
INTERACTION, INTERFACES AND DESIGN

by

John S. Gero I , Warren G. Ju l i an ? , and W. Nev i l l e Holmes 3

IHarkness Research Fel low
Department of A rch i t ec tu re

Un i ve rs i t y of C a l i f o r n i a , Berkeley

on leave from:

Department of A rch i t ec tu ra l Science
Un i ve rs i t y of Sydney, A u s t r a l i a

2Department of A r ch i t ec tu ra l Science
Un ive rs i t y o f Sydney, A u s t r a l i a

31BM - Systems Development I n s t i t u t e
Canberra, Aus t r a l i a

1.0 INTRODUCTION

Many planning problems cannot be formulated in such

a manner tha t a wel l developed op t im iz ing technique

can be app l ied to them to a r r i v e at a s a t i s f a c t o r y

so lu t i on . This may be because of the s t ruc tu re of

the problem i t s e l f , i t may be because ob jec t i ves

and even parameters cannot be adequate ly descr ibed

or i t may be due to the need to inc lude sub jec t i ve

f ac to rs . A d d i t i o n a l l y there is a c lass of problems

fo r which the cost of the computat ion requ i red to

reach an optimum is not warranted by the expected

gains.

The planning of bu i l d i ngs is a problem which f a l l s

i n to each of these ca tegor ies depending on how i t

is fo rmula ted. For t h i s and many other design

problems We use h e u r i s t i c methods.

However, w h i l s t a h e u r i s t i c can be used to commence

the so lu t i on of a problem i t is ra re tha t such a

h e u r i s t i c can " lea rn" from the resu l t s of i t s a p p l i -

ca t ions . The h e u r i s t i c which a l lows not only the

i nc lus ion of previous so lu t ions in i t s exper ience

but a lso a l lows sub jec t i ve eva luat ions of so l u t i ons ,

in a d d i t i o n to o b j e c t i v e numerical eva lua t i ons , is

to inc lude the user of the problem so lu t i on in the

so lu t i on process. Today, t h i s can be r e a d i l y

achieved through the use of i n t e r a c t i v e computing,

via a t ime-shared computer.

When we examine the too l s a v a i l a b l e to a problem

so lver who wishes to use i n t e r a c t i v e computing, we

f i nd tha t the languages c u r r e n t l y used to achieve

i n t e r a c t i o n are both clumsy and r e s t r i c t i v e .

2.0 INTERACTION

Most i n t e r a c t i v e systems are unsui ted to t h i s type

of problem so lv ing s i t u a t i o n because they su f fe r

from a r i g i d i t y of system-user i n t e r f ace which makes

i t so d i f f i c u l t f o r the user to manipulate the sys-

tem tha t instead of lea rn ing from the so lu t i ons he

has been producing, he spends much of his t ime t r y -

ing to remember input procedures - woe be t ide the

user who loses his place in an input format . I f we

intend to use i n t e r a c t i o n we must prov ide a much

be t t e r i n t e r f a c e than is c u r r e n t l y a v a i l a b l e v ia the

i npu t / ou tpu t rou t ines of the commer ica l ly o f fe red

248

i n te rac t i ve languages.

Some of the requirements for i n te rac t i ve design

programs have been stated (I) :

"One of the prime requ is i tes of any design pro-

gram i s . . . a f a c i l i t y that enables the designer to

change one or more parameters independently and

obtain a new set of resul ts incorporat ing these

parameters.

"A second requirement for such programs is that

as far as possible they should be explanatory.

A designer is prepared to read a l im i ted amount

of ins t ruc t ion but in the middle of a design

problem he does not want to devote much time to

learning how to use the program. Against th is

requirement, however, must be set the knowledge

that the man who is f am i l i a r with a program w i l l

become impatient i f he has to read the operating

ins t ruct ions every time he uses the program, and

so, i f possible he must be given the option of

suppressing th is informat ion.

"A th i rd requirement for such programs is that

wherever possible input should be free format.

Many designers have a resistance to computers

and th is is fu r ther aggravated by having to pay

a t ten t ion to decimal points, leading or t r a i l i n g

zeros, and counting columns when dealing with

data input . "

A number of attempts have been made to achieve

these general requirements by wr i t i ng FORTRAN

rout ines. These have been clumsy and i t would

appear that an i n te rp re t i ve compiler such as

APL (A Programming Language) (2) al lows for

the achievement of these through the use of

a small number of user generated, general

purpose funct ions.

2.1 Aims and Objectives in In terac t ion

In order to f a c i l i t a t e in te rac t ion between

the system and the user a number of object-

ives may be stated:

I . the system should not f a i l i r respec t ive what

the user did to i t ;

2. the user should be able to use everyday lang-

uage when communicating general ly with the system;

3. the user should be able to use the technical

language of the problem being solved;

4. the system should be such that the user need

have had no experience or deta i led knowledge of i t

before he uses i t ;

5. the system should respond according to the

expert ise of the user;

6. the system should provide "help" as needed;

7. the system's responses should be var iab le ;

8. the system should accept l i t e r a l descr ipt ions

as well as mixed l i t e r a l and numerical input.

These object ives contr ibute to the general aim

that the in ter face between the user and the system

be "low p r o f i l e " in nature and that the highest

level of in te rac t ion can be achieved.

3.0 A LIBRARY OF INTERACTIVE FUNCTIONS

As part of an experiment in i n te rac t i ve design in

arch i tec ture and arch i tec tu ra l education (3) four

basic i n te rac t i ve funct ions: EDIT, TABLE, WD and

QUEST (with a u x i l i a r y functions NUM, WOR and

CKQUEST) were wr i t ten in APL to provide a general

purpose l i b r a r y of i n te rac t i ve funct ions. Through

a jud ic ious use of these functions a programmer

can provide a high degree of in terac t ion between

the user and the system which represents the

problem solving algor i thm with a minimum of e f f o r t .

3.1 The Function EDIT

For high level i n te rac t ion , the in ter face should,

with some l a t i t u d e , be able to recognize words.

Some words contain a large degree of redundancy

which would involve extensive and expensive recog-

n i t i on funct ions. There are many possible ways of

w r i t i ng "bedroom 2" , e.g. "bed 2", "bedroom 2",

"bedroom2", "bedroom-2", "bed-2". The real

informat ion, as far as d i f f e r e n t i a t i n g bedroom 1

from bedroom 2, or from the bathroom, is contained

in the type of room and i t s number. The method

of word recogni t ion used in the funct ion QUEST, to

be discussed l a t e r , uses only four characters from

each word. The four characters are the f i r s t one

and the next three that are not a, e or i . Exper-

ience has shown that th is is usual ly su f f i c i en t

for precise recogni t ion. However, using th is

method, i t seems that one could never get unique

recogni t ion from the words "bedrooml bedroom2"

since the i r compressions would resu l t in "bdro

bdro". The same problem can occur in other areas

where these in te rac t i ve programs can be used, e.g.

in e lec t ron ics ; res i s to r I , res i s to r 2, capaci tor

l , t rans is to r 8, etc. The need has ar isen,

249

t he re fo re , f o r a general -purpose func t ion to

e l im ina te redundant groups, i f they occur. Such

a func t ion would f ree users from w r i t i n g specia l

func t ions fo r unique i n te r f ace problems, when

using i n t e r a c t i v e programs.

EDIT e l im ina tes redundant groups of charac te rs ,

not s ing le charac te rs , such as spaces or commas.

I t w i l l e l im ina te m u l t i p l e use of s ing le charac-

t e r s , but w i th complete e l i m i n a t i o n ra ther than

" a l l bar one" e l i m i n a t i o n .

The func t ion EDIT w i l l e l im ina te groups, such as

"room", from a l i t e r a l vec tor "bedrooml bedroom2"

to y i e l d "bedl bed2" which a f t e r f u r t h e r compres-

s ion, f o r word r e c o g n i t i o n , would become "bdl bd2".

The f i n a l expression conta ins a l l the useful i n -

fo rmat ion - room type and room number. Some

problems can occur because EDIT w i l l remove any

group which conta ins any of the characters to be

removed. I f we keep to the example of e l i m i n a t i n g

"room" and i f the vec tor "broomroom" were to be

ed i ted , the r e s u l t would be "b" . This may be

s a t i s f a c t o r y f o r word r e c o g n i t i o n , depending upon

the o ther words used. However, apar t from prob-

lems of the type mentioned above, EDIT can be of

g rea t ass is tance to the i n t e r a c t i v e users in

achiev ing a more f l u i d i n t e r f a c e , w i thou t the

need f o r extens ive checking func t ions .

EDIT is a def ined dyadic func t ion w i th an ex-

p l i c i t r e s u l t and is of the form:

J EDIT FF

where:

J is the vec tor of any permutat ion of the redun-

dant characters to be removed and FF is the

vec tor or a r ray from which the redundant char-

ac ters are to be removed.

For maximum f l e x i b i l i t y i t w i l l handle as i t s

r i g h t argument a l i t e r a l sca la r , vec tor or

ar ray . Some examples are given below:

Example 1

Array to be s t r i pped of "room"

F

BEDROOM1

BEDROOM2

BEDROOM3

BATHROOM
KITCHEN

LAUNDRY

Using EDIT to remove "room" from an a r ray of room-

names

'ROM' EDIT F

BED1

BED2

BED3

BATH

KITCHEN

LAUNDRY

Example 2

Using EDIT in an e l e c t r o n i c s a p p l i c a t i o n

E

RESISTOR3

RESISTOR8

RESISTOR45

RESISTOR67

~ISTOR' EDIT E

RE3

RE8

RE45

RE67

EDIT is a one l i n e def ined func t ion in APL. The use

of EDIT w i l l be f u r t h e r demonstrated in Sect ion 3.4

and 4.0.

3.2 The Funct ion TABLE

During the development of the i n t e r a c t i v e par t of

the system i t was found tha t s t r i ngs (vec to rs) of

l i t e r a l characters needed to be handled and proces-

sed. Whenever input had to be processed there was

always a problem of d i f f e r e n t i a t i n g l i t e r a l word

or number groups from each o ther .

An associated problem w i th processing the user 's

response is to determine what a word i s . What are

the word d e l i m i t e r s ? In most cases i t is the pres-

ence of a space, but in some cases mu l t i -wo rd

inputs may be requ i red , where the v i t a l i n fo rmat ion

is conta ined in the use of both words. Such a case

does e x i s t i f the user is given the freedom of

250

using names such as "bedroom I " or " lounge room"

in his input . I f t h i s is so, then some o ther

d e l i m i t e r is necessary.

In using QUEST, i t is much eas ie r to check fo r

word recogn i t i on by indexing an a r ray made up of

the user 's response, aga ins t an ar ray of the

f u n c t i o n ' s vocabulary. By using the APL inner

product , i t is poss ib le to check fo r exact word

recogn i t i on and i t s l oca t i on in the vocabulary

in one opera t ion . A s i m i l a r l y s imple check,

using the outer product and dyadic t ranspose,

can be made fo r p a r t i a l r ecogn i t i on . The great

power of APL l i e s in i t s a b i l i t y to handle ar rays.

The use of the inner and ou te r products can, in

many cases, e l im ina te the need to loop and so

produce a cons iderab le saving in processing t ime.

I t is apparent t ha t , w i th the need to process

words as opposed to sentences and w i th APL's ver-

s a t i l i t y w i th a r rays , the best way to handle

l i t e r a l inputs was to assemble the input i n to an

ar ray . The s ize o f the ar ray would depend upon

the number of words in a sentence and the length

of the longest word. The r e s u l t was the func-

t i on TABLE which takes the form

J TABLE A

where

J is the word d e l i m i t e r (a sca lar) and A is the

l i t e r a l vec tor to be assembled in to an ar ray

(t a b l e) . Some examples are given below:

Example 3

' ' TABLE 'BEDROOM1 BEDROOM2 BATHROOM KITCHEN'

BEDROOM1

BEDROOM2

BATHROOM

KITCHEN

Example 4

' ' TABLE ' I WANT TO GO HOME'

I

WANT

TO

GO

HOME

Example 5

E÷' ' TABLE ' I 2 3 4 5 6'

1

2

3

4

5

6

F ÷ ' , ' TABLE 'ONE=, TWO = , THREE=, FOUR=, FIVE=,
SIX=, '

ONE=

TWO=

THREE=

FOUR=

FIVE=

SIX=

Catenat ion of E and F:

F,E

ONE= 1

TWO= 2

THREE= 3

FOUR= 4

FIVE= 5

SIX= 6

Example 6

', 'TABLE 'BILL SMITH, PETER JONES, HARRY BROWN,
B. GREEN'

BILL SMITH

PETER JONES

HARRY BROWN

B. GREEN

TABLE is a one l i n e def ined func t ion in APLo

3.3 The Function WD

As mentioned in Section 2.1, there should be a

var ied response by the system to the user 's input .

The responses should be d i f f e r e n t and should not

appear too con t r i ved or r e p e t i t i v e . I t is r e l a -

t i v e l y simple to subs t i t u t e a synonym fo r a word

or phrase tha t is commonly used in the i n t e r a c t i v e

process. A subs t i t u t e word could be selected from

e i t h e r a vector or an ar ray of su i t ab l e words.

Here, TABLE is used to generate arrays from which

the su i t ab le words are indexed.

Some comments on word se lec t i on should be made

f i r s t . The subs t i t u t e word should show v a r i e t y ,

and, above a l l , the word should mean what was in -

tended by the o r i g i n a l word. To some ex ten t , the

251

context w i l l change the meaning of the subs t i t u t e

word, so i t is impor tant tha t words selected fo r

use as a l t e r n a t i v e s should be c a r e f u l l y checked

before use fo r meaning.

In high leve l i n t e r a c t i o n , as much v a r i e t y as pos-

s i b l e should be used in cons t ruc t ing responses,

but w i thou t the loss of meaning tha t can sometimes

occur w i th genera l -purpose word replacement

func t ions . The vocabulary should not be too

i n tense ly c o l l o q u i a l , o therwise the r e p e t i t i o n

w i l l be more eas i l y detected and the user w i l l

become weary of c leve r turns of phrase.

One drawback w i th the use of subs t i t u t e words is

t ha t the form of the sentence always remains the

same and in a process which invo lves the repeated

d i sp lay of the sentence, the con t r i ved nature of

word s u b s t i t u t i o n may concern some users. In

some cases, i t may be poss ib le simply to a l t e r the

sentence by randomly i n s e r t i n g or om i t t i ng d i f f e r -

ent phrases.

The func t ion WD was developed in an at tempt to

produce a general purpose func t ion which would

prov ide these fea tu res . I t takes the form:

J WD X

Where

J is the numeric con t ro l sca la r and X is the l i t e r -

al vec tor to which the s u b s t i t u t e word is to be

catenated. X can be a sca la r or i t can be an

empty vec to r , i f nothing is to f o l l o w the word.

J can be any number, but the func t ion only res-

ponds to numbers between 0 and 120. WD responds

in word se lec t i on to the " tens" par t of the

number entered. The "un i t s " par t of the number

is converted to a b inary rad ix and t h i s is used

to con t ro l o ther aspects of the word se lec ted.

This second cont ro l g ives a choice of 4 unique

con t ro l s because of the b inary rad ix (i . e .

0 2 4 and 8) . I f i t were intended to in t roduce

more v a r i e t y , then the actual d i g i t could be

used fo r c o n t r o l , in which case, I0 a l t e r n a t i v e s

f o r each word would be a v a i l a b l e .

The f o l l ow ing tab le g ives values fo r J which

se lec t s i m i l a r words to the words shown:

J WORD

I0 a l t e r *

20 r i g h t

30 good~

40 enter *

50 e r ro r

60 check

70 t r y

80 want *

90 ent ry

I00 help

I I 0 understand

The words marked * are verbs and are suppl ied as

i n f i n i t i v e s w i th the J used, as the present pa r t -

i c i p l e s i f 1 is added to J and as the past p a r t i -

c i p l es i f 2 is added to J.

Fur ther v a r i e t y to the words marked ~ can be

achieved by adding 8 to J. This w i l l cause

expressions such as "p lease" , "now then" , e tc .

to precede the word se lec ted.

The word se lected by J=20 can be fo l l owed by a

comma, i f des i red , by spec i f y ing J as 21.

Some examples are given below:

Example 7

'DO YOU', 80 WD 'TO', I0 WD 'ANYTHING?'

DO YOU NEED TO CHANGE ANYTHING?

Example 8

20 WD 'WARREN'

RIGHT WARREN

Example 9

40 WD 'YOUR NAME'

ENTER YOUR NAME

Example I0

41WD 'YOUR NAME'

KEYING IN YOUR NAME

Example I I

42 WD 'YOUR NAME'

ENTERED YOUR NAME

Example 12

48 WD 'YOUR NAME'

NOW KEY IN YOUR NAME

WD is a 17 l i n e def ined func t ion in APL.

252

3.4 The Function QUEST
I f one wants high level in te rac t ion with users

who " ta l k " to the system, then some cognizance

must be taken of how the user " t a l k s . " Section

1.0 described some of the underlying problems of

input. In order to al low the greatest f l e x i b i l -

i t y numeric input (the quad input in APL; F-or

l - format ted input in Fortran) should be d is-

carded in favour of l i t e r a l input (the quote-

quad in APL; A-formatted input in Fortran).

Obviously, the problem is not solved by simply

replacing quad with quote-quad. The problem

rea l l y begins at th is point fo r the programmer.

Al l numeric en t r ies , in quote-quad, are simply

character st r ings and these must be d i f f e r e n t i a t e d

from each other, from words and from whatever

Other characters are entered by the user. I t is

r e l a t i v e l y simple to devise a funct ion to convert

a character vector, representing a number, in to

i t s numeric counterpart , but word recogni t ion is

more d i f f i c u l t .

The eight points l i s t ed in Section 2.1 have been

combined in the funct ion QUEST which is essen-

t i a l l y a question-asking and answer-recognit ion

funct ion.

I ts f l e x i b i l i t y and scope need considerable des-

c r i p t i o n ; i t is one of those functions which

should be experimented with for some time

p r io r to i t s use in other funct ions. I t is a

problem or iented funct ion which is moulded to

su i t the problem involved by use of i t s con-

t ro l f a c i l i t i e s . I t processes l i t e r a l inputs,

representing numbers and/or words and returns

a numeric vector a f t e r i n te rp re ta t i on and

checking.

QUEST is a recursive funct ion and takes the

form:

J QUEST FF

Where J is the control argument and FF is the

l i t e r a l vector forming the tex t of the ques-

t ion or command to be posed to the user. J

can be a scalar or a vector. I f i t is a scalar ,

then, cer ta in primary contro ls are set up, con-

t r o l l i n g the types of responses accepted by the

system and also con t ro l l i ng the system's responses

to the user's input.

I f J is a vector then i t s length has s ign i f icance,

as well as i t s value. J has s ign i f icance for

lengths up to four. Any fu r ther elements in J

are ignored, so fa r as control is concerned.

Therefore, QUEST can take the form:

(JA JB JC JD) QUEST FF

where JA is the primary control element with the

fo l lowing s ign i f icance:

JA EFFECT

512

256

128

(64

32

16

8

4

2

1

Once the

Allows the " fu r ther question" f a c i l i t y

Allows the "special word" f a c i l i t y

Bars numbers not in index l i s t of
vocabulary vector

Is used fo r recursive cont ro l)

Allows non-integers

Allows vectors

Allows negative numbers

Allows fur ther contro ls JB, JC and JD

Allows "help"

Allows "yes" and "no"

Allows d isplay of non-recognit ion

warning. (* = any decimal f rac t ion

less than 1 but greater than O)

programmer has decided upon the type of

entry he wants from the user, he can then set JA

by adding together the values for JA which w i l l

give him the f a c i l i t y he needs. Default condit ions

ex is t in the event of non-spec i f icat ion. I f JA

is not set with 16 in i t then only scalars w i l l be

accepted, etc. I f , for example, the programmer

wants the user to be able to enter vectors, but

a l l the elements of which must be integers,

a l though, negative integers would be acceptable,

then he would set JA = 16 + 8 = 24. I f he wants

the user to be able to ask fo r "help" , in the

event of his having d i f f i c u l t i e s , then JA would

become 26. S im i l a r l y , i f the programmer wants the

user to be able to ex i t from the funct ion (or part

of the funct ion) by using words such as "stop" or

" f i n i s h " , then JA would become 26+256 = 282.

I f 4 is added to JA, then QUEST w i l l consider the

s igni f icance of the next one, two or three elements

of J, i . e . JB, JC, and/or JD, where:

JB Sets the f l oo r (minimum) of a scalar or
vector,

JC Sets the ce i l i ng (maximum) of a scalar"
or vector,

JD Sets the length of a vector.

253

The only proviso here is that, i f JC, then JB

must exist, i .e . , i f only the maximum value of

the entry is important then the f loor controller,

JB, must be set to insignificance. Similarly,

i f only the number of elements entered is v i ta l ,

while the range of values is inconsequential,

then both JB and JC must be set to insignificance

Thus, continuing the example above, the follow-

ing specification of QUEST:

286 30 216 3 QUEST 'What numbers?'

would have the following effects: The user must

enter a 3-element vector, with values within the

range of 30 to 216, with a l l the elements being

integers. The user can ask for "help" or can

demand to "stop" (i f the special word vocabulary

was set up using words similar to "stop").

Before discussing the system's responses and the

responses of QUEST, we should discuss the pre-

requisites that are necessary for QUEST's opera-

tion. QUEST uses auxi l iary functions NUM and

WOR, as well as TABLE, EDIT and WD. WD is used

to add variety to the terminal's responses during

QUEST's processing, i f necessary. Users may

wish to dispense with this f ac i l i t y , in which

case, the responses can be rewritten with fixed

forms. The other functions are necessary for

QUEST to operate.

The function NUM converts al l entered "numbers"

(character strings) into numbers. The function

WOR interprets entered words and for this to

evaluate i t needs a vocabulary against which to

compare the entered words. WOR uses a stripped

vocabulary, Q N, which is an array with as many

rows as words in the fu l l vocabulary Q N but only

four columns. The stripped vocabulary is either

prepared by using a function or by setting up

the array. QUEST indexes QN (a vector of num-

bers which correspondsto each word in the

fu l l vocabulary) for recognized words and its

output is numeric and corresponds to those

elements of QNwhich represent the recognized

words in Q__N (i .e. ultimately in the fu l l vocab-

ulary ~N).

As described above, the functions EDIT and TABLE

both require l e f t control arguments. Both func-

t ions are used in QUEST and in the form:

Jl EDIT J2 TABLE A

(processing occurs from right to le f t) where A

is the users response and Jl and J2 must be

specified by the programmer. F lex ib i l i t y is given

to the programmer by allowing him to specify the

word delimiter he wishes to use and by giving him

the f ac i l i t y to eliminate redundacies from the

user's input prior to processing by WOR. There-

fore, Jl is the redundancy eliminator and J2 is

the word delimiter. I f the programmer wants a

space to be the word delimiter then J2 is set to

' ' I f multi-word descriptions are to be used

and a comma is needed to delimit words then J2

would be specified as ' , ' . Since Jl must be

specified and since in some applications redun-

dacies wi l l not occur, Jl can be set to an un-

l i ke ly character, such as ' ! '

I f the "special word" f ac i l i t y is used, then the

programmer must specify a l i s t of special words

which the user may use. The l i s t of "special

words" is specified as SW has as many rows as

words in the l i s t and four columns. SW can be

set up using TABLE. I f the "special words" were

"stop", "end", " f in ish", and "go", then SW would

take the form:

stop

end-

f i n i

go--

where - indicates blanks in the array. I f any of

these words are recognized (al l the input "words"

are compressed to four characters) then QUEST

terminates and returns a certain result.

Similarly i f the "further question" f ac i l i t y is

used then a l i te ra l vector FQ must be specified.

FQ contains the text of the question which wi l l

follow the question FF. I f the user anticipates

FQ and does not answer "yes" then FQ is not posed

and the users input is taken as his having anti-

cipated FQ and answered i t . I f he answered "no"

to FF (and FQ is available) then an exit is taken

from QUEST.

In both the case of SW and FQ, these need not be

specified unless they are needed (i .e. JA=256 or

512), since QUEST branches around unused state-

ments which are, therefore, not compiled.

Since QUEST is used internally in other functions

254

FQ and SW can be loca l ized to the funct ion in

which they are being used. Further, i f QUEST

is used more than once in a funct ion then SW

and FQ can be respeci f ied as often as needed.

The same appl ies to the vocabulary (QN),

str ipped vocabulary (~.N) and vocabulary

vector (QN).

The operation of QUEST is arranged so

that there is a heirarchy of cont ro l .

I f a l l the SW, FQ, "help" , and "yes/no"

f a c i l i t i e s are ava i lab le then SW is

checked for f i r s t l y . This means that a

response, such as, "yes, I want to add a

room", is in terpreted as the need to add

a room, rather than a need to a l t e r the

input. S im i la r l y a statement such as,

"yes, but I want some help f i r s t , " w i l l

cause a branch to help rout ine.

From the foregoing, i t should be apparent that

QUEST w i l l return a numeric vector which is i t s

i n te rp re ta t i on of the user's character input.

The input can be mixed alphameric with words

and/or numbers and converts the "numbers" in to

numbers and converts recognized and p a r t i a l l y

recognized "words" into numbers from the vocab-

u lary vector. QUEST checks the in terpreted

input against the control c r i t e r i a and then,

a f te r user conf i rmat ion of QUEST's in te rp re ta -

t i on , (i f necessary), a numeric vector is re-

turned as the e x p l i c i t resu l t .

For special condit ions a spec i f ic vector is

returned. The vector is a four element vector

of l ' s and O's which can be used for branching.

QUEST is a recursive funct ion which w i l l suc-

cessively re-evaluate un t i l the user has

complied with the control condi t ion e i ther

by supplying the correct input or by using
/

one or other of the ava i lab le options.

Below are some examples of the use of QUEST:

The fo l lowing is the tex t of the r i gh t argument

of QUEST:

FF ÷ 'TYPE IN A NUMBER'

The * indicates the user's response.

Example 13

8 QUEST FF

TYPE IN A NUMBER

*5

5

Example 14

8 QUEST FF

TYPE IN A NUMBER

*4 5 6

ONLY THE FIRST ENTRY WILL BE USED

4

Example 15

8 QUEST FF

TYPE IN A NUMBER

*HELP

THERE IS NO AID HERE, JUSTANSWER THE QUESTION.

TYPE IN A NUMBER

* I WANT THE NUMBERS TO BE -45.7 and 56.8

ONLY THE FIRST ENTRY WILL BE USED.

THE FRACTIONAL PART WILL BE IGNORED.

-46

Example 16

8.98 QUEST FF

TYPE IN A NUMBER

* I TOLD YOU THAT I WANT THE NUMBER TO BE 45.7 ~ 78

I CAN'T COMPREHEND PART OF YOUR ANSWER

ONLY THE FIRST ENTRY WILL BE USED.

THE FRACTIONAL PART WILL BE IGNORED.

-46

QUEST is a 38 l ine defined funct ion in APL.

5.0 DISCUSSION

These four i n te rac t i ve functions plus t he i r

a u x i l i a r y functions can be eas i ly used by a pro-

grammer to provide an in ter face between the user

and any solut ion algor i thm in a design process.

The functions are problem independent and form a

group of basic functions ava i lab le for general

programming app l ica t ions . Their successful de-

velopment has been la rge ly dependent on the

capab i l i t i e s of APL. L is t ings of these functions

are ava i lab le from the authors.

The problem of spat ia l layout design has been

tackled i n t e r a c t i v e l y using these functions as

the in ter face with considerable success (3).

255

6.0 ACKNOWLEDGEMENTS

This work is the resu l t of a j o i n t project

between the Department of Archi tectura l Science,

Sydney Univers i ty and the Systems Development

I ns t i t u t e of IBM (Aust ra l ia) , Project No. 71-

039; addi t ional support has come from the

AVCC-SCREEM and the URG.

7.0 REFERENCES

I . McKINLEY, J.T. : Conversational

Techniques Developed for Remote Access

Computer-Aided Design. Computer-Aided

Design, I . Elect. Eng., London, 1969,

pp. 162-170.

2 : APL/360 User's Manual. IBM Corp.,

CH20-0683-I 1969.

3. GERO, J.S. , JULIAN, W.G. and HOLMES, W.N.:

The Development of a System for Heur ist ic Optimi-

zat ion of Topological Layouts Using High Level

In teract ion. Department of Arch i tectura l Science,

Univers i ty of Sydney, Computer Report CR22, 1973.

256

