
 Adaptive Enlargement of State Spaces in Evolutionary Designing

JOHN S. GERO AND VLADIMIR KAZAKOV
Key Centre of Design Computing and Cognition
Department of Architectural and Design Science
University of Sydney NSW 2006 Australia
{john, kaz}@arch.usyd.edu.au

Abstract
In designing a state space of possible designs is implied by the representation used and the
computational processes that operate on that representation. GAs are a means of effectively
searching that state space which is defined by the length of the genotype’s bit string. Of
particular interest in design computing are processes that enlarge that state space to change
the set of possible designs. This paper presents one such process based on the generalization
of the genetic crossover operation. A crossover operation of genetic algorithms is re-
interpreted as a random sampling of interpolating phenotypes, produced by a particular case
of phenotypic interpolation. Its generalization is constructed by using a more general version
of interpolation and/or by adding extrapolation to interpolation. This generalized crossover
has a potential to move the current population outside of the original state space. An adaptive
strategy for state space enlargement, which is based on this generalization, is designed. This
strategy can be used for computational support of creative designing. An example is given.

Keywords: Design Computing; Adaptive Search; Generalized Crossover; State Space
Enlargement; Creative Designing.

1. Introduction
Designing distinguishes itself from other human activities in a variety of ways. We will use
designing to indicate the verb and design to indicate the noun, rather than use context to
disambiguate the meaning. One of the important ways is that the resulting artifact, ie the
design, is expected to be different, albeit if only slightly, from previous artefacts. The
magnitude and quality of those differences are commonly used to separate designs into two
broad categories although the boundary between them is fuzzy and constantly changing.
These two categories are variously labeled routine and nonroutine designs or routine and
creative designs. It is assumed that the labels can be equally applied to the processes of
designing that produced the designs as to the designs themselves. The interest in drawing this
distinction lies in the implications it has for articulating computational processes that model
or support the activity of designing. The inference is that processes for routine designing are
likely to be different from those for nonroutine or creative designing. This has been the focus
of considerable research (eg Brown and Chandrasekaran, 1984; Cagan and Agogino, 1987;
McLaughlin and Gero, 1987; Gero, 1990; Gero and Maher, 1993; Wolverton and Hayes-
Roth, 1995; Gero and Maher, 1998) and has resulted in a widely-held view that a supportable
claim can be made for distinguishing processes on this basis. As a consequence there is
increasing interest in exploring processes that can claim to be associated with creative
designing. Creative designing is generally of interest only during the conceptual stage of
designing where all the design variables are not yet known. Thus, this approach could be of
interest as the foundation of a possible tool that has as its goal the exploring of possibilities.

The primary difference between these two classes of designing processes lies in the way
they manipulate structure. Design structure is defined as the basic components and their
relationships in a design. Structure is chosen before routine designing commences and
remains static and fixed during the designing process. If we define a design state space as all
designs that have this structure then we can model routine designing as a (parametric) search
in this fixed and static state space. If an evolutionary algorithm is used here then it will shift
the population within this space toward areas of high fitness. If a genetic algorithm (GA) is
used as the search engine then both the genetic representation and the genotype-phenotype
mapping are assumed to be static and fixed. Numerous evolutionary systems that support this
model of routine designing have been developed (Bentley, 1999).

Within this framework, a nonroutine designing process is one where the state space of
possible designs changes during the process of designing. These changes of state space may
include the change of its dimensionality (introduction of new structure variables) as
exemplified in Figure 1where another dimension is introduced. As a consequence the state
space of possible designs in enlarged. This is a common necessary condition for a designing
process to considered creative. We shall adopt this concept in this paper and focus our
attention on how we can construct a computational process, using evolutionary systems as our
basis, that has such a capability.

Figure 1. Design state space enlargement.

This change of state space can be carried out not only using structure reasoning but in an
inductive fashion, by generalizing on the basis of the set of “good” existing examples. This
stage of designing can be modeled as an inductive enlargement of the problem's state space
based on the current population. In an evolutionary system, this behavior can be interpreted

and modeled as construction of a hyper-surface in a larger state space that is supported by the
currently evolved population of designs. Once this hyper-surface is constructed the next
generation which belongs to it is evolved. If a GA is used as the computational engine of this
process then during this stage a new genetic representation needs to be constructed, jointly
with a new genotype-phenotype mapping and, possibly, new crossover and mutation
operators. After this state space expansion process, the standard GA machinery can be used to
find designs in this enlarged state space defined by this new representation and operators. One
can interpret this new stage as a period when new evolutionary operators push the population
towards and beyond the boundaries of the original state space. Thus, there is considerable
interest in exploring the development of operators that have the capacity to expand the state
space of possible designs. There are five classes of operators that appear to have this capacity:

• combination
• mutation
• analogy
• first principles
• emergence.
The research described in this paper is concerned with the first of these, ie, with the

generalization of the crossover operation, as a form of combination, in genetic algorithms that
is capable of enlarging the state space of the problem in an automatic or semi-automatic
fashion. It should done adaptively, using only the information that is contained in (or can be
extracted from) the current evolution path of the population.

We assume that some general representation is used to represent phenotypes that is
simple (ie, no decoding using external knowledge is necessary to represent the designs). Thus,
this representation can be, and as a rule is, redundant since the genotypic and phenotypic
representations are homomorphic. We will derive operators in phenotypic space that are
equivalent to the standard evolutionary operators if applied to the point from the original state
space. Finally, we replace these equivalent operators with more general operators. We can
apply these new generalized operators to the population of points from the original state
space. This could push the population outside of the original state space. Being outside of the
original state space can be interpreted as a relaxation of some of the constraints that determine
the original state states. Thus we can interpret this scenario as an evolutionary process of
constraint relaxation. However, since which constraints to relax is not known a priori and is
only able to be determined post priori, we are not able to directly substitute constraint
relaxation for the proposed operators.

Information about the current state space and genetic space is stored in three elements:
the genetic representation, the genotype-phenotype mapping and in the evolutionary
operators. Once we replace the first two elements with a more general genotype that is
homomorphic to its phenotype, we are left with only one element of this triplet that still
carries the “memory” of the original state space - the operators.

2. GENETIC ALGORITHMS AND CROSSOVER

2.1 Standard GA
In a standard GA (Holland, 1975) a search problem is represented using two spaces. The first
space, G, is the space of ordered character strings, g = {e1, e2,…,en} (which are called
genotypes). The components of G are drawn from some fixed finite alphabet, A. For
simplicity, we assume that all genotypes have the same length, n. The second space, P, is the
state space of the solutions (designs). Its elements, p (design structures), are phenotypes. Each
genotype corresponds to a unique phenotype but not necessarily vice-versa. We assume that
the mapping between genotype and phenotype, M: M P, is given a priori and is fixed. The
fitness function, F(p), which measures the quality of the phenotype, p, is also fixed. GAs
employ three operations: selection (which carries random sampling of the points from the
current population biased towards high fitness points), the crossover operator (which
generates new genotypes from the sample produced by selection) and mutation which

randomly changes the results of the crossover. These three operations are applied repeatedly
to the current population until the next generation is created, Figure 2.

replace

current generation

next generation

SELECTION

CROSSOVER

MUTATION

Figure 2. The architecture of the standard genetic algorithm
Our plan is to re-interpret the crossover operator as a random sampling of a particular

case of phenotype-phenotype interpolation and then replace it with random sampling of a
more general phenotype-phenotype interpolation and/or extrapolation (Gero and Kazakov,
1999). Except for this replacement and the possible replacement of the genetic mutation with
the phenotype mutation we intend to keep the general structure of GA as shown in Figure 2.

2.2 GA Crossover as random sampling of interpolating points in
genotypic space
For this work the most important computational operation that drives GA search is crossover,
C. In the simplest case it is a binary randomized operation, C(g1, g2) gc, which takes two
genotypes g1 and g2 as parameters and produces a new genotype gc. It can be viewed as a two-

step operation. During the first step 2*(n+1) new genotypes gi(t,g1,g2) are created by cutting
each genotype g1 and g2 into two pieces at point t, and then concatenating the front piece from
one genotype with the rear piece from the other. All the possible cut points (the same points

in both genotypes) are used here. This yields a fixed set of possible new genotypes {gi(t)},
t=0,2*n+1. During the second step of crossover one of these 2*n+2 points is chosen randomly

gc(g1,g2)=random t [0,2*n+1] gi(t,g1,g2).
It can be shown formally that any genotype gi produced during the first step of the

crossover can be written as a result of linear interpolation in G space:
gi(t,g1 g2) = f(t)g1 + (I – f(t))g2 , t = 0, 1,….,n;

 gi(t,g1,g2) = f(t-n-1)g2 + (I – f(t-n-1))g1 t = n+1, 1,….,2*n+1
where I is a unit n-dimensional matrix with all diagonal elements equal to 1 and all other
elements equal to 0, f(t) is the n-dimensional matrix obtained from the unit matrix by setting
all diagonal elements from the t-th to the n-th to zero, f(0) = I and f(1) = O, where O is the n-
dimensional zero matrix. In this form, crossover can be interpreted as an operation which first
generates a discrete set of interpolating points gi(t,g1,g2) between two basic points g1 and g2

and then randomly samples these points.
Note, that this linear matrix interpolation, which corresponds to the standard one-point

crossover, is only one of many possible methods of linear interpolation gi
*(t, g1, g2) between

two genotypes in genotypic space:
gi

*(t, g1, g2) = c1 (t)g1 + c2 (n – t)g2,
where operators c1 (t) and c2 (n – t) obey the condition c1 (0) = I and c1 (n) = O and c2 (0) = I
and c2 (n) = O. The crossover-induced interpolation gi(t,g1,g2) is singled out from many other
possible linear interpolations gi

*(t, g1, g2) by the condition that the generalized Hamming
distance from the interpolating points gi(t,g1,g2) to the basic points g1 and g2 is minimal. The
generalized Hamming distance is defined as the sum of the standard Hamming distances from

gi(t,g1,g2) to the basic points g1 and g2 plus a penalty function (any kind of standard
optimization penalty function will do) for each switch from genetic material of one parent to
the genetic material of another in the genotype of the offspring. Different versions of
crossover can be constructed by choosing different conditions imposed on the interpolation
points.

This interpretation of crossover can be illustrated in the space of genotypes G as the
generation of a discrete set of interpolating points that lie along the “line segment” between
the two basic points g1 and g2 and then randomly sampling these points, Figure 3.

g2

g1

G

gi(1,g1,g2)

gi(2,g1,g2)
gi(3,g1,g2)

Figure 3. Schematic geometric illustration of crossover as a random sampling of a finite set of discrete points
gi(t,g1,g2) that are located along a straight line segment, which connects the basic points g1 and g2 in genetic space
G.

2.3 Genetic-induced phenotypic crossover
We will restrict ourselves to the case where each genotype isomorphically corresponds to a
unique phenotype, the crossover-induced interpolation operation between two genotypes
maps onto a interpolation operation between two corresponding phenotypes p1=M(g1) and
p2=M(g2): pc(t)=fi

c(t,p1,p2), where fi
c(0,p1,p2)=p1 and fi

c(1,p1,p2)=p2. In the general
interpolation case fi

c is a non-linear function (functional) of p1 and p2. This is a discrete
interpolation operation since the interpolation parameter t takes a discrete set of values
0,1,2,..,2*n+1. Geometrically this means that a non-linear transformation M maps a straight
line segment in space G from Figure 3 onto some non-linear trajectory in space P, shown in
bold in Figure 4.

P+

P

P1 P2

Figure 4. The illustration of the crossover-induced interpolation in P and direct interpolation in enlarged space P+.
The enlarged space P+ represents the complete 3-d space P and the set represents the surface in it. The solid line
represents an interpolation between points p1 and p2 in P, whilst the dotted line represents an interpolation in P+

between these points. Two external sections of the solid line with arrows represent crossover-induced
extrapolation. The black circles represent the possible results of applying crossover to phenotypes p1 and p2 , while
the black triangles represent possible results using a more general form of discrete interpolation

2.4 Generalization of phenotypic crossover-induced interpolation
Thus, we have suggested that genetic crossover is equivalent to the application of a particular
form of discrete phenotype-phenotype interpolation pc(t)=fi

c(t,p1,p2) that does not require any
reference to the genotype. This operation can be generalized in one of the following ways.

(1) By replacing discrete range of the interpolation variable t∈[0,1,..,2*n+1] with a
continuous one t∈[0,..,2*n+1]. Geometrically this means that instead of random sampling
of a finite discrete set of point pc(t) (that are shown as black circles in Figure 4) we
randomly sample all the points from the continuous interpolating trajectory that connects
points p1 and p2 (shown as a bold line in Figure 4).

(2) By replacing the particular case of interpolation fi
c(t,p1,p2) with a more general one

fi
c*(t,p1,p2), ie, fi

c*(0,p1,p2)=p1 and fi
c*(t,p1,p2)=p2). Geometrically this means using a

discrete set of points that lie along some trajectory that connects points p1 and p2 rather
than the discrete set of points that lie along the previous trajectory in Figure 4 with the
bold line. For example, this could be the straight line segment shown in Figure 4 with a
dotted line. The new discrete interpolating points here are shown as black triangles.

(3) By extending the range of the interpolating variable t from [0,…,2*n+1] to
[k,k+1,…,0,1,…,n,n+1,…,n+m]. Geometrically this means that we can use additional
discrete points that lie along the continuation of the trajectory shown as black crosses on
the solid line beyond points p1 and p2 in Figure 4. We can also use their combinations; for
example, by replacing crossover-induced interpolation with a more general interpolation
and replacing the discrete range of interpolating variables with continuous one, etc.

 2.4 Limiting enlargement of design state space
Let our phenotypic space (space of designs), P, be represented using some representation R .
We assume that this representation is more general than is required to represent the designs

that belong to P. That is, a much larger super-space of designs +P : + PP can be represented
using the same representation. This means that the representation R implicitly determines the
limiting enlargement of the design state space P. We shall call such representations
generalizable. The existence of the generalizable representation is a necessary condition for
the algorithm that is proposed in this paper to be productive (that is, for it to have an ability to
lead to an enlargement of the design state space). If the representation used by the
computational system is generalizable then the system already contains all the knowledge that
is necessary to enlarge the state space.

Let us give a simple geometric illustration of what has been described above. The
genotypic space G maps onto the phenotypic space P. The representation which supports P is

generalizable, therefore another space P+ (which is a superspace with respect to + PP) can
be constructed which is supported by the same representation. The standard crossover-driven
GA search consists, from this viewpoint, of drawing straight line segments (in metric space
with the distance as the sum of Hamming distances plus the penalty we described earlier)
between trial points in G space. It maps these segments onto the interpolation trajectories in P
space, denoted with the bold line in Figure 4, and then samples points from this trajectory.
The generalized crossover consists of interpolating trial points directly in P+ using trial points
from P as the end points of interpolation. They are shown in Figure 4 with the dotted line.

The expectation is that since these end points belong to the established search space P,
the exploration due to interpolation in the enlarged P+ will not distort the consistency and
viability of the space P too much. The issue here is that the results of interpolation in P+ do
not lie in P, as seen in Figure 4,. Hence, these interpolations have the capacity to produce
designs outside the original state space. The interpolation process expands the state space of
possible designs and is therefore an exploratory process.

2.5 Computational methods for construction of generalized phenotypic
interpolation

Let us briefly discuss how to construct this generalized interpolation. Whilst there are
methods that are specific for a particular class of problems, in the general case, a “brute
force” method has to be used. Here, one a priori defines the class of interpolations, , that can
be used (the class of functions it can include, etc). Then, each time a generalized crossover is

applied an auxiliary search among different interpolations from this pre-defined class of
interpolations is run. Different strategies can be employed here. For example, this can be the
maximizing of the fitness of the offspring, then this search is the maximization with respect to
ϑ ∈ , and a standard crossover operation pc(t)=random t ∈ [0,1] f i

c(t,p1,p2) is replaced with a
generalized crossover

C(p1, p2) =maxϑ ∈ random t ∈ [0,1] F(fi
* (ϑ,t, p1, p2));

or it can be the minimal violation of the set of constraints s(p) in some norm ||…||, and it
becomes

C(p1, p2) =minϑ ∈ random t ∈ [0,1] || s(fi
* (ϑ,t, p1, p2)) ||.

Here fi
* (ϑ,t, p1, p2) is the interpolation ϑ. Again GA can be used as a search engine of this

embedded auxiliary search among different interpolations interpolation ϑ ∈ .

2.6 Interpolation/extrapolation functions for shapes
As an example, we consider phenotypes (design structures) which are 2-d or 3-d shapes.
These designs are represented using an F-representation (Pashko, et al, 1995) as real valued
functions F(x) such that F(x) >0 is inside the object, F(x)=0 is on its boundary and F(x) <0 is
outside the object. Here x is a 2-d or 3-d vector with a defined feasible bounded region D: x
D. This case is especially well suited to illustrate this approach because here phenotypic
interpolation becomes standard function interpolation. Let us consider two phenotypes F1(x)
and F2(x) and the transformation:

Fc(t,x')= t v(x') F1(x') + (1-t)w(x') F2(x')+

t (1-t)[z1(x') F1(x') + z2(x'’) F2(x'’) + z3(x',x'') F1 (x') F2 (x'')+…]

 x'(t,x): D→D,

where t is a scalar which changes from 0 to 1, v(x) and w(x) are non-negative scalar functions
(called modulating functions) of x, z1(x'), z2(x'’), z3(x',x''),… are arbitrary continuous
functions, x'(t,x) is a coordinate transformation which produces a homomorphism from (D, t)
to D for any t ⊂ [0,1] and depends continuously on t, and t (1-t) z(x',x'') is a penalty function.
Usually the mapping x'(t,x) is chosen to provide a correspondence between the positions ij(t)
of similar features (points, line-segments, etc.) in the two shapes: x'(t,ij(0))=ij(t). The mapping
x'(t,x) can be constructed using the algorithm proposed by Fujimura and Makarov (1997).
The only condition which is necessary for this formula to define an interpolation between
F1(x) and F2(x) (that is, Fc(0,x)=F1(x) and Fc(1,x'(1,x))=F2(x)) is the positivity of functions
v(x) and w(x) for all x ⊂ D.

Hence, here the space is determined by the form of transformation Fc(t,x'), the
individual points in this space are defined by their coordinates ϑ={v(x'),w(x'), z1(x'),z2(x'’),..,
x'(t,x)} and the goal is to find such positive functions vc(x) and wc(x) (we shall call them
“crossover modulating functions”) and an arbitrary continuous scalar functions z1

c(x'),
z2

c(x'’), z 3
c(x',x''),… jointly with the transformation xc'(t,x). Such functions must satisfy the

requirement that the interpolation path Fc(t,x) fits the mapping of the genetic interpolation
gc(t) induced by a crossover in genotypic space onto phenotypic space. With such functions,
the GA search can be formulated completely in terms of phenotypic space without any
explicit references to genotypic space (except implicit information built into functions vc(x),
wc(x) and zc(x’,x’’)). Whether or not this can be done (that is, whether or not vc(x), wc(x) and
zc(x’,x’’) exist), or another form of interpolation should to be used, needs to be investigated
for each particular case.

Now, that we have re-interpreted GA crossover first as an interpolation operation in
genotypic space and then in phenotypic space, we are in a position to produce a generalization
of GA crossover which yields an enlargement of the phenotypic space. This enlarged space is
subsequently to be searched. In the next section we will do that and establish when this
generalization will be productive, that is, when it could yield this enlargement.

3. Example of Adaptive Enlargement of a Design State Space
As a vehicle to demonstrate the ideas, we consider the problem of designing the cross-

section of a beam. This is not normally a conceptual design problem, although as Jorn Utzon,
the architect and Ove Arups, the engineers, showed in the design of the support beams for the
concourse/forecourt of the Sydney Opera House there is no reason why it could not be one
(Anon, 1973; Smith, 1984). They designed a beam with a cross-section that varied
sinusoidally along the length of the beam. The structure space consists of cross-sections of the
pre-defined shape with a fixed area, Figure 5. This shape is initially described by 4 parameters
(the width and height of the top and bottom rectangular flange with ranges [1,10] and [1,4]
and the width and height of the rectangular web with ranges [1,4] and [4,10]). The area of the
cross-section is fixed and is set to 500. Scaling the shape guarantees that this area constraint is
satisfied. The problem has a two-component fitness function F which consists of the moment
of inertia I (the second moment of area of a geometric shape of the cross-section) and the
section modulus Z (the moment of inertia divided by the distance from the neutral axis to the
extreme edge of the cross-section) (Cowan, 1988). The moment of inertia is the geometric
property involved in deformation calculations and the section modulus is the geometric
property involved in strength calculations.

Figure 5. The cross-section template which defines the original structure space.

The Pareto-set is used in multicriteria optimization to replace the notion of a single
optimal design when there is only one criterion to design for. The definition of membership of
the Pareto-set is “ a solution for which no other solution exists that is capable of providing a
better performance in one criterion and no worse performance in all other criteria” (Radford
and Gero, 1988). Whilst a number of GA-based methods have been developed for the
generation of the Pareto-set, we use the method implemented by Jun (Jun, 1993).

The standard GA gives the Pareto-set of designs for the problem and is shown in Figure
6. Then the extended GA was initiated, where the crossover is replaced with the minimization
of the direct phenotype-phenotype interpolation, between the points found by the GA in the
original problem’s space. Some of the improved designs (designs 4 and 5) found by this
procedure are shown in Figure 7. They were generated by a “linear” interpolation procedure
with the space-independent modulating functions v(x)=1 and w(x)=1 ∀x:

Fc(t,x)= t v(x) F1(x) + (1-t)w(x) F2(x)

and the two parental shapes were positioned such that the center of inertia of each of them
was located at the coordinate origin. The corresponding interpolating sequence is shown in
Figure 7.

16.8

Z

I

750

700

800

16 17.8

 Figure 6. The Pareto-set for the initial structure space with the corresponding shapes.

Figure 7. The “linear” phenotype-phenotype interpolation

The solutions obtained clearly do not belong to the original structure space. New
structure variables have been introduced that are used to change the possible shape of the
resulting cross-section. These variables were not known at the outset and are only implied in
the interpolating function. The interpolating sequence generated by the “nonlinear”
interpolation (with space-variable modulating functions v(x)=[sin(π|x|/xmax)]

2+0.01,
w(x)=[cos(π|x|/xmax)]

2+0.01, where xmax is the maximal distance from the centre of inertia to
the shape boundary averaged over two parental shapes, |..| denotes Euclidian distance) is
shown in Figure 8. As one would expect it produces greater deviations from the original
structure space and a greater variety of designs. A more “exotic” (seemingly more different
from the original space) design generated by this “nonlinear” process, where extrapolation is
used instead of interpolation, is shown in Figure 9. This design in Figure 9 clearly
demonstrates how the initial, implicit constraints have been relaxed through the use of the
interpolating function.

Interpolating designs

Basic points

1 2 3 4 5 6 7 8

Figure 8. The “non-linear” (with non-constant modulating functions) phenotype-phenotype interpolation.

Figure 9. “Exotic” or increasingly unexpected design

The designs produced by this interpolation/extrapolation process were not only
manifestly different from those produced by standard genetic crossover, they have the
capacity to extend the state space of designs in such a way such that better performances than
previously become possible. This is exemplified in Figure 10 where a number of these new
designs (labelled 4, 5, b, c, d and e) have better Pareto performances than any previously
produced designs. The “exotic” design has a very high level of fitness I=5301 and Z=154 but
it is clear that this is an artificial result and that some constraints were broken during its
generation which are vital for the viability of the design.

Figure 10. The location of the interpolated designs versus Pareto-set of the original design space.

As a further example of how designs produced by a direct phenotype-phenotype
interpolation could differ significantly from the parental designs we show the results of
extrapolation using a circular shaft and the previously used I-shape, Figure 11. The same
space-dependent modulating functions have been used here.

Interpolating designs

Basic points

ba9 c d e f g h

16.8

4

e

d
b

Z

I

5

750

700

800

16 17.8

Figure 11. A tube and an I cross-section as phenotypes with the resulting interpolated cross-section.

We then tried two scenarios of the extended evolution that included periods where these
interpolations occurred. The first scenario was simply a single period during which
generalized interpolation/extrapolation was replaced by the most general type of genetic-
induced crossover. The modulating functions were constructed as polynomials built using
simple trigonometric functions (sin(ϑ|x-x|), cos(ϑ|x-x|). The second scenario includes a short
period (one to three generations) of the generalized interpolation/ extrapolation followed the
stage when phenotypic genetic-induced interpolation is used. The idea was to consider how
different is an extreme exploration in the former scenario from the more moderate in the
latter. It turned out that in our particular example this difference is not significant. This could
be explained by the completeness of the corresponding space of interpolations.

4. Discussion
Evolutionary systems have been successfully applied in designing. Genetic algorithms and
genetic programming have proven to be robust search methods in models of designing that
present themselves as designing by optimization. The standard application of these techniques
is based on the assumption that the state space of possible designs is bounded and fixed. As a
consequence the ability to produce unexpected designs is limited. However, the global
competitiveness of designs often requires that the design finally produced is not simply a
parametric variation of the commencing designs, unless it can be demonstrated that the
parametric variation has dramatically better performance than its progenitors. This brings us
into the realm of nonroutine or creative designing: designing that results in designs that could
not be found in the original state space. In this view of creative designing, the state space of
possible designs has to change. Such behaviour is evident in creative designers, witness the
cross-section of the beams in the concourse/forecourt of the Sydney Opera House.

There is, therefore, a need to produce computational processes that have the capacity to
expand the state space of possible designs. It is always possible to expand such a state space
arbitrarily, but this process fails to ensure that the resulting designs are similar to existing
designs (to allow for continuity of marketing, for example) but sufficiently different to offer
the possibility of changed or improved performance. It is to this need that the process
presented in this paper is addressed.

What we have done is use the existing crossover of standard genetic algorithms and
recast it as interpolation in the space of possible designs using the Hamming distance as the
distance measure. Then we re-represented the genotype through its isomorphic phenotype and
generalized the interpolation. The effect of this was to produce an interpolation trajectory that
no longer necessarily lay inside the space of possible designs defined at the outset in the
problem’s formulation. Thus, the designs produced that lay along that trajectory would be
unexpectedly different to those that lay along the standard genetic algorithm crossover
trajectory. Once this generalization was made it was possible to add extrapolation to the
process to produce designs that were even more different. Extrapolation in terms of standard
genetic algorithm crossover as interpolation has no meaning since the set of possible
interpolations is fixed and extrapolation simply maps onto one member of this existing set.
Which parts of that expanded design space are used is dependent on the
interpolation/extrapolation functions used and the values of the variables used when the

t=0 t=1 t=1.2

t

functions are applied. The range of applicable functions may well be unlimited. Each function
potentially produces a different trajectory outside the original surface and each trajectory
represents potentially different structure variables which are required to describe the resulting
design.

As can be seen from the designs produced in the example, unexpected designs are
produced. These designs are unexpected in the sense that new variables have been introduced
into the representation of those designs, variables that were not in the two designs that formed
the endpoints of the interpolation. Further, these new variables were not explicitly in the
modulating functions either. This adds another approach to the introduction of new variables
into the design space. There has been a number of approaches adopted previously. These
include splitting a single variable into two variables Aelion et al., (1992), importing variables
from other design spaces using combination or analogy, and emerging new features and
reverse engineering new variables to describe them. The approach adopted here distinguishes
itself from these and other approaches in that it opens a range of possible new variables.

This paper can be seen as a generalization of a number of related interpolation
approaches where cross-image interpolation has been used to replace a GA’s crossover
operator(see for example, Ruprecht, 1994 and Graf and Banzhaf, 1995). Our results are more
general because we use a more general type of phenotype-phenotype (cross-object and not
cross-image) interpolation that can be reduced to cross-image interpolation in a particular
case only.

Acknowledgments
This work is supported by a grant from the Australian Research Council (Grant No.
A89700249). Computing resources have been provided by the Key Center of Design
Computing and Cognition.

References
Aelion, V., Cagan, J. and Powers, G. (1992). Input variable expansion - an algorithmic design

generation technique. Research in Engineering Design 4, 101-113.
Anonymous (1973). Sydney Opera House 1973, Land Printers, Sydney.
Bentley, P. (ed.) (1999). Evolutionary Design by Computers, Morgan Kaufmann, San

Francisco.
Brown, D. and Chandrasekaran, B. (1984). Expert systems for a class of mechanical activity,

in J.S. Gero (ed.), Knowledge Engineering in Computer-Aided Design, North-Holland,
Amsterdam, 259-282.

Cagan, J. and Agogino, A. (1987). Innovative design of mechanical structures from first
principles, AIEDAM 1(3), 169-189.

 Cowan, H.J. (ed.) (1988) Encyclopedia of Building Technology, Prentice Hall, Englewood
Cliffs, N.J.

Fujimura, K. and Makarov, M. (1997). Homotopic shape deformation, International
Conference on Shape Modeling and Applications, Aizu-Wakamatsu, 215-225.

Gero, J.S. (1990). Design prototypes: A knowledge representation schema for design, AI
Magazine 11(4), 26-36.

Gero, J.S. and Kazakov, V. (1999). Adapting evolutionary computing for exploration in
creative designing, in J. S. Gero and M. L. Maher (eds), Computational Models of
Creative Design IV, Key Centre of Design Computing and Cognition, University of
Sydney, Sydney, Australia, pp. 175-186.

Gero, J.S. and Maher. M.L. (eds) (1993). Modeling Creativity and Knowledge-Based Creative
Design, Lawrence Erlbaum, New Jersey.

Gero, J.S. and Maher. M.L. (eds) (1998). Computational Models of Creative Design IV, Key
Centre of Design Computing and Cognition, University of Sydney, Sydney.

Graf, J. and Banzhaf, W. (1995). Interactive evolution in civil engineering, in J.S. Gero, M.L.
Maher and F. Sudweeks (eds), Preprints Computational Models of Creative Design, Key
Centre of Design Computing, University of Sydney, Sydney, 303-316.

Holland, J. (1975). Adaptation in Natural and Artificial systems., The University of Michigan
Press, Ann Arbor.

Jo, J.H. (1993). A Computational Design Process Model using a Genetic Evolution
Approach, Ph.D. Thesis, Department of Architectural and Design Science, University of
Sydney.

McLaughlin, S. and Gero, J.S. (1987). Requirements of a reasoning system to support
innovative and creative design activity, Knowledge-Based Systems 2(1), 62-71.

Pashko, A. A., Adzhiev, V.D., Sourin, A. I. and Savchenko, V. V., (1995). Function
representation in geometric modeling: concepts, implementation and applications. The
Visual Computer 11 (8), 429-446.

Radford, A.D. and Gero, J.S. (1988). Design by Optimization, Van Nostrand Reinhold, New
York.

Ruprecht, D. (1994). Geometrische Deformationen als Werkszeug in der graphischen
Datenverarbeitung, Doctoral Dissertation, University of Dortmund, Dortmund, Germany.

Smith, M. P. (1984). Sydney Opera House, Collins, Sydney.
Wolverton, M. and Hayes-Roth, B. (1995). Finding analogues for innovative design, in J.S.

Gero, M.L. Maher and F. Sudweeks (eds), Preprints Computational Models of Creative
Design, Key Centre of Design Computing, University of Sydney, Sydney, 59-84.

This is a copy of the paper Gero, J. S. and Kazakov, V. (2000) Adaptive enlargement of state
spaces in evolutionary designing, AIEDAM 14(1): 31-38.

