INTERACTION, INTERFACES AND DESIGN

~dohn S. Gero], Warren G. Ju]ian2, and W. Neville Ho]mes3

]Harkness Research Fellow
Department of Architecture
University of California, Berkeley

on leave from:

Department of Architectural Science
University of Sydney, Australia

2Department of Architectural Science
University of Sydney, Australia

3

IBM - Systems Development Institute

Canberra, Australia

1.0 INTRODUCTION

Many planning problems cannot be formulated in such
a manner that a well developed optimizing technique
can be applied to them to arrive at a satisfactory
solution. This may be because of the structure of
the problem itself, it may be because objectives
and even parameters cannot be adequately described
or it may be due to the need to include subjective
factors. Additionally there is a class of problems
for which the cost of the computation required to
reach an optimum is not warranted by the expected
gains.

The planning of buildings is a probiem which falls
into each of these categories depending on how it
is formulated. For this and many other design
problems we use heuristic methods.

However, whilst a heuristic can be used to commence
the solution of a problem it is rare that such a
heuristic can "learn" from the results of its appli-
cations. The heuristic which allows not only the
inclusion of previous solutions in its experience
but also allows subjective evaluations of solutions,

in addition to objective numerical evaluations, is
to include the user of the problem solution in the
solution process. Today, this can be readily
achieved through the use of interactive computing,
via a time-shared computer.

When we examine the tools available to a problem
solver who wishes to use interactive computing, we
find that the languages currently used to achieve
interaction are both clumsy and restrictive.

2.0 INTERACTION

Most interactive systems are unsuited to this type
of problem solving situation because they suffer
from a rigidity of system-uéer interface which makes
it so difficult for the user to manipulate the sys-
tem that instead of learning from the solutions he
has been producing, he spends much of his time try-
ing to remember input procedures - woe betide the
user who Toses his place in an input format. If we
intend to use interaction we must provide a much
better interface than is currently available via the
input/output routines of the commerically offered

interactive languages.

Some of the requirements for interactive design
programs have been stated (1):

"One of the prime requisites of any design pro-
gram is...a facility that enables the designer to
change one or more parameters independently and
obtain a new set of results incorporating these
parameters.

"A second requirement for such programs is that
as far as possible they should be explanatory.
A designer is prepared to read a limited amount
of instruction but in the middle of a design
problem he does not want to devote much time to
learning how to use the program. Against this
requirement, however, must be set the knowledge
that the man who is familiar with a program will
become impatient if he has to read the operating
instructions every time he uses the program, and
sb, if possible he must be given the option of
suppressing this information.

"A third regquirement for such programs is that
wherever possible input should be free format.
Many designers have a resistance to computers
and this s further aggravated by having to pay
attention to decimal points, leading or trailing
zeros, and counting columns when dealing with
data input.”

A number of attempts have been made to achieve
these general requirements by writing FORTRAN
routines. These have been clumsy and it would
appear that an interpretive compiler such as
APL (A Programming Language) (2) allows for
the achievement of these through the use of
a small number of user generated, general

purpose functions.

2.1
In order to facilitate interaction between

Aims and Objectives in Interaction

the system and the user a number of object-
ives may be stated:

1. the system should not fail irrespective what
the user did to it;

2. the user should be able to use everyday lang-
uage when communicating generally with the system;
3. the user should be able to use the technical
language of the problem being solved;

4. the system should be such that the user need

249

have had no experience or detailed knowledge of it
before he uses it;

5. the system should respond according to the
expertise of the user;

6. the system should provide "help" as needed;

7. the system's responses should be variable;

8. the system should accept literal descriptions
as well as mixed literal and numerical input.

These objectives contribute to the general aim
that the interface between the user and the system
be "low profile" in nature and that the highest
Tevel of interaction can be achieved.

3.0 A LIBRARY OF INTERACTIVE FUNCTIONS
As part of an experiment in interactive design in

architecture and architectural education (3) four
basic interactive functions: EDIT, TABLE, WD and
QUEST (with auxiliary functions NUM, WOR and
CKQUEST) were written in APL to provide a general
purpose library of interactive functions. Through
a judicious use of these functions a programmer
can provide a high degree of interaction between
the user and the system which represents the

problem solving algorithm with a minimum of effort.

3.1 The Function EDIT
For high level interaction, the interface should,

with some latitude, be able to recognize words.
Some words contain a large degree of redundancy
which would involve extensive and expensive recog-
nition functions. There are many possible ways of
writing "bedroom 2" , e.g. "bed 2", "bedroom 2",
"bedroom2", "bedroom-2", "bed-2".

information, as far as differentiating bedroom 1

The real

from bedroom 2, or from the bathroom, is contained
The method
of word recognition used in the function QUEST, to

in the type of room and its number.

be discussed later, uses only four characters from
The four characters are the first one
and the next three that are not a, e or 1.

each word.
Exper-
ience has shown that this is usually sufficient
for precise recognition. However, using this
method, it seems that one could never get unique
recognition from the words "bedrooml bedroom2"
since their compressions would result in "bdro
bdro".

where these interactive programs can be used, e.g.

The same problem can occur in other areas

in electronics; resistor 1, resistor 2, capacitor

1, transistor 8, etc. The need has arisen,

therefore, for a general-purpose function to
Such
a function would free users from writing special

eliminate redundant groups, if they occur.

functions for unique interface problems, when
using interactive programs.

EDIT eliminates redundant groups of characters,
not single characters, such as spaces or commas.
It will eliminate multiple use of single charac-
ters, but with complete elimination rather than
"all bar one" elimination.

The function EDIT will eliminate groups, such as
"room", from a literal vector "bedrooml bedroom2"
to yield "bedl bed2" which after further compres-
sion, for word recognition, would become "bdl bd2".
The final expression contains all the useful in-
formation - room type and room number. Some
problems can occur because EDIT will remove any
group which contains any of the characters to be
removed. If we keep to the example of eliminating
"room" and if the vector “broomroom" were to be
edited, the result would be "b".

satisfactory for word recognition, depending upon

This may be
the other words used. However, apart from prob-
lems of the type mentioned above, EDIT can be of
great assistance to the interactive users in
achieving a more fluid interface, without the
need for extensive checking functions.

EDIT is a defined dyadic function with an ex-
plicit result and is of the form:
J EDIT FF

where:

J is the vector of any permutation of the redun-
dant characters to be removed and FF is the
vector or array from which the redundant char-
acters are to be removed.

For maximum flexibility it will handle as its
right argument a literal scalar, vector or

array. Some examples are given below:

250

Example 1
Array to be stripped of "room"
F
BEDROOM1
BEDROOM?2
BEDROOM3
BATHROOM
KITCHEN
LAUNDRY
Using EDIT to remove "room" from an array of room-
names
‘ROM' EDIT F
BED1
BED2
BED3
BATH
KITCHEN
LAUNDRY

Example 2
Using EDIT in an electronics appiication
E

RESISTOR3
RESISTOR8
RESISTOR45
RESISTOR67
"ISTOR' EDIT E
RE3

RES

RE45

RE67

EDIT is a one 1ine defined function in APL. The use
of EDIT will be further demonstrated in Section 3.4
and 4.0.

3.2 The Function TABLE
During the development of the interactive part of

the system it was found that strings (vectors) of

literal characters needed to be handled and proces-
sed.
always a problem of differentiating Titeral word

Whenever input had to be processed there was

or number groups from each other.

An associated problem with processing the user's
response is to determine what a word is. What are
the word delimiters? In most cases it is the pres-
ence of a space, but in some cases multi-word

inputs may be required, where the vital information
is contained in the use of both words. Such a case

does exist if the user is given the freedom of

using names such as "bedroom 1" or "lounge room"
in his input. If this is so, then some other

delimiter is necessary.

In using QUEST, it is much easier to check for
word recognition by indexing an array made up of
the user's response, against an array of the
function's vocabulary. By using the APL inner
product, it is possible to check for exact word
recognition and its location in the vocabulary
in one operation. A similarly simple check,
using the outer product and dyadic transpose,
can be made for partial recognition. The great

power of APL Ties in its ability to handle arrays.

The use of the inner and outer products can, in
many cases, eliminate the need to Toop and so
produce a considerable saving in processing time.

It is apparent that, with the need to process
words as opposed to sentences and with APL's ver-
satility with arrays, the best way to handle
literal inputs was to assemble the input into an
array. The size of the array would depend upon
the number of words in a sentence and the length
of the longest word. The result was the func-
tion TABLE which takes the form

J TABLE A

where

J is the word delimiter (a scalar) and A is the

literal vector to be assembled into an array
(table).

Example 3
' ' TABLE 'BEDROOM1 BEDROOMZ BATHROOM KITCHEN'

BEDROOM1

BEDROOM2

BATHROOM

KITCHEN

Some examples are given below:

Example 4
" ' TABLE 'I WANT TO GO HOME'
I
WANT
TO
GO
HOME

251

Example 5

E«'" ' TABLE '1 234 56'
1
2
3
4
5
6

F<',' TABLE 'ONE=, TWO=, THREE=, FOUR=, FIVE=,

SIX=,'
ONE=
TWO=
THREE=
FOUR=
FIVE=
SIX=
Catenation of E and F:
F,E

ONE= 1
TWO= 2
THREE= 3
FOUR= 4
FIVE= 5
SIX= 6
Example 6

','TABLE 'BILL SMITH, PETER JONES, HARRY BROWN,

B. GREEN'

BILL SMITH

PETER JONES
HARRY BROWN
B. GREEN

TABLE is a one line defined function in APL.

3.3 The Function WD

As mentioned in Section 2.1, there should be a
varied response by the system to the user's input.
The responses should be different and should not
appear too contrived or repetitive. It is rela-
tively simple to substitute a synonym for a word
or phrase that is commonly used in the interactive
process. A substitute word could be selected from
either a vector or an array of suitable words.
Here, TABLE is used to generate arrays from which

the suitable words are indexed.

Some comments on word selection should be made
first. The substitute word should show variety,
and, above all, the word should mean what was in-

tended by the original word. To some extent, the

context will change the meaning of the substitute
word, so it is important that words selected for
use as alternatives should be carefully checked
before use for meaning.)

In high level interaction, as much variety as pos-
sible should be used in constructing responses,
but without the loss of meaning that can sometimes
occur with general-purpose word replacement
functions. The vocabulary should not be too
intensely colloquial, otherwise the repetition
will be more easily detected and the user will
become weary of clever turns of phrase.

One drawback with the use of substitute words is
that the form of the sentence always remains the
same and in a process which involves the repeated
display of the sentence, the contrived nature of
word substitution may concern some users. In

some cases, it may be possible simply to alter the
sentence by randomly inserting or omitting differ-
ent phrases.

The function WD was developed in an attempt to
produce a general purpose function which would
provide these features. It takes the form:

J WD X

Where

J is the numeric control scalar and X is the liter-
al vector to which the substitute word is to be
catenated. X can be a scalar or it can be an
empty vector, if nothing is to follow the word.

J can be any number, but the function only res-
ponds to numbers between 0 and 120. WD responds
in word selection to the "tens" part of the
number entered. The "units" part of the number
is converted to a binary radix and this is used
to control other aspects of the word selected.
This second control gives a choice of 4 unique
controls because of the binary radix (i.e.
02 4 and 8). If it were intended to introduce
more variety, then the actual digit could be
used for control, in which case, 10 alternatives
for each word would be available.

The following table gives values for J which
select similar words to the words shown:

J WORD

10 alter *)
20 right

30 good!

40 enter * p
50 error

60 check]
70 try

80 want *

90 entry

100 help

110 understand

The words marked * are verbs and are supplied as

infinitives with the J used, as the present part-
iciples if 1 is added to J and as the past parti-
ciples if 2 is added to J.

Further varijety to the words marked ¢ can be
achieved by adding 8 to J. This will cause
expressions such as "please"”, "now then", etc.
to precede the word selected.

The word selected by J=20 can be followed by a
comma, if desired, by specifying J as 21.

Some examples are given below:

Example 7
'DO YOU', 80 WD 'TO', 10 WD 'ANYTHING?'
DO YOU NEED TO CHANGE ANYTHING?

Example 8
20 WD 'WARREN'
RIGHT WARREN

Example 9
40 WD 'YOUR NAME'
ENTER YOUR NAME

Example 10
47 WD 'YOUR NAME'
KEYING IN YOUR NAME

Example 11
42 WD 'YOUR NAME'
ENTERED YOUR NAME

Example 12
48 WD 'YOUR NAME'
NOW KEY IN YOUR NAME

WD is a 17 line defined function in APL.

3.4 The Function QUEST
If one wants high level interaction with users

who “talk" to the system, then some cognizance
must be taken of how the user “talks." Section
1.0 described some of the underlying problems of
input. In order to allow the greatest flexibil-
ity numeric input (the quad input in APL; F-or
I-formatted input in Fortran) should be dis-
carded in favour of literal input (the quote-

quad in APL; A-formatted input in Fortran).

Obviously, the problem is not soived by simply
replacing quad with quote-quad. The problem

really begins at this point for the programmer.

A1l numeric entries, in quote-quad, are simply
character strings and these must be differentiate d
from each other, from words and from whatever

It is
relatively simple to devise a function to convert

other characters are entered by the user.

a character vector, representing a number, into
its numeric counterpart, but word recognition is
more difficult.

The eight points listed in Section 2.1 have been
combined in the function QUEST which is essen-
tially a question-asking and answer-recognition
function.

Its flexibility and scope need considerable des-
cription; it is one of those functions which
should be experimented with for some time

prior to its use in other functions. It is a
problem oriented function which is moulded to
suit the problem involved by use of its con-
trol facilities. Tt processes literal inputs,
representing numbers and/or words and returns
a numeric vector after interpretation and

checking.

QUEST 1is a recursive function and takes the
form:

J QUEST FF
Where J is the control argument and FF is the
literal vector forming the text of the ques-
tion or command to be posed to the user. J
can be a scalar or a vector. If it is a scalar,
then, certain primary controls are set up, con-
trolling the types of responses accepted by the
system and also controlling the system's responses
to the user's input.

253

If J is a vector then its length has significance,
as well as its value. J has significance for
lengths up to four. Any further elements in J
are ignored, so far as control is concerned.
Therefore, QUEST can take the form:

(JA JB JC JD) QUEST FF
where JA is the primary control element with the

following significance:

JA EFFECT
512 Allows the "further question" facility
256 Allows the "special word" facility
128 Bars numbers not in index list of
vocabulary vector

(64 Is used for recursive control)

32 Allows non-integers

16 Allows vectors

8 Allows negative numbers

4 Allows further controls JB, JC and JD
2 Allows "help"

1 Allows "yes" and "no"

* Allows display of non-recognition

warning. (* = any decimal fraction

less than 1 but greater than 0)

Once the programmer has decided upon the type of
entry he wants from the user, he can then set JA

by adding together the values for JA which will
Default conditions
If JA

is not set with 16 in it then only scalars will be
accepted, etc.

give him the facility he needs.
exist in the event of non-specification.

If, for example, the programmer
wants the user to be able to enter vectors, but
all the elements of which must be integers,
although, negative integers would be acceptable,
then he would set JA = 16 + 8 = 24,
the user to be able to ask for "help", in the
event of his having difficulties, then JA would
become 26.

If he wants

Similarly, if the programmer wants the
user to be able to exit from the function (or part
of the function) by using words such as "stop" or
"finish", then JA would become 26+256 = 282.

If 4 is added to JA, then QUEST will consider the
significance of the next one, two or three elements
of J, i.e. JB, JC, and/or JD, where:

JB Sets the floor (minimum) of a scalar or

vector,

JC Sets the ceiling (maximum) of a scalar

or vector,

JD Sets the length of a vector.

The only proviso here is that, if JC, then JB
must exist, i.e., if only the maximum value of
the entry is important then the floor controller,
JB, must be set to insignificance. Similarly,
if only the number of elements entered is vital,
while the range of values is inconsequential,

then both JB and JC must be set to insignificance

Thus, continuing the example above, the follow-
ing specification of QUEST:

286 30 216 3 QUEST
would have the following effects:
enter a 3-element vector, with values within the
range of 30 to 216, with all the elements being

'What numbers?’
The user must

integers. The user can ask for "help" or can
demand to “stop" (if the special word vocabulary

was set up using words similar to "stop").

Before discussing the system's responses and the
responses of QUEST, we should discuss the pre-
requisites that are necessary for QUEST's opera-
tion. QUEST uses auxiliary functions NUM and
WOR, as well as TABLE, EDIT and WD. WD is used
to add variety to the terminal's responses during
QUEST's processing, if necessary. Users may
wish to dispense with this facility, in which
case, the responses can be rewritten with fixed
forms. The other functions are necessary for

QUEST to operate.

The function NUM converts all entered "numbers"
(character strings) into numbers. The function
WOR interprets entered words and for this to
evaluate it needs a vocabulary against which to
compare the entered words. WOR uses a stripped
vocabulary, QN, which is an array with as many
rows as words in the full vocabulary QN but only
four columns. The stripped vocabulary is either
prepared by using a function or by setting up
QUEST indexes QN (a vector of num-

bers which correspondsto each word in the

the array.

full vocabulary) for recognized words and its
output is numeric and corresponds to those
elements of QN which represent the recognized
words in QN (i.e. ultimately in the full vocab-
ulary QN).

As described above, the functions EDIT and TABLE
Both func-
tions are used in QUEST and in the form:

both require left control arguments.

254

J1 EDIT J2 TABLE A

(processing occurs from right to left) where A
is the users response and J1 and J2 must be
specified by the programmer. Flexibility is given
to the programmer by allowing him to specify the
word delimiter he wishes to use and by giving him
the facility to eliminate redundacies from the
user's input prior to processing by WOR. There-
fore, J1 is the redundancy eliminator and J2 is
the word delimiter. If the programmer wants a
space to be the word delimiter then J2 is set to
"', If multi-word descriptions are to be used
and a comma is needed to delimit words then J2

would be specified as ','. Since J1 must be
specified and since in some applications redun-
dacies will not occur, J1 can be set to an un-

l1ikely character, such as '!’

If the "special word" facility is used, then the
programmer muist specify a list of special words
which the user may use. The list of "special
words" is specified as SW has as many rows as
SW can be

If the "special words" were

words in the list and four columns.
set up using TABLE.
"stop", "end", "finish", and "go", then SW would
take the form:

stop

end-

fini

g0--
where - indicates blanks in the array. If any of
these words are recognized (all the input "words"
are compressed to four characters) then QUEST
terminates and returns a certain result.

Similarly if the “"further question" facility is

used then a Titeral vector FQ must be specified.
FQ contains the text of the question which will

follow the question FF. If the user anticipates

FQ and does not answer "yes" then FQ is not posed
and the users input is taken as his having anti-

cipated FQ and answered it. If he answered "no"

to FF (and FQ is available) then an exit is taken
from QUEST.

In both the case of SW and FQ, these need not be
specified unless they are needed (i.e. JA=256 or
512), since QUEST branches around unused state-
ments which are, therefore, not compiled.

Since QUEST is used internally in other functions

FQ and SW can be localized to the function in
which they are being used. Further, if QUEST
is used more than once in a function then SW
and FQ can be respecified as often as needed.
The same applies to the vocabulary (QN),
stripped vocabulary (QN) and vocabulary
vector (QN).

The operation of QUEST 1is arranged so
that there is a heirarchy of control.
If all the SW, FQ, "help", and "yes/no"
facilities are available then SW is
checked for firstly. This means that a
response, such as, "yes, I want to add a
room", is interpreted as the need to add
a room, rather than a need to alter the
input. Similarly a statement such as,
"yes, but I want some help first," will

cause a branch to help routine.

From the foregoing, it should be apparent that
QUEST will return a numeric vector which is its
interpretation of the user's character input.
The input can be mixed alphameric with words
and/or numbers and converts the "numbers" into
numbers and converts recognized and partially
recognized "words" into numbers from the vocab-
ulary vector. QUEST checks the interpreted
input against the control criteria and then,
after user confirmation of QUEST's interpreta-
tion, (if necessary), a numeric vector is re-
turned as the explicit result.

For special conditions a specific vector is
returned. The vector is a four element vector

of 1's and 0's which can be used for branching.

QUEST 1is a recursive function which will suc-
cessively re-evaluate until the user has
complied with the control condition either

by supplying the correct input or by using
one or other of the available options.

Below are some examples of the use of QUEST:

The following is the text of the right argument
of QUEST:

FF <« 'TYPE IN A NUMBER
The * indicates the user's response.

255

Example 13
8 QUEST FF
TYPE IN A NUMBER
*5
5

Example 14
8 QUEST FF
TYPE IN A NUMBER
*1 56
ONLY THE FIRST ENTRY WILL BE USED
4

Example 15
8 QUEST FF
TYPE IN A NUMBER
*HELP
THERE IS NO AID HERE, JUST 'ANSWER THE QUESTION.
TYPE IN A NUMBER
*1 WANT THE NUMBERS TO BE 45.7 and 56.8
ONLY THE FIRST ENTRY WILL BE USED.
THE FRACTIONAL PART WILL BE IGNORED.
46

Example 16
8.98 QUEST FF
TYPE IN A NUMBER
*1 TOLD YOU THAT I WANT THE NUMBER TO BE 745.7 + 78
I CAN'T COMPREHEND PART OF YOUR ANSWER
ONLY THE FIRST ENTRY WILL BE USED.
THE FRACTIONAL PART WILL BE IGNORED.

46
QUEST is a 38 line defined function in APL.

5.0 DISCUSSION

These four interactive functions plus their
auxiliary functions can be easily used by a pro-
grammer to provide an interface between the user
and any solution algorithm in a design process.
The functions are problem independent and form a
group of basic functions available for general
programming applications. Their successful de-
velopment has been largely dependent on the
capabilities of APL. Listings of these functions

are available from the authors.

The problem of spatial layout design has been
tackled interactively using these functions as
the interface with considerable success (3).

6.0 ACKNOWLEDGEMENTS
This work is the result of a joint project
between the Department of Architectural Science,

Sydney University and the Systems Development
Institute of IBM (Australia), Project No. 71-
039; additional support has come from the
AVCC-SCREEM and the URG.

7.0 REFERENCES

1. McKINLEY, J.T.: Conversational

Techniques Developed for Remote Access
Computer-Aided Design. Computer-Aided

Design, I. Elect. Eng., London, 1969,

pp. 162-170.

2. ...: APL/360 User's Manual. IBM Corp.,
CH20-0683-1 1969.

3. GERO, J.S., JULIAN, W.G. and HOLMES, W.N.:
The Development of a System for Heuristic Optimi-
zation of Topological Layouts Using High Level
Interaction. Department of Architectural Science,
University of Sydney, Computer Report CR22, 1973.

256

