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Abstract. We introduce a shape categorisation method for architectural
drawings that takes shape characteristics derived from those drawings
as features. We propose a feature-based shape analysis procedure and a
formal model of shape categorisation based upon the measurement of
featural similarity of shapes. Shape categorisation is demonstrated in
experiments on architectural drawings.

1. Introduction

One of the difficulties for current computer-aid design packages is the
extraction of design significances and semantics from drawings. This lack
hinders the wider use of computers in the later processes of designing.
This paper presents a shape classification and categorisation paradigm
that has the possibility to be developed into a computational design aid as
a semantic extractor and design characterisation tool. This paper
presents an approach to the sorting and selection of figures in
architectural drawings so that provided with the semantic description of
design requirements, a system could suggest a group of drawing candidates
from an image database with the shape characteristics most likely to
satisfy the semantic design requirements.

One of the primitives comprising architectural drawings is “shape”. A
shape is one of the most abstract design ingredients, to which designers
assign various aspects of design information during a design process.
Designers perceive, think, and manipulate shapes to suit their purposes.
The essential element of a shape in 2-D or 3-D is a line. A shape
normally refers to any finite arrangement of lines (straight, curved, open
or closed) in the plane drawn in a finite area in a finite amount of time,
which has a pictorial specification (Stiny, 1975; 1980). However, we
distinguish a curve, which is an open arrangement of rectilinear or



curvilinear lines, from a shape, which is a finite composition of closed
and connected lines (Gero and Park, 1997; Park and Gero, 1999). This
paper presents a computational method that develops a link between
physical shapes and abstract concepts called features (Jared, 1984; Stiny,
1989; Shah, 1991). Features have been extensively used in geometric
design assessment, especially in mechanical engineering, where feature
recognition from geometric CAD representations has been a critical topic
for implementing feature-based CAD systems (Meeran and Pratt, 1993;
Brown et al., 1995; Tombre, 1995). This paper presents a rigorous
feature-based shape analysis procedure for architectural drawings.

2. Feature-based Shape Analysis Procedure

This paper proposes a shape analysis procedure resulting in shape
categorisation. This feature-based shape analysis procedure systematically
computes all the necessary ingredients for shape categorisation, which
include the encoding of shapes, shape feature detection, matching the
structural shape description to shape semantics by feature classification,
similarity measure for individuals, category feature lists, shape category
definition, and shape categorisation. Shape feature classification and
shape categorisation provide sufficient data for shape comparisons.

2.1 FEATURE-BASED SHAPE ANALYSIS PROCEDURE

Our feature-based shape analysis procedure consists of four discrete
sequential processes. These processes are: shape encoder, feature
detector, feature classifier and shape analyser as shown in Figure 1.

Shape encoder Feature detector Feature classifier Shape analyser

Figure 1. Shape analysis procedure

Each process has specific representation schemes, search algorithms,
and necessary definitions and knowledge, in order to process data and to
produce the required output. Data for each process are shapes, qualitative
shape representations, called Q-codes', identified shape features and
similarity measure to categories. The shape encoder takes shape images

1 Q-codes have been developed as a qualitative shape encoding scheme, which converts
shapes into systematically constructed qualitative symbols. Four separate Q-codes — A-,
L-, K- and C-code — encapsulates shape characteristics in terms of angle, relative length,
curvature and convexity (Park, 1999).



and transforms them into syntactic shape representations using the Q-
code encoding scheme (Gero and Park, 1997). The feature detector takes
this syntactic data and searches all the shape features that are identified
in the form of structures in the Q-code encodings, called Q-words. The
feature classifier takes the shape features as data, classifies them into
groups and categorises shapes using definitions of categories. It further
measures how typical the shapes are to the generic categories using a
similarity measure. The shape analyser assesses shapes for how strong
their characteristics are to the categories and compares shapes. Each
process is explained below.

2.1.1 The shape encoder

The shape encoder converts a visual image into symbolic data. This
process includes image vectorisation and Q-code conversion. It converts
raster graphics to vector graphics and then converts shape contours into
a set of Q-code encodings. The vector graphics contain information
about vertices of the shape contour.

2.1.2 The feature detector

The feature detector takes the Q-code encoding as data and extracts all
the shape features. This is a shape feature extraction process. After a
shape is represented as a string of Q-codes, that is a Q-sentence?, the
feature detector looks for syntactic shape features as Q-words from the
Q-sentence. The feature detector produces a group of identified shape
features that are sorted according to Q-code lengths.

2.1.3 The feature classifier

The feature classifier takes shape features as data, classifies them into
specified shape feature classes and measures the categorical typicality of
each shape to the shape categories. The feature classification process
results in several groups of shape features sharing commonalities and
regularities based on the definition of shape feature classes. We choose
basic shape feature categories according to shape characteristic classes in
terms of repetition and convexity, which best distinguish shape feature
characteristics in syntactic patterns. They are “iteration”, “alternation”,
“symmetry”, “indentation” and “protrusion” categories. Iteration refers
to a repetition of patterns with no interval; alternation refers to a
repetition of patterns with regular or irregular intervals; and symmetry
refers to a reflective arrangement of patterns.

2 Q-sentence is one of the conceptual units of Q-code chunking. Linguistic terms are
used for these units such as Q-code, Q-word, Q-phrase, Q-sentence and Q-paragraph. Q-
sentence refers to a closed and complete contour of a shape (Gero and Park, 1997).



2.1.4 The shape analyser

The shape analyser compares shapes based on categorical knowledge of
shape features. It examines a shape or a group of shapes to see how
strongly a shape is associated to a category. Based on definitions of
categories and classified shape features, the shape analyser examines
shapes and determines their categorical prototype and average exemplar,
and computes categorical membership from a group of shapes.

Shape categorisation is a result of shape analysis as well as the start of
another analysis problem because it produces an explanation for a
particular categorisation result. The explanation for shape categorisation
provides the information for common or regular categorisation patterns
that can be stored as new categorical shape knowledge.

2.2 CLASSIFICATION OF SHAPE FEATURES

Considering the classification task as an assignment of data to a
predefined set of solutions on the basis of the object data (Stefik, 1995),
the matching, or assignment, of syntactic descriptions to semantics
involves several fundamental issues. The classification rules for matching
is based on probabilities. When the rule selects a single optimal solution
from two or more conflicting feature classes, the feature classifier should
be able to select the appropriate solution with a higher probability. The
second issue is the abstraction for appropriate class matching. The
abstraction is a reduction of a description to a more general case. We try
to generalise the syntactic data into a generic and predefined definition of
shape feature class that corresponds to a particular semantic solution that
also consists of abstract semantic descriptions and individual refinements
such as shown in Figure 2.
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Figure 2. Architectural example of shape feature classification



The third issue in classification is that it uses a search model to examine
the data and solution spaces. The feature classifier, given the data and the
structured solutions, is provided with a method that matches data to
solutions capable of handling several problems such as ambiguous data,
missing data, and the reliability of data.

2.3. CATEGORISATION BASED ON SHAPE FEATURE CLASSES

The categories form the theoretical basis for shape comparison such that
the shape semantics determine the assessment of the design ideas in
shapes. The shape feature-based categorisation and the shape analysis is
performed at the semantic level using a semantic feature analysis method
(Pittelman et al., 1991; Estes, 1994). The semantic feature analysis
method has been widely used particularly in the analysis of new
vocabulary learning (Pittelman et al., 1991). We apply this method to
the analysis of shapes. When a cognitive system encounters new
concepts, it normally uses a certain cognitive structure called categories
(Rumelhart 1980). The category structure associates verbal and visual
concepts and serves as a semantic framework for related concepts stored
in memory. Consequently the information about a newly encountered
object is categorised and re-categorised and is integrated with the already-
stored concepts (prior knowledge) so that it classifies the new object
correctly. Then, the system discovers a way to differentiate the types of
a new object - if it is alike or different from a certain object class.

The system relates new knowledge to the existing knowledge by
classifying the semantic features in order to determine the similarity of
objects. We find this method efficient in demonstrating the relationships
among different concepts of unique objects. We need sufficient semantic
precision among similar concepts because comparing different shapes will
eventually show different semantic feature patterns when enough features
are considered. Issues in semantic shape feature analysis include: shape
categories, number of shape features, similarity measure, and inference on
correct shape semantics.

3. Feature-Based Categorisation Model
3.1. CATEGORY AND SIMILARITY MEASURE

The *“category” or “concept” is considered the essential cognitive
element of our understanding of the world because we understand objects
not at the individual level but at the class level in terms of categories or
concepts. Categories always exist when two or more objects are treated



equivalently. A category is thus an abstract organisational concept that
groups individual objects described in terms of attributes.

A feature-based category model examines exemplars by the
occurrences of their features; and a categorical comparison of exemplars
is based on measuring the similarity in terms of features. Similarity
between two objects is measurable in terms of proportions of common
elements taken as shape features here (Estes, 1994). The similarity
measure counts matching and mismatching semantic shape features and
computes a numeric measurement based on this. The basic similarity
measure equation as suggested by Estes (Estes, 1994) is:

Similarity (A,B) = sM* (1)

Equation (1) computes an object’s similarity according to semantic
concepts by counting only mismatching shape features and by assessing
how distantly shapes are related semantically. This equation is modified
in order to infer a precise similarity measure by including mismatches
(Park and Gero, 1999).

Similarity (A,B) =t~ s"* (2)

There are five concepts involved in computing similarity. They are, k:
the number of matching feature types; N: the total number of shape
feature types; r: the occurrences of the feature; s: the value for
mismatching features where 0 < s< 1; and t: the value for matching
features where t 3 1.

3.2. FEATURE-BASED SIMILARITY MEASURE

The first task for the formal model of a shape exemplar-categorisation
model is to specify the method of computing similarity measure for
shapes, shape feature classes and shape categories. We use both the
binary-valued feature identification and the production rule methods
(Estes, 1994). Measuring similarity starts with the counting of shape
feature occurrences to assess the commonality for the members. The
simplest similarity for objects sharing a single common shape feature is
measured by the following equation (single feature similarity):

Similarity =t~ s (3)

In equation (3), the shape features are counted in terms of matching “t”
and mismatching “‘s” of a feature according to its occurrence “r”.

Table 1 shows a simple illustration of similarity measure for the
comparison of four arbitrary individuals {S1, S2, S3} with four arbitrary

features {F1, F2, F3}. Individual characteristics in terms of matching (t 3



1) and mismatching (0 < s < 1) features are reflected in similarity
measure.

TABLE 1. Semantic feature analysis grid for simple shapes

Shapes

Shape features

i

s

S

F1 (sharp teeth) 3 4 6
F2 (reflective symmetry) 0 0 1
F3 (rotational symmetry) 0 1 0

The similarity measure between two distinct shapes can also be assessed at
the shape category level. The category level similarity is measured by
summing all the similarity measures between one exemplar and all the
other members of the category. The similarity measure at the category
level for each exemplar is thus given in equation (4) (similarity to
category):

Similarity-to-Category (A) = S Similarity (A,X) (4)

“X’” indicates all the members (exemplars) including the exemplar “A’ in
a shape category. The similarity measure for two exemplars at the
category level results in a table where each exemplar is compared one by
one and the individual comparisons are added to compute the categorical
similarity. The result of measuring the similarity to category for those
shapes in Table 2 is shown in Table 3. It measures by assigning “t” and
“s” values to the equations (see Section 3.3 for details).

TABLE 2. Similarity measure of arbitrary individual shapes

F1 F2 F3 Similarity measure
S1 t° S s t’s’
S2 t* s t t°s
S3 t° t s t's
Sim(s1,82) | ¢ t s t's

TABLE 3. Similarity measures of arbitrary individuals to category (t = 1.2, s = 0.8)

S1 S2 S3 Similarity to category (Total = 19.1)
S1 | ¢ t's | t's t* +t's + t's (5.8)
S2 | t's t° t's® t's + t© + t's® (6.0)
S3 |t's |t |t t's + t's® + t° (7.3)




Assuming that a shape category “Cat-1" is represented by the exemplars
“S1”, “S2” and “S3” in Table 3, we can assess how strong each exemplar
is associated to the category. One of the methods to determine the
associative strength between an exemplar and a category is the measure
of relative typicality (Estes, 1994). The relative typicality to category
(Relative-typicality) is measured for each exemplar as a ratio:

Similarity - to - Category( Ex)

5
SSimilarity - to - Category( X ) ©

Re lative - typicality( Ex) =

“X’” indicates all the members of the category including the exemplar
“Ex”. The ratio measure for relative typicality for the previous
exemplars {S1, S2, S3} of a category, for instance, is shown in Table 4.

TABLE 4. Relative typicality to a category

Exemplars Relative typicality
Sl Relative typicality (S;) =5.8/19.1 =0.30 (30%)
S2 Relative typicality (S;) =6.0/19.1 =0.26  (31%)
S3 Relative typicality (S3) = 7.3/19.1 =0.20 (38%)

The relative typicality in Table 4 shows the associative strength of each
exemplar to a category. For instance, we could say that the exemplar “S3
(38%)” is more strongly associated to the category than “S1 (30%)” so
that we can say S3 is more typical than S1 to the category. This measure
is used for the rating of the categorical typicalities of exemplars.

3.3 CATEGORY REPRESENTATION

A category can be represented in three ways: rule-based, prototype-based,
or exemplar-based. The rule-based method defines a category by a set of
necessary and sufficient conditions such that the categorisation task
involves a process of testing whether an exemplar satisfies these
conditions (Smith and Medin, 1981). Prototype theory considers the
category to be represented by the prototype — the most dominant and
typical member — and the categorisation becomes a process of comparing
the exemplars to the prototype of a category (Rosch, 1973; 1978). The
exemplar theory holds that a category is defined by the whole exemplars
in the category and the categorisation is based on the similarity of a new
object to all of the stored exemplars (Estes, 1986; 1994).

Firstly, a category can be represented by the deterministic selection
rules with a set of necessary and sufficient featural conditions. The
difference between necessary and sufficient conditions is the certainty



factor of rules set with minimum and maximum certainties. The major
criticism of the rule-based category representation (Ashby and Maddox
1998) is that the rules do not possess a graded structure distinguishing
some members as more typical to the category than others. This is
obviously not appropriate for the rating of categorical typicality.
Secondly, a category can be represented by a prototype, which is the
most typical and ideal member of the category. The assessment of
category membership for a group of exemplars, therefore, becomes a
matter of measuring their similarity to this prototype. It results in a
gradation of category memberships. In our shape feature approach, we
compute the similarity measure between an entity ““n”” and the prototype
“p” by comparing the matching and mismatching features between an
entity and the prototype. This similarity measure to the prototype is
equivalent to categorical typicality measure in this case because the
category is treated as equivalent to its prototype.

Typicality (n, p) = Similarity (n, p) = t's"* (6)

A prototype representation of the category considers the ideal
member for a category, such as the cathedral “Notre Dame”, for
instance, can be regarded as the representation for the category
“Cathedral”. The main criticism to this is that it loses all the information
about the category and the various correlations of other members
ignoring the contextual knowledge because only the prototype is
considered as the representation of the category. Other members perform
a critical role in category representation. This method is, however, useful
in the category representation when we have a clear idea about the
distinctive and well-known member for the category. Thirdly, the
exemplar representation of a category considers all category exemplars
that have been encountered and stored. We can determine the categorical
membership of an entity by the similarity comparison of it to the
representation of every exemplar of the relevant category (Estes, 1986;
1994). This category representation, thus, considers a collection of
features of every exemplar. The categorical typicality for an entity is
computed as the sum of the one-to-one similarity measure between the
entity “n” and all the exemplars “x” as follows:

Typicality (n) = S Similarity (n, x) (7)

The main advantage of the exemplar representation of category over
the prototype representation is the sensitivity of a category definition
covering the maximum available features. The main criticism also comes
from the way a category is represented with every member (Ashby and
Maddox, 1998). Firstly, it is problematic whether categorisation depends
exclusively on exemplars rather than dominant features. Secondly, the



category computation involving every exemplar of a relevant category is
intuitively unrealistic especially for a category with very large members.

Consequently, the categorical membership for a new shape can be
assessed in three possible ways: by checking the rules, by comparing the
featural similarity with the prototype, or by examining the similarity
with all the members in the category. For computational purposes, it is
efficient to consider two types of shape feature lists: the feature lists of a
new shape and the common feature list of the shape group for the
categorical typicality measure. A category feature list could come from
one member (prototype), from a small number of members (multiple
prototypes), or from the whole of the members. Following this
discussion, the categorical typicality measure equation can be redefined as
follows (categorical typicality measure based on the common feature
list):

Typicality (s) = Similarity (f; , F) (8)

Categorical typicality for a shape “s” to a certain category
represented with the common feature list “F” is measured by the
similarity between the individual feature list “f;”” from the shape ““s” and
the common feature list “F” from the category representation.
Categorical typicality measures often come out as large numbers with
large differences. This is not satisfactory for an overview of all members
and it often misleads because of the large numeric difference. One of the
ways to include an overview of the typicality measures is to compare
them to that of the prototype so that we can have relative measures of
categorical typicality ranging from zero to 100% to that of the
prototype. We can set two basic constraints for the relative categorical
typicality measure:

- t+s=C (where C, aconstant, is a small number such as 2); and
determine optimal t and s values such that the average of the
categorical typicality measures to that of the prototype
approaches 50%.

3.4 CATEGORISATION OF SHAPE EXEMPLARS

Our goal in feature-based shape categorisation includes the acquisition of
the generic shape categories, the categorisation of shapes to existing
categories, the determination of a new category, and the identification of
key shape feature classes. We approach this in three ways to construct
the new categories: pair-wise categorisation, key-feature-based
categorisation and sub-categorisation.

Pair-wise categorisation: We assume a shape group as members

of a category from which we derive a category pair with



contrasting characteristics so as to assign shape exemplars into
these two categories.

Key-feature-based categorisation: We can create a new shape
category based on the key shape feature classes detected from the
shape group.

Sub-categorisation: We can create new categories by refining the
existing category definitions combining two or more existing
categories. This produces a series of subordinate categories.

4. Shape Categorisation
4.1 CATEGORISATION AS A RESULT OF SHAPE ANALYSIS

The primary instrument for the shape comparison has to be the
similarity or the difference from which we assess the individual or the
collection of shapes. The primary model of shape analysis and
comparison has to explain explicitly the deterministic link between shape
characteristics and shapes. This paper argues that a shape categorisation
method is best suited for this purpose. Feature-based shape categorisation
supports sufficient data for the comparison of shapes, as follows.
Feature-category connection: It offers an explicit link between
the featural description of shape characteristics and a shape group
under a particular category.
Grouping of individual shapes: It provides the principles of
grouping individual shapes based upon shape characteristics.
Sub-group: It can split a shape group into sub-groups according
to associative strength to many categorical concepts.
Assessing similarity: It can assess the shape similarity and cope
with shape groups sharing equivalent or common shape
characteristics.
Novel view: It provides multiple views to a shape group with new
ways of dividing the shape group.
Exhaustive search for groupings: It is capable of searching all the
possible groupings of shapes based on shape characteristics.
Ordering of groups: It is capable of sorting out the refined groups
by their categorical typicality.
Explanation for grouping: It provides explanations for the
grouping results with relevant shape features and semantic labels.
Figures 3 (a), (b) and (c) show the major tasks of this shape
categorisation.
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Figure 3. Three patterns of shape categorisation

4.2 SHAPE CATEGORY EXAMPLES

For the categorisation experiment, we propose simple shape categories
composed of a square (SQR) and three protrusions (P). These are
bounded by the finite shape exemplars sharing featural commonalities,
whose members are the most representative and regular shapes for the
categorical characteristics.

SQR+3P category This shape category includes the shape exemplars with
a square (SQR) and three protrusions (3P) on the edges as members.
There are five members in this category as shown in Figure 4.

R 1

Figure 4. Shape category SQR+3P

SQR+2P+1C This shape category includes the shape exemplars with a
square (SQR), two edge protrusions (2P) and one corner protrusion (1C)
features. The membership is given to the following exemplars in Figure 5.
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Figure 5. Shape category SQR+2P+1C

SQR+1P+2C The shape features characterises this category include a
square (SQR), one edge protrusion (1P) and two corner protrusions (2C).
The exemplars are shown in Figure 6.
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Figure 6. Shape category SQR+1P+2C




SQR+3C This shape category is characterised by the shape features of a
square (SQR) and three corner protrusions (3C). The membership
includes the following exemplars in Figure 7.
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Figure 7. Shape category SQR+3C

4.3 EXPERIMENT 1: CATEGORY DETERMINATION FOR A TEST SHAPE

The first experiment considers a single test shape and determines if it
belongs to an existing shape category considering a single shape and a
single category. Shape categories are represented in three ways: based on
rules, prototype, or exemplars. Experiment 1 takes the test shape in
Figure 8 and compares it to the category SQR+3P.

2]

Figure 8. A test shape

The rule-based representation of category SQR+3P states the test shape
is not a member of the SQR+3P category because it does not match all
the necessary and sufficient conditions. It provides a straightforward
answer to the membership question but it produces no additional
information. The prototype representation of the category SQR+3P,
based on S4, shows the category membership test result in Table 5.

TABLE 5. Categorical similarity using the prototype-based method (t = 1.01, s = 0.99).

Similarity(test shape, prototype) | t*s** (0.14) ® 27%
Similarity(S1, prototype) | t*s'® (0.35) ® 35%

The test shape shows 27% similarity that is lower than the least similar
shape S1 (35%) to the prototype S4. The test shape, therefore, is not
considered to be the member of the category SQR+3P although showing
a close similarity. Using the exemplar-based method the similarity
measures of the test shape are 90.6 (commonality) and 0.46 (difference).
The similarity measures of the members (S1, S2, S3, S4, S5) range from
1502.6 to 2409.3 (commonality) and from 1.12 to 1.18 (difference).
The test shape shows a lower similarity in commonality and less
difference to the category. Higher similarity measure in commonality



between test shape and a member of the category can be interpreted in
two contrasting ways: (1) both contain many common features, or (2)
both contain many unique features against the categorical feature list.
Since this test shape shows very little commonality, exemplar-based
category excludes this shape as a member of the category SQR+3P.

4.4 EXPERIMENT 2: CATEGORISATION OF MULTIPLE NEW SHAPES

The next experiment concerns the categorisation of a group of new
shapes that are not categorised in the existing shape categories.

4.4.1 Categorical typicality of new shapes to the existing categories

This experiment examines, firstly, if any test shape belongs to one of the
four existing categories and, secondly, if the test shape group forms a set
of discrete groupings as separate shape categories. The test shapes in
Figure 9 are constructed as the counterpart shapes for the members in the
four categories in Figures 4, 5, 6 and 7. We deliberately convert a shape
with a square and three edge protrusions into the counterpart shape as a
square and three edge indentations. These shapes are actually members of
categories SQR+3l (S1-S5), SQR+21+1CI (S6-S13), SQR+11+2ClI
(S14-S19), and SQR+3CI (S20) in Figure 10. This experiment tests to
see if category theory identifies the members and new or unique
categories different from the existing categories. The first step is to
examine each shape in Figure 9 to determine if any of the shapes is
categorised into one of the four existing categories.

)5 IR R (E [T O 19
Yy (3] [19) (38) (i3 Sas) [17) [36] (3802

Figure 9. Test shape group

The categorical typicalities of indentation-based shapes are measured
to the four existing protrusion-based categories. The membership is given
to shapes when the test shape’s typicality measure is larger than the
lowest categorical typicality of any existing protrusion members in
Figures 4, 5, 6, and 7. The result shows that only test shape S17 in Figure
9 is considered a member of category SQR+1P+2C, meaning that a
particular square and one-edge and two-corner indentation shape
description overlaps with that of a square and one-edge and two-corner
protrusion shape description.



The second step is the categorisation of the test shapes to new
categories, where we expect four new indentation-based categories be
produced as a result. We approach the definition of new categories for a
group of test shapes by classifying them into the five generic shape
feature categories, namely indentation, protrusion, iteration, alternation,
and symmetry categories, which provide filters that sort our particular
shape features from the whole feature list.

4.4.2 Categorisation based on indentation
Two types of indentation features are discovered and each shape shows
three occurrences of indentation features. The result matches our
expectation regarding the four indentation-based categories. The
categorisation result is shown in Figure 10.
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Figure 10. Indentation-based categorisation of test shapes

The first goal was to check membership of an existing shape category.
One of the test shapes, S17 in Figure 9 was shown to belong to one of the
existing protrusion category, SQR+1P+2C. The second goal was to
construct new categories out of the test shape group. For this task, we
used four generic shape categories, in terms of indentation, protrusion,
iteration and symmetry, to filter out the category feature lists sharing
commonality. Consequently, we have four filtered lists of shape features
that form an exemplar-based category representation of indentation,
protrusion, iteration and symmetry categories. We achieved two types of
categorisation results. One is a list of feature—categorisation links and the
other is a categorical typicality measure for those generic shape
categorles The feature— categorlsatlon result tells us the following.
Possible shape groupings: This is the result of an exhaustive
search for possible shape groupings. Any attempt to regroup test
shapes under the generic shape categories falls into the
combination of sub-groups of this categorisation result.
Ordering of features and groupings: Feature—categorisation results
can be ordered in several ways according to the number of shape
features, the length of features, the number of groupings, and the
length of groupings. Each ordering unveils an important structure



from which we could access an image database of the test shapes
such that we could select shapes using abstract and qualitative
predicates distinguishing particular characteristics of the ordered
structure.

Explanation: It provides the explanation for particular shape
groupings. Given a particular shape grouping for a test group, the
reason for the decision is supported by feature—categorisation
connection lists.

The validity of the categorisation based on generic feature categories
is confirmed by the results of the categorical typicality measure, which
assesses the individual shapes in terms of generic shape categories. The
measure provides us with an abstract insight over the individual as well as
categorical characteristics. This becomes explicit when we compare the
categorical typicality measure of each test shape using qualitative
symbols.

5. Categorisation of Architectural Drawings

The whole shape group is considered as members under the category
labelled anonymous. Individuals, in this case, are initially compared to the
group characteristics so that characteristic shapes can be selected for that
shape category. A shape category, under this shape analysis method, is
defined by the ‘common feature list’ that is constructed from the shape
features of all the members in this anonymous category. The common
feature list is composed of shape features from at least two members in
the group. This method of common feature selection greatly reduces the
number of features for the anonymous category definition.

5.1. CATEGORISATION EXPERIMENT USING FIVE GENERIC CATEGORIES

Figure 11 shows a group of Alvar Aalto’s plan drawings on which we will
perform a categorisation experiment. The shapes are presented in the
order of contour complexity, which is determined from the addition of
Q-code length and the number of protrusions. Twelve shapes in Figure 11
are encoded in A- and L-codes for the contours of the shaded boundaries
(Park and Gero, 1997). The generic shape categories are filtered out to
form specific category feature lists, on which each shape is assessed in
terms of categorical typicality.

Firstly the whole shape group is considered as members under the
category label of arbitrary shape characteristics. Individual shapes, in this
case, are initially compared to the group characteristics so that
distinctive shapes can be selected for that shape category. A shape
category, under this shape analysis method, is defined by the ‘common



feature list” that is constructed from the shape features of all the
members in this anonymous category.
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Figure 11. Architectural plan drawings by Alvar Aalto (Schildt, 1994)

Figure 12(a) shows the result of preliminary measurement of categorical
typicality for the twelve shapes. The categorical typicality measure
clearly shows which shape contains most of the common shape features
and feature diversity. Those shapes containing most of the common
shape features are considered to be the prototype that it is the most
representative of the shapes regarding shape characteristics as a group.
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Figure 12. Categorical typicality measure

Pair-wise categorisation separates the categorisation results into two
contrasting groups. This is a primary categorisation because this method
does not depend on any prior knowledge or representations of specific
shape categorisations or shape features. This would be the first step in



examining a group of shapes since it provides a way to pre-inspect the
overall shape characteristics without further details. Pair-wise
categorisation produces the results as “{6, 10, 11, 12}:{1, 2, 3, 4,5, 7, 8,
9} and “{11, 12}:{1, 2, 3,4,5,6, 7, 8,9, 10}” for A-code and L-code
encodings respectively, where the distinction is made at the 50% point to
that of the most typical member. The labelling of these pairs of shape
categories can only be generalised as “typical” or “non-typical”
distinctions. The result shows that the common members for each group
are “{11, 12}:{1, 2, 3, 4, 5, 7, 8, 9}”. Higher occurrences of these shape
features indicate more distributed occurrences of general features and less
occurrences of idiosyncratic features. This also means that those
members in the non-typical categories are considered to be simpler and
regular in their composition of shape contours.

5.2 KEY-FEATURE BASED CATEGORISATION

Indentation- and protrusion-based categorisation: the shape analysis
system detects three types of indentation features and five types of
protrusion features in the primary granularity of A-code encodings.
Vertical lines in Figure 12(b) show the categorical typicality measure to
indentation and protrusion categories. The pair-wise categorisation
results are “{5, 7, 9, 11, 12}:{1, 2, 3, 4, 6, 8, 10}” for indentation and
“{5,6,7,11, 12}:{1, 2, 3, 4, 8, 9, 10}” for protrusion.

Alternation-, iteration- and symmetry-based categorisation: the second
group of generic categories includes alternation, iteration and symmetry
categories that are represented with relevant shape features, for which
the shape analysis program detects 1281, 128 and 79 shape features of
A- and L-codes for each shape category. Line graphs in Figure 12(b) show
categorical typicality measure of the twelve shapes to each category.
Pair-wise categorisation results show that shapes{5, 6, 11, 12} for
alternation, shapes {1, 6, 11, 12} for iteration and shapes {5, 9, 10, 11,
12} for symmetry categories are identified as typical exemplars.

5.3 INTERPRETATION OF CATEGORISATION RESULTS

The experiment results in classifications of drawings under several
discrete shape categories. Table 6 shows the pair-wise categorisation for
each shape. The shapes are listed in the order of categorical typicality.
Table 6 shows a simplified assessment of categorisation results. The result
shows some of the shapes always contrast to each other for feature-based
groupings: “{11, 12}:{2, 3, 4, 8}” shown as shaded patterns, and occur in
all cases. Some of the shapes show a strong tendency to be a contrasting



pair: “{5, 6}: {1, 7, 9, 10}”. Shapes {11, 12} are selected as the most
noticeable and representative exemplars for every categories except A-
code group category, which selects shape {6}.

TABLE 6. Strong and weak tendencies of drawings to shape categories

Cat Strong tendency Weak tendency

Grp-A |6 [11]12] 10 |5 |89 fa]7 ]38 [2]1

Grp-L | 11| 12 8 |7 )53 |10]4f9]2]6 |1
Ind 2|5 |7 |9 |1 4 6|2 ]8 103 |1

Prot 12| 11|6 |5 |7 9 |42 |8 w3 |1

Alt 1|6 |12]5 3 |10)4af8 o271

Iter 1) 12|1 |6 3 |ofwf2]7]|5[8 ]2

Sym 12| 11|10f5 |9 8 |6 |7 |3 ]a]2]1

6. Discussion

We have explored, in this paper, a feature-based shape analysis system
and formal shape categorisation model including category representation
methods and tools to measure similarity of shapes based upon shape
characteristics. We have demonstrated how shape categorisation can be
applied in analysing and grouping shapes in architectural drawings.

We are able to acquire relevant information for characterising
architectural drawings in terms of individual or group characteristics. For
the basic categorical shape comparison these results could be used to
discover a stylistic consistency for drawings from a specific designer for a
particular period of time. This analytic is thus suitable to be developed
into a characterising tool for architectural drawings. It could produce
analytic results as data for the following possible tasks: to check the
consistency and uniformity of style from a set of drawings; to check the
variations of style from a set of drawings; to examine the stylistic
consistency from drawings across a group of designers; to explore the
stylistic changes of a particular designer’s works across time; and to
possibly predict future stylistic changes of a designer based upon the
regularities on the style change found in the analysis data. Further, it has
the potential to be used as a content-based indexing system for drawing
databases.

This system has the capacity to be further developed into a sketch-
based design aid tool that searches similar pictorial data using intuitive
and undetailed sketch input. It may possibly be used as an abstract-shape
synthesis system by reversing the shape analysis procedure to produce Q-




code based preliminary shape descriptions as design alternatives for a
particular design problem.
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