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Abstract. This paper presents the development of a computational
process model of Situated Learning in Design (SLiDe). Situated
learning is based on the notion that knowledge is more useful when it
is learned in relation to its immediate and active context, ie its
situation, and less useful when it is learned out of context. The
usefulness of design knowledge is in its operational significance based
upon where it was used and applied. SLiDe elucidates how design
knowledge is learned in relation to its situation, how design
situations are constructed and altered over time in response to changes
taking place in the design environment. SLiDe is implemented within
the domain of architectural shapes in the form of floor plans to capture
the situatedness of shape semantics. SLiDe utilises an incremental
learning clustering mechanism not affected by the concept drift that
makes it capable of constructing various situational categories and
constantly modifying them over time. The paper concludes with a
discussion of the potential benefits of using SLiDe during the
conceptual stages of designing.

1. Introduction

In this paper, “designing” is used to refer to the activities carried out by
designers during the design process and “design” refers to the product as
design artefacts. Designing is an ill-defined problem whereby designers’
actions are not based on performing a complete plan or a program that is
given at the beginning of designing or even a priori. Furthermore, the
result of designing is not based on actions independent of what is being
designed or independent of when, where and how it has been designed.
Design actions are continuously affected by such changes. Designers'
actions are situation dependent, ie situated, such that designers work
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interactively with the design environment within the specific conditions
of the situation (Gedenryd, 1998). During the design process the
relationships between individual design elements change over time based
upon changes of designers’ actions through their interactions with the
design environment that is continuously affected by such changes.

The central idea of situated cognition is that in order to function
efficiently, the brain needs not only the body but also the surrounding
environment. Situatedness in action (Clancey, 1997) holds that "where
you are when you do what you do matters". The implication of this view
is that actions are interrelated to their locus and application. Much of
artificial intelligence had been based on a static world. However, in
designing the world is fluid whereby design elements are generated and
emerged via dynamic and situated activities instead of fixed plans.

In this work we view designing as a situated and dynamic activity.
Thus, situatedness in designing is concerned with locating design
knowledge in its environment or its active context so that the actions
taken are a function of both the situation and the way the situation is
constructed or interpreted. The important characteristic of this view is
the dynamic change in design context while designing whereby the whole
design context constitutes the design environment and for the specific
knowledge in focus the active and immediate part of the context, the
situation, plays a significant role. The work presented in this paper aims
to contribute to the development of the next generation of CAD
systems.

Designing acts and knowledge are composed such that subsequent
experiences categorise of what was experienced before. The
categorisation of design knowledge and actions is based on regularities in
observable phenomena. If there is no regularity then the phenomenon
appears to be fortuitous. The elicitation of these regularities is a form of
learning. The view of situated learning considered in this paper is to find
regularities of interrelationships among design knowledge based upon
where they were used to situate design knowledge within their active
contexts. Hence, each certain piece of knowledge will carry with it
notions of its applicability conditions derived from the situation. Thus,
such regularities form the grounding to situate that knowledge. These
applicability conditions are then modified over time as the regularities of
the interrelationships are either changed or found to appear frequently in
the design environment.

 In this paper, we present the development of a computational
process model of situated learning in design that associates design
knowledge to the situation within which it was used and applied. Section 2
introduces the definition of the “situation” as adopted in this work and
how the situation is constructed. An overview of situated learning about
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architectural shape semantics is presented in Section 3. The process
model’s framework and results within the domain of architectural shape
semantics are discussed in Section 4. The potential benefits of using such
results are addressed in Section 5.

2. Situations and constructing the situatedness of knowledge

A dictionary definition (Merriam-Webster's) of a “situation” is the way
in which something is placed in relation to its surroundings at a certain
moment. The interpretation of this definition in design terms is the
relevant parts of the environment in relation to a specific aim or focus.
These relevant parts are those that interact with the design process and
as a consequence have an effect on it.

We borrow from Barwise and Perry (1983) the idea that a situation is
composed of a collection of entities. Each entity may have a set of
properties associated with it. Furthermore, there is some specified
relation of the entities to one another in the situation supporting the
understanding of the situation in terms of how the entities relate to one
another. The entities of a situation can be any meaningful characteristic
or abstract idea. The relations of a situation are the meaningful
associations among entities that provide structure to the situation. These
include, but are not limited to, spatial and temporal relations. The spatial
temporal location provides the framework for the situation.

Following Barwise and Perry (1983), we make a distinction between at
least two different types of situations: static and dynamic situations. A
static situation is a state of affairs in which the major components of the
situation do not change. It involves the same collection of entities, in the
same relation to one another and continuous spatial temporal location.
In contrast, a dynamic situation is a course of events and composed of a
series of related event frames that are linked through the commonality
among them. To make this distinction clearer, consider the following. A
mail carrier making a phone call in a static situation in which the entities,
their properties and their interrelationships remain the same through the
situation. In contrast, the situation of the mail carrier delivering the mail
in a route is a dynamic situation where different entities such as different
houses, streets, scenes, obstacles, etc. and different relationships are
involved (Radvansky and Zacks, 1997).

The following is a simple analogy for constructing and learning
situations. Imagine that you are reading a particularly engaging whodunnit
where you are trying to solve the mystery before the author hands the
solution to you at the end of the book. One of the basic elements of this
task is to try to construct the circumstances under which the murder took
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place. This may include the location of important objects at the crime
scene, the location of other people at the time of the murder, the
relations of different characters to one another and the victim and other
pieces of information. To make the task more difficult, those aspects of
the crime scene that you are allowed to learn about are revealed at
different points of time and usually not in order of their importance. To
be successful, you must integrate this information to construct the
situation in which the murder took place (Radvansky and Zacks, 1997).

In this work, the role of situated learning in design is to associate
knowledge with its situation by capturing the regularities of relevant
relationships among shape semantics across different observations from
the representations. For instance, a table in an office space environment
and in a dinning space environment whereby the relationships between
this table and other entities in an office space environment are
regularities across observations recognised in that environment. On the
other hand, there is another type of relationships between that table,
however it may be the same object, and other different entities in a
dining space environment. These regularities between relations are not
natural laws neither causal effects, but rather an automatic consequence
of differentiating the relations in the first place. It is these relations that
allow the situated knowledge about a desk table and a dining table to
constructed in relation to situations from the environment where a desk
table or a dining table was used. Within the example, we may make a
clear distinction between what we mean by context and situation. In an
office space environment there are many objects, ie entities, that
surround a desk table, such as drawers, file cabinets, computers, desk lamp,
walls, windows, etc. These objects constitute the whole context of a desk
table. In an open office space environment, wall and windows are not
salient features of the desk table’s surroundings, however the table is still
to be recognised as desk table. So, the situation is only that active,
immediate and specific part of the context to the focus

One of the main characteristics of designing is its dynamic nature.
During the process of designing, both knowledge and situations are not
treated as static, but are invariably subject to change. This is due to the
change in the design environment, which involves searching for
knowledge, structuring and interpretation. Most important, it involves
the construction of knowledge-relationships during this cyclic process and
joining these knowledge-relationships with the previous ones, defining
new knowledge-relationships structures, which may lead to modify
previous situations or create new ones. Once a situation has been
constructed, it can be updated to include new knowledge that is relevant
to the situation. Thus updating includes adding new knowledge that was
not previously available or creating new situations based on the new
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observed knowledge from the environment. The situations represent the
applicability conditions of design knowledge. Design knowledge becomes
situated when its applicability conditions are learned. So what is to be
learned are the applicability conditions of design knowledge.

3. Situated learning vs. context free learning in design

All learning occurs in context (Balsam, 1985) and many practical
learning applications necessitate the use of context in learning (Matwin
and Kubat, 1996). Activity theory (Nardi, 1996) proposed a very
specific notion of the context that makes it related to some extent to
the definition of the situation as adapted in this work. What takes place
in an activity composed of objects, actions and operation is the context.
Context is constituted through the enactment of an activity. Relatively
similar in AI terms context means the general conditions or
circumstances in which an event and action takes place (Akman and
Surav, 1995). Situated learning is not treating knowledge as static, but
rather view categorisation as dynamic processes. What constitutes
knowledge and appropriate criteria must be adjusted with every situation,
otherwise there would be no situation to speak of. In effect, situated
learning calls for the kind of metacognitive approach but the emphasis is
not in learning a fixed strategy or way of organising the world, but
understanding the context in which people are operating and focus down
to design genuinely useful learning tools in the context of use. Situated
learning theory reveals the limitations of computer-human interaction
analysis based on descriptive and stored view of knowledge. Such
assumptions led to use computers for automation and to replace people
and teachers by machines; storing knowledge in the computers and deliver
expert systems to workers and intelligent tutoring systems to students
(Clancey, 1995).

In this work we are not intending to create a tool that simulates or
models human perception, cognition and behaviour abilities but rather
simply aim to make computers more useful to designers, through learning
the situatedness of design knowledge. The main difference between
situated learning and other forms of machine learning in design
approaches is that, instead of a context free generalisation from cases or
examples during knowledge acquisition process, knowledge is generalised
with respect to the situation within which it was used. Machine learning
paradigms are used within a shared view of the role of machine learning in
design: namely that of "learning to perform existing tasks better using
available tools", where the tools themselves are unchanged and learned
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knowledge is either unrelated to its locus or application (Gero, 1996;
Gero, 1999). As for the knowledge being unrelated to its locus or
application makes the learned knowledge context free and universally
applicable. When each of these designers tackles a similar design task it
would be useful if the same tools now had knowledge about what it has
learned and its relation to the situation within which it was learned. The
effect of this would be tools which are increasingly useful to the designer
(Gero, 1996). In order for this to occur and to guide the use of
knowledge, tools would have to learn along with the knowledge concepts
of its situatedness.

Situatedness of learning in design opens a different perspective of
designing and learning that has not been adequately explored. Based upon
the aforementioned terms of situatedness the vast majority of learning
systems in design deal with the environment independently from the
situational conditions, ie context free systems. The situatedness includes
a set of concepts such as the dynamic nature of design knowledge and the
interrelationships between knowledge and its locus and application. There
are some machine learning design systems that are related in ethos to one
of these concepts that is the dynamic nature of learning design
knowledge. Learning incrementally and detecting change in an
environment is important to knowing when it is time to learn.
ECOBWEB (Reich and Fenves, 1992), is a systems that learns synthesis
knowledge and have the ability to track a changing domain. Some other
learning mechanisms that are responsive to changes in the environment
and consider the issue of concept drift are STAGGER (Schlimmer and
Granger, 1986), COBBIT (Kilander and Jansson, 1993) and Widmer
(Widmer and Kubat, 1996). Some of ther learning systems in design that
are somehow related in ethos to situated learning are BRIDGER (Reich,
1993) and PERSPECT (Duffy and Kerr, 1993; Kerr, 1993). BRIDGER
uses an incremental learning scheme for the creation of hierarchical
classification tress and ECOBWEB is a major component of it. It
partially implements the constructive induction mechanism (Reich,
1991) for the incremental concept formation. In constructive induction,
collection of design examples are used by a learning system to produce
sequence of collection of design rules, each representing different
semantics. Within the situated, design knowledge captured is these rules
are unrelated to its locus, ie context free. PERSPECT (Duffy and Kerr,
1993; Kerr, 1993) originally developed to demonstrate and evaluate the
design utility of the customised viewpoints. Recently, Duffy and Duffy
(Duffy and Duffy, 1996) utilised PERSPECT using the concept of
controlled computational learning. PERSPECT is used to discuss the new
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concept of shared learning and the coupling of designing and learning.
PERSPECT is closely related in ethos with the situated learning in design,
but significantly different. PERSPECT attempts to reflect the dynamic
nature of learning in design through the generation of multiple and
dynamic generalisations, to reflect and capture designers changing
interests.

4. Situated learning about shape semantics

Shapes are fundamental to the act of designing in many fields. Through
shapes designers express ideas and represent elements of design, abstract
concepts and construct situations. Shapes denote edges and boundaries of
spaces, building elements or abstract concepts. Hence, their role in
designing is significant. In architectural design, as in many other design
disciplines, shape composition is an important design activity. The
formation and discovery of relationships among parts of a composition
are fundamental tasks in designing (Mitchell and McCullough, 1991;
Kolarevic, 1997). The relationships among shape parts can be of
geometrical or non-geometrical. These relationships are called shape
semantics. An architectural shape semantic is a collection of high-level
information defining a set of characteristics with a semantic meaning
based on a particular view of a shape such as reflective symmetry,
rotation, repetition, or adjacency. Learning the interrelationships among
these shape semantics is of importance in order to comprehend the
architectural composition concepts. The act of designing is intrinsically
dynamic in which design concepts and situations are constantly evolving.
Hence, various relationships among them emerge in different
representations during the design process. As designers draw and see what
they have drawn, they make discoveries. They discover features and
relations that cumulatively generate a fuller understanding of the
configuration with which they are working. Perceptual interpretations are
referred to as moves while the judgements of the consequences and
implications of the move are referred as “seeing”. Different moves of the
designers can yield an understanding of relationships, consequences and
qualities of the design (Schon and Wiggins, 1992). The relationships
between these shape semantics across different representations are the
entities that constitute different design situations to situate these shape
semantics in their environment. For a learning agent to be situated in the
design process it should be to able learn the interrelationships among
design knowledge and actions based on where they were used and be
responsive to the changes that take place in the environment (Reffat and
Gero, 1999).
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5. Framework for situated learning in design

In this section, we describe the framework of a computational process
model for situated learning in design called SLiDe. The role of SLiDe is
to locate design knowledge, in the form of shape semantics, to its design
situation by capturing the regularities of relevant relationships among the
shape semantics across different representations, ie. learning the
applicability conditions of design knowledge.  SLiDe's framework consists
of four modules: Generator, Recogniser, Situator and Situation Analyser
as shown in Figure 1. The Generator module assists the designer to
generate multiple representations of a single shape, in the form of floor
plan. These representations can serve as a platform and form the
environment for the Recogniser module to interact with and establish its
own set of observations from the environment for the Situator module to
learn from. The Recogniser module detects each representation and
attributes shape semantics to it. The results of using the Recogniser
module are a set of observations, each of which comprises a group of
shape semantics associated with each corresponding representation within
which they were used. The regularities of relationships among shape
semantics at different observations, are the triggers for the Situator
module to construct situational categories for these shape semantics. The
situational categories are clustered based on the regularities of
relationships among shape semantics based upon where they were used.
The reason of calling them situational categories rather than normal
categories or clusters as been used in machine learning is that knowledge
is generalised with respect to the situation within which it was used.
Updating what has been learned can be in the form of adding new
knowledge that is relevant to a learned situation that was not previously
available or constructing new situations. The results of SLiDe are sets of
situational categories that situate the shape semantics. The following
subsections present these four modules and their outcomes in more detail.

5.1 GENERATING MULTIPLE REPRESENTATIONS OF SHAPE

Multiple representations of design through re-interpretation are proposed
as a platform for SLiDe. Multiple representations provide the
opportunity for different shape semantics and relationships among them
to be found from the image of a single object. This is important if these
relationships are to be used later since it is not known in advance which
of the possible relationships that could be formed are likely to be useful.
Hence, multiple representations provide a platform for different
situations to be encountered.
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Figure 1. The overall architecture of the computational model of a system for situated
learning in design

It appears that humans have no difficulty in using different
representations for what is apparently the same object in order to
achieve different goals. This fits well with the no-function-in–structure
principle. The emergence of patterns in the re-interpretations of designs
makes some shape semantics explicitly available for recognition. This
contributes to making changes in what is available in a design
environment by recognising shape semantics that were not explicitly
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recognisable in the previous representations. An example of how a design
object, square, can be seen and represented in many different ways is
shown in Figure 2. A square can be represented as a set of four points; a
set of four lines segments; a set of four infinite lines; and the perimeter
of a given area or a region defined by four half planes. Different
relationships might appear from these different representations. Some of
the possible representations of an external representation of the square in
Figure 2(a) are shown in Figure 2(b). Each of which is suitable for one or
more application. The notion of multiple representations of a single
object maps on the notion of a fluid world whereas most existing AI-
based design systems view the world from a fixed viewpoint.

Figure 2  Some of the possible representations of a square

The Generator module handles the generation of different
representations from what appears as a single object. The process model
of the Generator module is shown in Figure 3.  The Generator module
commences with an initial representation of a shape in the form of line
segments. It re-represents these line segments in the form of their
infinite maximal lines. This module then requests the designer to select a
shape of interest from among the intersections of infinite maximal lines.
The Generator searches the design space for any shapes corresponding to
the selected shape and generates a representation from the combination
of corresponding shape and the boundary of the initial representation. If
there are no corresponding shapes in the design space the designer is
requested to have another selection. The Generator does not allow for
overlapping shapes while searching for corresponding shapes.  An
example of generating multiple representations from a single shape
representation using the Generator module is shown in Figure 4. The
design description for the architectural plan of a library designed by Louis

(a)

(b)
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Khan in New Hampshire (Clark and Pause, 1994) is shown in Figure 4(a).
An initial representation of the architectural plan in the form of line
segments is presented in Figure 4(b). The infinite maximal line method is
used to re-represent the initial representation of the library, Figure 4(c).
The results of using the Generator module to produce different
representations from the initial representation are shown from Figures
4(d) to 4(l). This set of representations form the design environment for
the Recogniser module to interact with and learn from. The Generator
module is implemented using AutoCAD as the graphic interface.

Figure 3.  Process model of the Generator module

5.2 RECOGNITION OF SHAPE SEMANTICS

In this research, a drawing or part of it represents the design space.
Within this design space various design qualities can be recognised or
found. Since our interest here is in shape composition, the design qualities
of interest within the design space are shape semantics. Shape semantics
are visual patterns of relations among parts of the represented shape.
Shape semantics have many characteristics; one of which is that they
encapsulate design knowledge that appears in design artefacts and are
among design knowledge that tend to be fundamental to aesthetic design.
Shape semantics are recognised in terms of similarity of spatial
relationships as well as physical properties. The Recogniser module uses a
computable structural shape pattern representation that focuses on shape
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relationships as well as physical properties (Cha and Gero, 1998). The
Recogniser module provides the capability to recognise shape semantics
from the multiple representations produced using the Generator module.

Shape semantics recognition starts from identification of shape
congruency. Congruent shapes have the same structure of elements in
terms of topology and geometry. If two shapes have the same number of
infinite maximal lines, number of intersections, geometrical properties of
infinite maximal lines and dimensional constraints of segments on each
infinite maximal line, then these two shapes are congruent (Gero and Jun,
1995). This is to say that shapes are considered congruent if and only if
structural properties of one shape are equivalent to structural properties
of another shape in terms of topology and geometry. Shapes are
represented as bounded polyline shapes. A bounded polyline shape is an
enclosed polyline shape, for any point on the boundary of which there
exists at least one circuit composed of line segments which starts from
and ends at that point without covering any line segment more than
once.

Shape semantics appear in architectural works. Some examples of
shape semantics are reflective symmetry, repetition, adjacency, simple
and cyclic rotations. Each shape semantic has preconditions without
which it will not be recognised in a design space. For instance, the
preconditions of reflective symmetry between two shapes are that they
must be congruent and that certain geometric conditions are met by the
midpoints of the lines joining corresponding vertices. The Recogniser
module detects the shape semantics at each representation and produces
an observation for each corresponding representation. Table 1 shows the
set of observations (On) produced by the Recogniser module from the set
of representations shown in Figure 4. In Table 1 Sm, Pr, Ad, Rc, Sr and Rt

refer to reflective symmetry around multiple axes, repetition, adjacency,
cyclic rotation, reflective symmetry and rotation respectively.

5.3  LOCATING SHAPE SEMANTICS WITHIN THEIR SITUATIONS

The Recogniser module finds each shape semantic when all of its
preconditions are met but this says nothing about in which situation each
shape semantic functions and operates. Each shape semantic has some
relationships with other shape semantics that determine its applicability
within the situation. The applicability conditions of shape semantics are
the situated knowledge to be learned through the interrelationship
between shape semantics within their environment. So, what is to be
learned here is within which situation does each shape semantic operate.
The Situator module locates the shape semantics within their situations
by finding the regularities of relationships among them across the
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observations. These regularities are arranged in terms of categories and
since these categories reflect the relationships and dependencies among
shape semantics based upon where they were used they are called
situational categories.

Figure 4.  Some of possible representations developed using the Generator module: (a)
design description of a library designed by Louis Khan, (b) an initial representation of

the design description in the form of line segments, (c) infinite maximal line
representation of the initial representation and from (d) to (l) a group of possible

representations generated from the infinite maximal line representation.

(a)

(b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)
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Table 1. A set of observations produced using the Recogniser module to detect shape
semantics available in the generated representations shown in Figure 4; Sm, Pr, Ad, Rc, Sr

and Rt refer to reflective symmetry around multiple axes, repetition, adjacency, cyclic
rotation, reflective symmetry and rotation respectively

Representation

No.

Corresponding Observation
(On)

(d) O1 Sm , Pr , Ad , Rc

(e) O2 Sm , Pr , Ad , Rc

(f) O3 Sm , Pr , Ad , Rc

(g) O4 Sr , Ad

(h) O5 Sm , Pr , Ad , Rc

(i) O6 Sm , Pr , Ad , Rc

(j) O7 Ad , Rt

(k) O8 Sr , Ad

(l) O9 Sr , Ad

Within the situated view of designing, relationships and dependencies
change over time whenever changes take place in the environment.
Concept drift occurs when the environment changes. Concept drift
implies that the clustering changes during the period of learning. The
conditional probabilities reflected by the new observations change too
and are no longer accurately represented by the categories in context-free
machine learning systems. So the task of both the Situator and Situation
Analyser modules can be defined as follows:

Initial input:
Given: • a set of observations produced from multiple representations

of an architectural plan, where each observation is comprised
of a group of shape semantics recognised from a single
representation

Find:  • clusterings that group these shape semantics across the
observations into situational categories

• a summary description of each category that summarises its
observations.

• a hierarchical organisation for those situational categories

Further Inputs:
Given: • a new set of observations produced from other

representations of the same architectural plan, where each
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observation is comprised of a group of shape semantics
recognised from a single representation

Find:   • reconstruct the learned clusterings to include the new
observations within existing or new categories

• a summary description of each category that summarises its
observations.

• update the hierarchical organisation of situational categories

To handle this task an incremental clustering mechanism that uses a
nominal description of knowledge is needed. The role of this incremental
clustering mechanism is to categorise observations, provide a description
for each category, organise these categories hierarchically and most
importantly not be affected by the order of observations as it deals with
environments that change over time. This means that the learned
categories are to be modified in response to the changes in the
environment. In this task neither what is learned nor the environment
that SLiDe interacts with are fixed. Both change over time as a reflection
of the notion of situatedness.

The Situator and Situation Analyser modules in SLiDe model can be
implemented using the modified unsupervised incremental clustering
mechanism in COBBIT (Kilander and Jansson, 1993). The main reason
for selecting COBBIT is that its focus on concept drift as well as its
combination with COBWEB (Fisher, 1987) employ a unique clustering
mechanism that fits the criteria of the task at hand. Overviews of
clustering mechanisms as well as the unsupervised incremental clustering
mechanism in COBWEB and COBBIT’s modifications to it and the
results of using COBBIT within the Situator and Situation Analyser
modules are briefly presented in the following subsections.

5.3.1 An overview of clustering mechanisms
Clustering mechanisms automatically discover categories of observations
that are similar along one or more dimensions. Once uncovered, these
categories might suggest features that characterise observed knowledge.
Ideally, clustering organises a space of observations in a way that
facilitates more efficient problem solving. An observation might be a
device specification that is matched against similar specifications; design
decisions that were appropriate in previous cases that can be exploited as
starting points for a new design.

It is not intended here to compare between different clustering
mechanisms as that can be found elsewhere (Fisher and Schlimmer, 1988;
Gennari et al, 1989; Fisher et al, 1993; Iba and Langley, 1999; Langley,
1999).  The purpose of this overview is to investigate different clustering
mechanism and select the mechanism that best meets the criteria of the
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task at hand. Clustering has long been studied in numerical taxonomy,
where observations are grouped and segregated based on numeric measures
of similarity and dissimilarity. In many cases, though particularly in AI
applications, symbolic and nominal data are abundant. Early work in
conceptual clustering produced the Cluster system (Michalski and Stepp,
1983), which does not form classes based on similarity between
observations, but seeks a partition whose categories are best described
conjunctively, with a limited form of disjunction allowed. Each
conjunction specifies attribute values that are true for all members of the
corresponding cluster. In contrast to Cluster’s conjunctive
representation, COBWEB (Fisher, 1987) forms classes that may be best
represented probabilistically, described by probability distributions of the
attribute values exhibited by their members. Like Cluster, COBWEB
associates interpretations with clusters, but their probabilistic
representations are more relaxed than those of Cluster’s conjunctive
scheme. COBWEB is an incremental unsupervised clustering mechanism.
Like COBWEB, the Autoclass system (Cheeseman and Stutz, 1995) is a
clustering method that represents clusters probabilistically. It differs from
COBWEB in that it takes a Bayesian position in the classification and
incorporates a probabilistic variant of the non-incremental algorithm
known as expectation maximisation (Iba and Langley, 1999). COBBIT
(Kilander and Jansson, 1993) is a variant on COBWEB designed
explicitly to deal with environments that change over time and its
clustering structures are not dependent on the order of the observations.

5.3.2 Unsupervised incremental clustering mechanism in COBWEB
Unsupervised learning means that observations are clustered in categories
without advice from a teacher. In other words, the learning mechanism
includes not only deciding which observations each category should
contain, but also the number of such categories. The learning
implemented in COBWEB uses an incremental hill-climbing learner.
Incremental hill-climbing searches an n-dimensional space over which
some function f is defined. This function determines the shape of the n-
dimensional surface and the agent attempts to find that point with the
highest f score. New observations modify the contours of the surface.
The hills and valleys of the incremental hill-climbing learner’s space are
constantly changing as it gets more new knowledge.

COBWEB uses a slightly generalised version of Gluck and Corter’s
category utility (Gluck and Corter, 1985) as an evaluation function to
control its classification and learning behaviour. Category utility favours
clustering that maximise the potential of inferring information. In doing
this, it attempts to maximise intra-class similarity, predictability, and
inter-class differences, predictiveness, and it also provides a principled
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tradeoff between both of them. For any set of observations, any
attribute-value pair, Ai = Vij, and any class Ck, one can compute P (AI =
Vij|Ck), the conditional probability of the value given membership in the
class, or its predictability. One also can compute P (Ck|Ai = Vij), the
conditional probability of membership in the class given this value, or its
predictiveness. The category utility is defined as the increase in the
expected number of attribute values that can be correctly guessed, given a
set of n categories, over the expected number of correct guesses without
such knowledge. The complete expression for category utility is as shown
in expression (1) (Fisher, 1987).

The ability to achieve high quality descriptions for categories, despite
the limitations of hill-climbing such as the tendency to halt at local
optima and dependence on step size, is maintained by extending the set
of available operators. Rather than restricting search to be unidirectional,
both generalisation and specialisation operators are supplied.
Bidirectional mobility allows such an incremental system to recover from
a bad learning path. COBWEB can invoke four operators to alter the
structure of its clustering’s hierarchy. As illustrated in Figure 5, these
include (Iba and Langely, 1999):

a. extending downward, which occurs when a training set (set of
observations) reaches a terminal node in memory

b. creating a disjunct, creates a new child based on this recent set,
which occurs if the training set is sufficiently different from all
the children of a node

c. merging two categories, which occurs if a set is similar enough to
two children of a node

d. splitting a category, which occurs when a child of a node no longer
serves as a useful category.

COBWEB considers the last three of these actions at each level of the
hierarchy, as it sorts the new training observation downward through
memory.

5.3.3 COBBIT’s modification to COBWEB
COBWEB is designed to work under a condition of clustering constancy
that does not distinguish between new and old observations, requiring new
features to replace previous ones by quantity, just as most other machine
learning systems. When COBWEB is incrementally and sequentially
exposed to the extensions of a set of clusters, it retains all observations,

n                                      

                   VAP - C|VAPCP ij  i  

ji

kij  i  

ji

k

n

1k

(1))( )( )( 22
==

=
�����



18 RABEE M. REFFAT AND JOHN S. GERO

disregards the age of a category and may create different categorical
structures dependent on the order of the observations. These three
characteristics make COBWEB sensitive to the effects of concept drift.
COBBIT (Kilander and Jansson, 1993) is a variant on COBWEB designed
explicitly to overcome these limitations. It deals with environments that
change over time and its clustering structures are not dependent on the
order of the observations.

Figure 5. Learning operators used to modify the structure of a hierarchy of probabilistic
clustering:  (a) extending the hierarchy downward; (b) creating disjunct at an existing
level; (c) merging two existing classes; and (d) splitting an existing category. Newly

created nodes are shown in grey (Iba and Langely, 1999)

After a basic hierarchy is established in COBWEB, further input either
confirms what is already learned or one of the following two cases: a new
observation that adds knowledge, because there is still more to learn or a
new observation that replaces old knowledge, because the domain is
evolving. COBBIT’s modification to COBWEB resides in the control
system, the way learning, predictive performance and training are
combined to form a complete system. COBBIT equipped COBWEB with
the dynamic deletion of old observations using a queue of observations
and continuous monitoring of performance. The COBWEB standard
control loop (read-learn) has been extended in COBBIT to be (read-
evaluate-learn-trim) in which control parameters of the upper and lower
bounds on the number of elements in the queue at any time, update time,
are set by the user. A continuous monitoring of performance algorithm is
implemented by having a queue of training observations and dynamically
altering the size of the queue depending on its performance. As each
observation is presented to COBBIT, it attempts to predict each and
every attribute that has a known value. The percentage of correctly
predicted attributes is an output of the current performance index. The
trend of this index allows for corrective action as soon as a drop in the
performance is observed. The performance index is used to determine the
size of the queue. This behaviour is intended to remove old observations
with low performance index from the hierarchy. Also, by using the queue

(b)

(c) (d)
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mechanism and the subtraction of low performance index observations,
ordering effects in the category hierarchies are only applicable to the
training observations in the queue since COBBIT does not alter the input
ordering in any way. In COBBIT, categories are continuously influenced
by recent observations to confirm (reinforce) or degrade (decay) learned
categories or create new ones.

5.3.4 Results of using the Situator module
The Situator module employs COBBIT as its unsupervised clustering
mechanism to search for the regularities in the observations and
categorise them in the form of situational categories C s. The results of
using the Situator module are shown in Figure 6.  The graph shown in
Figure 6 is one of the automated forms produced by the Situator module
representing the hierarchical structure of situational categories. Each
situational category is associated with a summary description that
summarises its observations.

In Figure 6, the situational category C s2 represents the regularity
across the observations of relationships among shape semantics Sm, Pr, Ad

and Rc. Within this regularity if the current knowledge goal is Sm,
reflective symmetry, then the other parts of the regularity Pr, Ad and Rc

construct the situation within which Sm operates and functions. So, Sm is
situated within these shape semantics. On the other hand, if Rc is the
knowledge in focus, then the other parts of the regularity Sm, Ad and Pr

construct the situation within which Rc operates and functions. This is a
duality between parts of the regularity, ie duality between knowledge and
situation as shown in Figure 7.

Figure 6. Two situational categories learned by the Situator module from the set
observations produced by the Recogniser module and shown in Table 1

Cs1

Cs2
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Figure 7. The duality between knowledge and situation within the situational category
Cs2

5.3.5 Results of using the Situation Analyser module
The Situation Analyser is triggered to update the learned situational
categories whenever the Recogniser module detects any new observations
from the design environment. The Situation Analyser facilitates the
incremental clustering mechanism in COBBIT to update what has been
learned. For instance, if a new set of two observations is experienced in
SLiDe, The Situation Analyser will analyse the learned knowledge taking
into account the new observations and try either to fit them within the
existing categories or create new categories or sub categories to
accommodate them. Figure 8 shows the learning results produced by the
Situation Analyser module after a new set of observations. It created a
new category Cs3 that categorised both of the two new observations in
one new situational category based upon the regularities of relationships
among shape semantics available on them and the their distinctive
features from the situational category that were learned previously.
When the Situation Analyser is exposed to another new set of
observations consisting of four observations, it restructured its learned
knowledge as can be seen in Figure 9 where two new subsets of the
previously learned situational categories Cs2(a) and Cs3(a) emerge. The
restructuring of situational categories in Figure 8 can be seen as a mere
adding of a new situational category to the existing ones. On the other
hand, as can seen in Figure 9 there is an overall restructuring that has
included the additional observations and accommodated them in the form
of subcategories within the previously learned situational categories.

Sm Ad

PrRc

Focus
Situation

Duality

Sm Pr

Ad

Rc

Focus

Situation

Situation

f1
t1
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Figure 8. A newly created situational category (Cs3) by the Situation Analyser in
response to an additional set of observations

Figure 9. An overall restructuring whereby two sub-situational categories (Cs2(a) and

Cs3(a)) are emerged in response to the most recent additional set of observations

Cs3

Cs3(a)

Cs2(a)
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5. Discussion:

Current CAD systems can only be used at the latter stages of the design
process after most of the major design decisions have been made. At the
same time they are passive systems in the sense that they do not modify
their behaviours in response to the changes in the design environment.
The ability to bring CAD systems into the early stages of designing and
to provide useful designing support at the conceptual stages is important
in design computing. Such support creates the opportunity for CAD
systems to provide designers with useful and applicable design knowledge
during the generation of design concepts. The usefulness and applicability
of such knowledge is based on its operational significance and
applicability to the situation at hand.

We have developed a computational model for situated learning in
design (SLiDe). SLiDe is a system that locates design knowledge in
relation to its situation based upon where it was used and applied. It
modifies its behaviour as its situation from the design environment
changes. SLiDe is an active system that responds to dynamic changes in
its environment. It selects appropriate actions as a response to its
immediate situation through recognising various contexts to which it is
potentially situated. SLiDe structures its encountered situations and
classifies them into situational categories in a hierarchical manner.

Developing a computational model of situated learning in design to
produce these kinds of situational categories provides opportunities to
assist designers during the conceptual design process. One way is to
integrate SLiDe with current CAD systems such as AutoCAD to make it
easier for designers to conceptualise and explore their designs beyond the
mere drafting of them as AutoCAD is currently used. SLiDe helps to
explore shapes of designed elements drawn in AutoCAD and allows the
designer to have varieties of representations of what he/she has designed
that may lead the designer to a different move. These different
representations of the same design help to arouse the designer’s attention
to potentially hidden visual features of his/her design elements. This can
be called, enhancing the perceptual interaction with design elements.
Further, SLiDe can excite designer’s attention to a set of shape semantics
available in his/her current design by highlighting a particular set of design
elements that reflect those semantics that the designer might have
indicated attracted him/her. Designers tend to lose track of what attracted
them earlier as they proceed and make changes in their designs. SLiDe,
having stored the designer’s interest as the focus can dynamically change
the association between design elements during the design process by
maintaining the situation of the designer’s focus. So, whenever the
designer made changes in the design after indicating the semantics of
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interest, SLiDe can change all the interrelated design elements to
maintain the focus by maintaining the relationships that define the
situation of that focus. Using SLiDe to provide such a features in current
CAD systems can potentially help to support designers in designing as
well as drafting and at the same time will change the nature of current
CAD systems from passive systems to active support design systems.
Such systems learn in a situated approach and apply what has been
learned based on the situations they encounter.
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