of the 
input data X 
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* In some literature, this is the “squared” distance 28 



Mahalanobis Distance 
Covariance Matrix: 

⎥
⎦

⎤
⎢
⎣

⎡
=Σ

3.02.0
2.03.0

B 

A 

C 

A: (0.5, 0.5) 

B: (0, 1) 

C: (1.5, 1.5) 

 

Mahal(A,B) = 5 

Mahal(A,C) = 4  
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Common Properties of Similarity 
•  Similarities also have some well known 

properties. 

–  s(p, q) = 1 (or maximum similarity) only if p = 
q.  
 

–  s(p, q) = s(q, p)   for all p and q. (Symmetry) 
 

where s(p, q) is the similarity between points 
(data objects), p and q. 30 



Similarity Between Binary Vectors 
•  Common situation is that objects, p and q, have only binary 

attributes 
•  Compute similarities using the following quantities 

 M01 = the number of attributes where p was 0 and q was 1 
 M10 = the number of attributes where p was 1 and q was 0 
 M00 = the number of attributes where p was 0 and q was 0 
 M11 = the number of attributes where p was 1 and q was 1 

 

•  Simple Matching and Jaccard Coefficients  
 SMC =  number of matches / number of attributes  

            =  (M11 + M00) / (M01 + M10 + M11 + M00) 
 

 J = number of 11 matches / number of not-both-zero attributes values 
       = (M11) / (M01 + M10 + M11)  
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SMC versus Jaccard: Example 
p =  1 0 0 0 0 0 0 0 0 0       
q =  0 0 0 0 0 0 1 0 0 1  
 
M01 = 2   (the number of attributes where p was 0 and q was 1) 
M10 = 1   (the number of attributes where p was 1 and q was 0) 
M00 = 7   (the number of attributes where p was 0 and q was 0) 
M11 = 0   (the number of attributes where p was 1 and q was 1) 

  
SMC = (M11 + M00)/(M01 + M10 + M11 + M00) = (0+7) / (2+1+0+7) = 0.7  
 

J = (M11) / (M01 + M10 + M11) = 0 / (2 + 1 + 0) = 0  
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Cosine Similarity 
•  If d1 and d2 are two document vectors, then 
             cos( d1, d2 ) =  (d1 • d2) / (||d1|| ||d2||) ,  
  where • indicates vector dot product and || d || is  the   length of vector d.   

•  Example:  
 

   d1 =  3 2 0 5 0 0 0 2 0 0   
    d2 =  1 0 0 0 0 0 0 1 0 2  
 
    d1 • d2=  3*1 + 2*0 + 0*0 + 5*0 + 0*0 + 0*0 + 0*0 + 2*1 + 0*0 + 0*2 = 5 
   ||d1|| = (3*3+2*2+0*0+5*5+0*0+0*0+0*0+2*2+0*0+0*0)0.5 =  (42) 0.5 = 6.481 
    ||d2|| = (1*1+0*0+0*0+0*0+0*0+0*0+0*0+1*1+0*0+2*2) 0.5 = (6) 0.5 = 2.45 
 
     cos( d1, d2 ) = .3150 
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Cosine Similarity 
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Extended Jaccard Coefficient (Tanimoto) 

•  Variation of Jaccard for continuous or count 
attributes 
– Reduces to Jaccard for binary attributes 
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Correlation 

Correlation measures the linear relationship 
between objects 

Covariance( , )( , )
standard_dev(x)*standard_dev(y)
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Correlation (cont.) 
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Exercise 

•   x = (1 1 0 0 0), y = (0 0 0 1 1). Compute 
their correlation. 
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Visually Evaluating Correlation 
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General Approach for Combining 
Similarities 

•  Sometimes attributes are of many different 
types, but an overall similarity is needed. 
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Using Weights to Combine Similarities 

•  May not want to treat all attributes the 
same. 
– Use weights wk which are between 0 and 1 and 

sum to 1.  
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Which similarity function to use ?   

•  Depends on the application.  
– Analyze the attributes. 
– See their properties, min, max, etc 
– See their dependency on other attributes 
– Do you need similarity or distance ? 
– Do you need a metric ? 
– Try several functions. 
– Combine/merge. 

•  Active area of research! 42 



Discretization Without Using Class Labels  

Data Equal interval width 

Equal frequency K-means 
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Discretization Using Class Labels 

•  Entropy based approach: 
–  If you have class labels, compute the entropy per 

discretized bin, and then try to minimize the same. 
–  The entropy ei for the ith bin is given by (k = # of classes): 

 

 
    where pij = prob(class j in the ith interval) 

–  If entropy = 0 then it is a pure grouping 

ei = pij log2 pij
j=1

k

∑
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Attribute Transformation 
•  A function that maps the entire set of 

values of a given attribute to a new set 
of replacement values such that each 
old value can be identified with one of 
the new values 
– Simple functions: xk, log(x), ex, |x| 
– Standardization and Normalization  
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