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Abstract

We present a novel approach to the computational study of creativity, called artificial
creativity. Artificial creativity promotes the study of the creative behaviour of individuals
and societies in artificial societies of agents. It is similar to the approach to that taken by
Artificial Life researchers involved in developing computational models. We present a
framework for developing artificial creativity systems as an adaptation of Liu’s dual
generate-and-test model of creativity. An example implementation of an artificial
creativity system is presented to illustrate the potential benefits of our new approach as a
way of investigating the emergent nature of creativity in societies of communicating
agents. Finally, we discuss some future research directions that are possible by extending
the abilities of individuals and studying the emergent behaviour of societies.

1. INTRODUCTION

The aim of artificial creativity is to gain a better understanding of creativity-as-it-is in
the context of creativity-as-it-could-be. In other words, it is the comparative study of
creativity as it is found in human societies against creativity as it may be found in
artificial societies of agents that may follow quite different social conventions. In this
way, the study of artificial creativity is similar to the study Artificial Life; both are
synthetic approaches to understanding a complex, and ill-defined behavioural
phenomenon, i.e. creativity and life respectively.

The artificial creativity approach provides an opportunity for researchers to study
the emergence of creative behaviour in controllable environments, affording a number
of possible studies not possible in the real world. The parameters that control the
behaviour of individuals can be experimented with to study the affect that they have
on the emergence of social structures. In addition, the environment that the society of
agents is situated in, e.g. economic conventions, can be adjusted to study the affects
that external factors have on the creativity of individuals and societies.

As with Artificial Life, one of the most interesting possibilities of artificial
creativity is to be able to re-run history with different starting conditions to find out
how products of creative individuals and the structures of creative societies might
have differed. For example, by re-running an artificial creativity simulation with
different communication policies we can simulate the affect that different
communication technologies might have on the development and dissemination of
creative ideas.

Artificial creativity is compatible with previous approaches to studying creativity
that have developed computational models of creative thinking by allowing them to



be deployed within the context of artificial societies as long as they can be embedded
within agents that conform to the requirements of artificial creativity. The study of the
behaviour of creative thinking within artificial societies provides the opportunity to
develop a better understanding of the situatedness of creative processes within socio-
cultural situations. As Simon (1981) notes, much of the complexity of human
behaviour may come from the complex nature of the environment that they interact
with.

The following section provides some background regarding the study of creativity
that has lead to the development of the artificial creativity approach described in
Section 3. In Section 4, a framework for artificial creativity systems is developed by
adapting Liu’s dual generate-and-test model. Section 5 presents an example
implementation of an artificial creativity system that has been used to computationally
investigate some of the predictions made by Martindale (1990) regarding the nature of
creativity in societies that value novelty. The results of these experiments are given in
Section 6. Finally, Section 7 discusses some future directions for research using
artificial creativity systems.

2. CREATIVITY

The need to define the nature of creativity has haunted attempts to develop theories of
the processes involved in creative thinking. The difficulty of this task is apparent from
the number of definitions that can be found in the literature: Taylor (1988), for
example, gives some 50 definitions. Expressed in the definitions of creativity are
some widely different opinions about what it means for a person to be creative. From
reading the literature, it seems that no agreement may be reached on details of the
creative process; however, the definitions provided can be divided into two broad
categories.

Firstly, there are definitions of creativity that emphasise creative thinking and
promote the view that creativity can be studied solely as a mental phenomenon. These
definitions have been a popular in various approaches to studying creativity that deal
with individuals, for example, in psychology, cognitive science and artificial
intelligence. The models of creativity proposed by Koestler (1964), Newell et al.
(1962), and Hofstadter (1979) go into great detail about the cognitive processes
involved in creative thinking, particularly the processes involved in the generation of
potentially creative ideas. Many of the computational models of creativity are either
based directly on these models (e.g. Langley et al., 1987; Hofstadter et al., 1995) or
are based on similar models of creative thinking from psychology (e.g. Partridge and
Rowe, 1994).

Definitions of creativity in the second category recognise that creativity goes
beyond the generation of novel ideas and that society, as the audience of the creative
individual, plays an important role in defining what is creative. Creativity is therefore
defined with a strong honorific sense that is as much the result of an audience’s
appreciation of a work as it is the creator’s production. Proponents of these definitions
contend that creativity cannot occur in a vacuum and must be studied in the context of
the socio-cultural environment of the creator (Csikszentmihalyi, 1988; 1999). This
definition has been popular in fields that consider the creativity of multiple
individuals over extended periods of time, for example, in history, sociology and
anthropology (e.g. Martindale, 1990).

Some researchers have attempted to combine these two views of creativity into
unified theoretical frameworks. However, the resulting frameworks often maintain the



distinction between personal and socio-cultural notions of creativity, as in Boden’s P-
creativity and H-creativity (Boden, 1990) and Gardner’s small-c and big-c creativity
(Gardner, 1993).

2.1.1.A Systems View of Creativity

When Csikszentmihalyi developed his systems view of creativity, he turned his
attention away from the question “What is creativity?” and focussed upon the issues
surrounding the question “Where is creativity?” Importantly, Csikszentmihalyi
questioned the mentalistic assumption that creative processes are only to be found in
the mind of the creative individual. Instead he proposed that processes essential to
creativity, whether personal or socio-culturally defined, are to be found in the
interactions between individuals and the society that they are situated within.

The systems view of creativity was developed by Csikszentmihalyi as a model of
the dynamic behaviour of creative systems that include interactions between the major
components of a creative society (Csikszentmihalyi, 1988). Csikszentmihalyi
identified three important components of a creative system; firstly there is the
individual, secondly there is a cultural, or symbolic, component called the domain,
and thirdly there is a social, or interactive, component called the field. A map of the
systems view of creativity is presented in Figure 1.
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Figure 1: Csikszentmihalyi’s systems view of creativity (after Csikszentmihalyi, 1999).

An individual’s role in the systems view is to bring about some transformation of
the knowledge held in the domain. The field is a set of social institutions that selects
from the variations produced by individuals those that are worth preserving. The
domain is a repository of knowledge held by the culture that preserves ideas or forms
selected by the field.

In a typical cycle, an individual takes some information provided by the culture
and transforms it, if the transformation is deemed valuable by society, it will be
included in the domain of knowledge held by the culture, thus providing a new
starting point for the next cycle of transformation and evaluation. In
Csikszentmihalyi’s view, creativity is not to be found in any one of these elements,
but in the interactions between them.



2.1.2.Liu’s Dual Generate-and-Test Model of Creativity

Recognising the need for a unified model of creativity in design computing, Liu
(2000) presented a synthesis of the personal and socio-cultural views of creativity in a
single model. Liu realised that the existing models of personal creativity
complemented the socio-cultural models by providing details about the inner
workings of the creative individual missing from the models of the larger creative
system.

Liu proposed a dual generate-and-test model of creativity as a synthesis of Simon
et al’s model of creative thinking and Csikszentmihalyi’s systems view. As its name
suggests, the dual generate-and-test model of creativity encapsulates two generate-
and-test loops: one at the level of the individual and the other at the level of society.
The generate-and-test loop at the individual level, illustrated in Figure 2(a), provides a
model of creative thinking, incorporating problem finding, solution generation and
creativity evaluation. The socio-cultural generate-and-test loop, illustrated in Figure
2(b), models the interactions among the elements of Csikszentmihalyi’s systems view
of creativity; in particular, it captures the role that the field plays as a socio-cultural
creativity test. The combined dual generate-and-test model of creativity is illustrated
in Figure 2(c).
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Figure 2: Liu's Dual Generate-and-Test Model of Creative Design: (a) the personal generate-and-test
model, (b) the socio-cultural generate-and-test model, (c) the combined dual generate-and-test model.

Liu’s model unifies Simon et al’s and Csikszentmihalyi’s models of creativity to
form a computational model of creativity that shows how personal and socio-cultural
views of creativity can be modelled in a single system. Compared to Boden’s model
of creativity, the dual generate-and-test model of creativity models both the P-
creativity and H-creativity of individuals using the generate-and-test loops at different
levels. Using the language of Gardner we may say that what distinguishes small-c
creativity from big-c creativity is that big-c creativity affects changes to the domain
whereas small-c creativity does not.

Liu’s dual generate-and-test model shows that it is possible to cast
Csikszentmihalyi’s systems model in computational terms and thereby provides us
with a useful basis for a framework for developing models of artificial creativity.



Before developing Liu’s model further, we will examine some requirements of a
computational model of artificial creativity.

3. ARTIFICIAL CREATIVITY

The artificial creativity approach that we propose here is based on Langton’s approach
to developing computational models of Artificial Life (Langton, 1989). The essential
requirements of a computational model of Artificial Creativity are:

• The model contains a society of agents situated in a cultural environment.
• There is no agent that can direct the behaviour of all of the other agents.
• There are no rules in the agents or the environment that dictate global

behaviour.
• Agents interact with other agents to exchange artefacts and evaluations.
• Agents interact with the environment to access cultural symbols.
• Agents evaluate the creativity of artefacts and other agents.

Many of the requirements of a computational model of artificial creativity are
similar to the requirements of a computational model of Artificial Life. Although
some of the details are different, both types of models consist of a population of
agents, and both require that there are no rules or agents that can dictate global
behaviour.

The additional requirement of artificial creativity not found in the requirements of
Artificial Life is that the agents in an artificial creativity model must be able to make
independent evaluative judgements about the creativity of agents and products in
order to implement the personal and socio-cultural creativity tests found in Liu’s
model.

To illustrate the approach, consider how one would model a society of artists.
First, we would define a repertoire of behaviours for different artistic agents and
create lots of these agents. We would then start a simulation run by specifying some
initial social configuration of the agents within a simulated cultural environment.
From this point onwards the behaviour of the system would depend entirely on the
interactions between different agents and the interactions between the agents and their
cultural environment. Importantly, there would be no single agent that could enforce a
definition of creativity by controlling the behaviour of all of the other agents. In
addition, there would be no rules in the agents or in the environment that would define
a global definition of creativity. The notions of whom and what are creative held by
the society would emerge from the multiple notions of creativity held by the
individual agents.

3.1. The Importance of Emergence

The requirements of artificial creativity have been designed to model the emergence
of phenomena in societies of agents consistent with creativity in human society.
Emergence is an important feature of artificial creativity systems, where phenomena
at a certain level arise from interactions at lower levels.

In physical systems, temperature and pressure are examples of emergent
phenomena. Temperature and pressure are emergent properties of large ensembles of
molecules and are due to interactions at the molecular level. An individual molecule
possesses neither temperature nor pressure; they are properties that only emerge when



many molecules are brought together. In Artificial Life, the stable patterns in cellular
automata, and the flocking behaviour of simulated birds are examples of emergent
phenomena.

In artificial creativity, the socio-cultural evaluations of whom and what are
creative are emergent phenomena; no individual can dictate the collective evaluations
of whom and what are creative, they can only try to influence other individuals by
exposing them to their products and their personal evaluations. The emergence of
macro-level creativity from the interactions of individuals at the micro-level is
illustrated in Figure 3.

Figure 3: A behaviour-based approach to the study emergence of creative behaviour at the level of
society by modelling the behaviour of individuals (after Langton, 1989).

In Boden’s terms we might be tempted to say that H-creativity is emergent
whereas P-creativity is not because the processes that implement P-creativity test are
fixed. However, in the artificial creativity system described later the interaction
between agents and the continual learning of the agents through exposure to new
artefacts mean that what an agent considers to be P-creative is an emergent property
of the whole system. An individual embedded within an artificial creativity system is
affected by its socio-cultural context such that it will not produce the same P-creative
products as it would in isolation. Hence, both H-creativity and P-creativity must be
considered emergent properties of creative systems.

4. A FRAMEWORK FOR ARTIFICIAL CREATIVITY

This section presents a framework for developing computational models of artificial
creativity. The framework is presented by adapting Liu’s dual generate-and-test model
to meet the requirements of artificial creativity listed above.

4.1. Adapting Liu’s Model to Artificial Creativity

A critical aspect of Liu’s model that must be addressed to develop computational
models of artificial creativity is the definition of the socio-cultural creativity test. A
literal implementation of Liu’s model would produce a separate process that would
model the socio-cultural creativity test. This is a viable solution for modelling some
aspects of creativity, as demonstrated by the computational model developed by
Gabora to study the memetic spread of innovations through a simulated culture
Gabora (1997). Colton (2000) applied a similar socio-cultural creativity test to assess
the increase in creativity due to the co-operation of agents searching a space of
mathematical possibilities using different search heuristics. However, implementing a
single function, or agent, that model a socio-cultural creativity test would violate one
of the requirements for artificial creativity outlined previously, i.e. that no rule or
agent should direct global behaviour.

Liu does not go in to details about the definition of this function but it appears that
he considers this function to be outside the scope of computational models and
something that can only be implemented by some form of interaction with human



society. Many computational models developed reinforce this view by concentrating
on the constrained generation of novel ideas in their computational models and
relying on users to evaluate the creative worth of ideas. For example, see Clancey
(1997) for a discussion of the social situatedness of Harold Cohen’s AARON.

To computationally model the behaviour of creative societies, it is necessary to
define a socio-cultural creativity test without violating the requirements of artificial
creativity. The key to solving this problem is to realise that the personal creativity test
inside each individual can be used to develop a socio-cultural test for creativity. The
socio-cultural creativity test can be modelled by permitting the communication of
artefacts and evaluations of personal creativity between individuals. An example of
two individuals communicating creativity evaluations is illustrated in Figure 4.
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Figure 4: The communication of evaluations between individuals and its integration into the individual
generate-and-test cycle.

In the interaction illustrated in Figure 4, Agent A communicates an artefact that it
considers to be creative, i.e. that passes it personal creativity test, to Agent B. Agent B
evaluates the artefact according to its own personal creativity test and sends its
evaluation back to Agent A. In this way, Agent B can affect the generation of future
artefacts by Agent A by rewarding Agent A when it generates artefacts that Agent B
considers to be creative. More subtly, Agent A can affect the personal creativity test
of Agent B by exposing it to artefacts that Agent A considers to be creative, because
the evaluation of creativity involves an evaluation of novelty, Agent A affects a
change in Agent B’s notion of creativity by reducing the novelty of the type of
artefacts that it communicates. By exposing Agent B to artefacts that Agent A
considers to be creative, because they are novel and yet understandable, it can alter
the evaluation of creativity made by Agent B.

Agent-centric evaluations of creativity permit the emergence of socio-cultural
definitions of creativity as the collective function of many individual evaluations.
Without agent-centric evaluations of interestingness the collection of agents would
simply represent parallel searches of the same design space. To implement the socio-
cultural creativity test as a collective function of individual creativity tests a
communication policy is needed. A simple communication policy would be for agents
to communicate a product when their evaluation of that product is greater than some
fixed threshold. More complex communication policies might incorporate more
strategic knowledge about when to communicate and who to communicate with.

To complete the implementation of the field as a collection of individuals, the



individuals must be given the ability to interact with the domain according to some
domain interaction policy. A simple domain interaction policy would follow the
communication policy above and allow agents to add products of the generative
process if the personal creativity evaluation is greater than a domain interaction
threshold. This approach is illustrated in Figure 4. However, to ensure some level of
social agreement before the addition of products to the domain, a slightly more
complex domain interaction policy ensures that no individual is allowed to submit
their own work to the domain. Thus, at least one other agent must find an individual’s
work creative before it is entered into the domain.

Making these amendments to Liu’s dual generate-and-test results in the model of
socio-cultural creativity illustrated in Figure 5.
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Figure 5: The Artificial Creativity model of socio-cultural creativity.

5. THE DIGITAL CLOCKWORK MUSE PROJECT

In “The Clockwork Muse” Martindale (1990) presented an extensive investigation
into the role that an individual’s search for novelty plays in literature, music, visual
arts and architecture. He concluded that the search for novelty exerts a significant
force on the development of styles.

Martindale illustrated the influence of the search for novelty by individuals in a
thought experiment where he introduced “The Law of Novelty”. The Law of Novelty
forbids the repetition of word or deed and punishes offenders by ostracising them.
Martindale argued that The Law of Novelty was merely a magnification of the reality
in creative fields.

Some of the consequences of the search for novelty are that individuals that do not
innovate appropriately will be ignored in the long run and that the complexity of any
one style will increase over time to support the increasing need for novelty. In this
section, we present a computational model of the Law of Novelty developed using our
Artificial Creativity approach using curious design agents that search for novelty
(Saunders & Gero, 2001b).

Our model consists of multiple “curious design agents” within a single field
conducting searches for interesting and potentially creative “genetic artworks”. Each
agent is equipped with an evolutionary art system to allow it to generate genetic
artworks and can communicate with one other agent, chosen at random, on each time
step. Individuals that produce artworks that are considered creative by other agents are
rewarded with “creativity credit”.



5.1. The Individual: A Curious Design Agent

This subsection describes the important components of a curious design agent and the
interactive evolutionary system that it interacts with. The agents in the Digital
Clockwork Muse Project have been developed using a model of curiosity that we
have applied to several domains can be found elsewhere (Gero and Saunders, 2000;
Saunders and Gero, 2001a; 2001b; 2001c). The model of curiosity provides the
essential ability for agents to evaluate the creativity of artefacts and take appropriate
action, i.e. evolve new artefacts, communicate with other individuals in the field, or
add an artefact to the domain.

5.1.1.Interactive Evolution

Every agent in The Digital Clockwork Muse uses an “interactive” evolutionary art
system, similar to the ones devised by Dawkins, Sims, Todd and Latham, and others
(Dawkins, 1987; Sims, 1991; Todd and Latham, 1992) to generate “genetic artworks”.
Interactive evolutionary art systems use a standard evolutionary system, e.g. a genetic
algorithm, to evolve small populations of artworks that are presented to a human user
for evaluation. In our system, agents take the place of human users and interact with
the evolutionary art systems to search for novel genetic artworks. The flow of
information between an agent and its evolutionary art system is illustrated in Figure 6.
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Figure 6: A curious design agent and an interactive evolutionary art system.

5.1.2.Genetic Artworks

Karl Sims is best known for his work developing one of the first interactive
evolutionary art systems for complex two-dimensional bitmap images (Sims, 1991).
Using a process similar to Genetic Programming, Sims devised an evolutionary art
system that produced artworks by evolving symbolic function trees.

An example genetic artwork of the type evolved by the agents in this project is
shown in Figure 3. This genetic artwork was evolved over the Internet as part of the
International Interactive Genetic Art (IIGA) project (Witbrock and Reilly, 1999). The
evolutionary systems used in this project were developed using source code from the



IIGA project.

Figure 3: An example of a genetic artwork interactively evolved by a human user. (From the archive of
evolved genetic artworks in Interactive Genetic Art III.)

5.1.3.Sensing

A 32x32-pixel image of each genetic artwork is analysed by a curious design agent to
determine its novelty. Although this is a low-resolution image it is still large enough
to allow complex artworks to be evolved. To sense the image, a relatively simple
combination of a Laplacian edge-detector and a fixed intensity threshold function
were used to transform a genetic artwork into a binary image, as shown in Figure 7.

(a) (b)

Figure 7: The image processing applied to genetic artworks to extract the edge structure of the images,
(a) the original image, and (b) the binary image produced by the image processing to find the most

prominent edges.

5.1.4.Novelty

Each agent is equipped with a neural network to learn the categories of images as it
explores the space of possible genetic artworks. A self-organising map, or SOM,
(Kohonen, 1995) is used to categorise each artwork that an agent encounters into a
category represented by one of the network’s neurons. At each presentation of an
artwork the processed binary image is converted into a vector consisting of 1024
values. As an agent explores the space of possibilities it learns a map of typical
artworks for the region of the genetic art space it currently occupies. By comparing
new artworks against this map, the agent can detect novel, and potentially interesting,



artworks.
The map that the neural network produces provides a form of short-term memory

for the agent to compare new artworks with previously created ones. The larger the
network, the more neurons the agent has, and the more categories of artworks it can
remember and recall for comparison.

Figure 8 shows the neighbourhoods that have formed for similar input patterns,
e.g. around E2 and A6, as well as the mixing of these patterns in the intermediate
areas, e.g. around D4. The mixing of representations in this way provides an agent
with the ability to generalise from past experiences and hence predict aspects of
unseen artefacts. This is an important ability for curious design agents because it
allows them to determine the novelty of new artefacts without sampling all of the
design space.
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Figure 8: The prototypes represented by the 36 neurons of a self-organising map having just
categorised the input shown in Figure 4b at location E2.

Novelty (N) is calculated as the categorisation error of an agent’s SOM as it
attempts to identify a suitable category for an artwork. Novelty values, i.e. the values
of output by the best matching neuron of the neural network depend on the size of
image, in this case these values are in the range N=0 and N=32, with N=0 being an
exact match and N=32 being a complete mismatch. Effectively this measures the
distance of the closest category prototype to the input pattern.

The Euclidean distance between the closest category prototype and a new input
pattern is a rather crude measure of novelty, and more sophisticated measures have
been developed by several researchers including the authors (Kohonen, 1993;
Marsland et al., 2000; Saunders and Gero, 2001c), however, for the purposes of this
demonstration system the measure of novelty provided by the categorisation error is
sufficient and computationally inexpensive.

Novelty is used as the sole criterion to evaluate evolved artworks for
interestingness. As such we define the interestingness of an artwork based on the
degree to which it could not have been predicted from previous experience. This is
similar to Boden’s notion of P-novelty (Boden, 1990). Our definition of
interestingness based on novelty alone lacks the explicit requirement for usefulness
needed to model P-creativity as defined by Boden but, we argue that because
interesting artworks are actionable, i.e. they promote curious action, the usefulness of
an artwork is its potential to lead to other interesting artworks and is therefore, within
the confines of this simple system, related to its novelty.



5.1.5.Interestingness

Interest in an artwork is calculated using an approximation to the Wundt curve, a
well-known arousal response curve developed from studies of animals and humans to
exposed to arousal producing stimuli, including novelty (Berlyne, 1971). The Wundt
curve is sketched in Figure 9. Berlyne (1971) refers to the Wundt curve as a “hedonic
function”, to indicate its relationship to the pleasure/pain response that is often
associated with arousing stimuli.
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Figure 9: The hedonic function used to calculate interest. The hedonic function is shown as a solid
line, the reward and punishment sigmoidal curves summed to form the hedonic function are shown

dashed.

In our model the hedonic function is calculated as the sum of two sigmoidal
functions whereas the Wundt curve is calculated as the sum of cumulative-Gaussian
functions. The most important feature of the hedonic function used in this research
that it shares in common with the Wundt curve is that it is the sum of two non-linear
functions. In either case the functions are summed to produce an inverted ‘U’ shaped
curve, as sketched in Figure 9. The sigmoidal function labelled ‘Reward’ represents
the intrinsic reward given to the agent for finding an arousal-inducing stimulus over a
fairly low threshold, n1. The second function, labelled ‘Punish’, is the amount of
punishment that the agent receives for finding an arousal-inducing stimulus over a
higher threshold, n2. By altering the thresholds for the reward and punishment
sigmoid curves this peak can be positioned anywhere along the novelty axis.

The agents in the Digital Clockwork Muse use the above hedonic function to
calculate the level of interest that they have in a particular artwork based upon the
novelty detected by the self-organising map. Figure 9 illustrates the use of the hedonic
curve with an example novelty value Nx that is mapped to its corresponding hedonic
value Hx.

5.1.6.Curiosity

Through a combination of the neural network and the hedonic function the agents
display a form of “curious” behaviour. Given a set of new artworks an agent will
favour those that are imperfectly represented by the self-organising map, indicating
the need for some learning, but are not so novel as to fall beyond the peak of the
hedonic function. Thus the agent is motivated to choose artworks it has a good chance



of improving its representation of by favouring similar-yet-different artworks at each
time step  (Berlyne, 1971). In other words, the agent shows little interest in artworks
that are either too similar or too different to its previous experiences (Schmidhuber,
1991)

An agent’s interest in an artwork determines the artwork’s actionability. If an
artwork is the most interesting at a given moment without being interesting enough to
be considered creative then the artwork is selected as the starting point for further
search but not sent to any other agents.

5.2. The Field: A Community of Interest

To define a field in an artificial creativity system we need to define the
communication mechanisms and policies used by agents to exchange artworks and
evaluations. For this project we have chosen to use the simplest implementations
possible.

5.2.1.Communication

If the interestingness of an artwork breaches a threshold value that marks the lower
bound of the range of potentially creative artworks then the artwork is sent to other
agents for peer review.

Artworks are exchanged as messages that encode the symbolic descriptions of the
artworks. Receiving agents must then express the genetic representation to recover the
artwork and then evaluate it. Having expressed a received artwork an agent evaluates
it according to its personal creativity test based on its own experiences. The
experiences of a receiving agent are likely to be different than those of the sender and
this can lead to very different evaluations of the same artwork. An artwork that was
interesting for its creator may be boring to a second agent because it is too familiar or
uninteresting to a third because it is not familiar enough.

An agent may find a received artwork more interesting than its own current
artworks, in which case it can use the received artwork as the starting point for a new
search of the genetic art space.

An advantage of passing the genetic representations of artworks between agents,
rather than the artworks themselves, is that if a receiving agent finds an artwork
interesting it can use the genetic representation to evolve new artworks without
having to “reverse engineer” an artwork first. This is a computationally efficient
approach to distributing artworks but it removes the possibility of memetic evolution
of artworks through the introduction of errors during the imitation process (Dawkins,
1976). To safeguard against plagiarism and thereby stop a popular artwork being
copied by all members of a population unaltered, an agent is not allowed to pass on a
received artwork as its own in the same cycle; it must perform at least one
evolutionary generation first.

Before using an artwork received from elsewhere an agent must pay the creator of
the interesting artwork some credit, proportional to the interest the receiving agent has
in the artwork. The amount of credit accumulated throughout a lifetime is used to
assess how creative a particular individual is.

5.3. The Domain: A Repository for Creative Artworks

A domain is maintained by the collective actions of agents in its associated field. We
have implemented the minimal domain interaction policy that ensures some form of



social agreement within a field before an artwork can be added to a domain. Agents
cannot add their own artworks to the domain; they can only add artworks that they
receive from others. To qualify for addition to the domain an artwork must be of
particularly high interestingness for the receiving agent, most likely higher than that
required for an artwork to be considered worthy of communicating to another member
of is field. If so, the artwork is added to the domain with a label indicating the agent
that created it.

Future generations of genetic artists begin their search with artworks that have
been added to the domain, however, the dynamic nature of the socio-cultural
evaluation process means that artworks that were considered creative are likely to be
no longer considered creative because they are too familiar to the field. Therefore, the
domain does not provide instant access to creative works, but rather a store of familiar
starting points from which new creative artworks can be produced. The real advantage
of starting with artworks stored in the domain is that they are already familiar to other
members of the field. The result of a short search for novel artworks starting with
examples from the domain is likely to be new artworks that are similar-yet-different
with respect to the domain, making them ideal candidates for being creative.

Researchers of artificial creativity can also use the records kept in the domain as a
means to trace the development of artistic styles considered creative over time.

6. EXPERIMENTS IN ARTIFICIAL CREATIVITY

The following experiments were conducted with the aim of confirming Martindale’s
predictions for Artificial Creative systems and to investigate other interesting
emergent behaviour.

6.1. The Law of Novelty

We investigated the effects of the search for novelty, by producing agents with
different hedonic functions. The aim was to show that agents are not recognised as
creative when they fail to innovate inappropriately. Agents can innovate
inappropriately either by producing “boring” images that are too similar to images
previously experienced by other agents, or by producing “radical” images that are too
different for other agents to appreciate.

We have simulated both types of inappropriate innovation in a single simulation.
For this experiment we created a group of agents most of whom, agents 0-9, shared
the same hedonic function, i.e. the same preference for average novelty (N=11). Two
of the agents have quite different novelty preferences. One, agent 10, has a preference
for low amounts of novelty (N=3) and the other, agent 11, has a preference for high
amounts of novelty (N=19). Agents with a lower novelty preference tend to innovate
at a slower rate than those with a higher hedonic preference. The results of the
simulation are presented in Table 1.



Table 1: The attributed creativity for a group of agents with different preferences for novelty.

Agent

ID

Prefer

red
Novelt

y

Attribut

ed
Creativi

ty

0 N=11 5.43

1 N=11 4.49

2 N=11 4.50

3 N=11 3.60

4 N=11 4.48

5 N=11 1.82

6 N=11 6.32

7 N=11 8.93

8 N=11 10.72

9 N=11 5.39

10 N=3 0.0

11 N=19 0.0

The results show the agents with the same preference for novelty to be somewhat
creative according to their peers, with an average attributed creativity of 5.57.
However, neither agent 10 nor agent 11 received any credit for their artworks.
Consequently none of the artworks produced by these agents were saved in the
domain for future generations. When these agents expired nothing remained in the
system of their efforts.

The results show that while an agent must innovate to be considered creative, it
must do so at a pace that matches other agents to achieve recognition. The agent with
a preference for high levels of novelty and hence rapid innovation was just as
unsuccessful in gaining recognition as the agent with a low novelty threshold that
innovated too slowly.

6.2. The Emergence of Cliques

We have also investigated the behaviour of groups of agents with different hedonic
functions. To do this we created a group of 10 agents, half of them had a hedonic
function that favoured novelty N=6 and the other five agents favoured novelty values
close to N=15. Figure 9 shows the payments of creativity credit between the agents in
recognition of interesting artworks sent by the agents.
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Figure 9: A matrix showing the total number of messages carrying credit for being creative between
the agents of the simulation.

Two areas of frequent communication can be seen in the matrix of payment
messages shown in Figure 9. The agents with the same hedonic function frequently
send credit for interesting artworks amongst themselves but rarely send them to agents
with a different hedonic function. There are a large number of credit messages
between agents 0-4 and agents 5-9, but only one payment between the two groups –
agent 4 credits agent 5 for a single interesting artwork.

The result of putting collections of agents with different hedonic functions in the
same group appears to be the formation of cliques: groups of agents that communicate
credit frequently amongst themselves but rarely acknowledge the creativity of agents
outside the clique. As a consequence of the lack of communication between the
groups the style of artworks produced by the two cliques also remains distinct.

Communication between cliques is rare but it is an important aspect of creative
social behaviour. Communication between cliques occurs when two individuals in the
different cliques explore design subspaces that are perceptually similar. Each of the
individuals is then able to appreciate the other’s work because they have constructed
appropriate perceptual categories. The transfer of artworks from a source to a
destination clique will introduce new variables into the creative processes of the
destination clique, the two cliques can then explore in different directions, just as two
individuals do when they share artworks. Cliques can therefore act as “super-artists”,
exploring a design space as a collective and communicating interesting artworks
between cliques.

Figure 10 is a screenshot of the running simulation that has formed two cliques.
To help visualise the emergent cliques, the distances between agents are shortened for
agents that communicate frequently. The different styles of the two groups can also be
seen, with agents 0-4 producing smooth radial images with low a fractal dimension
(~1.4) and agents 5-9 producing fractured images with clearly defined edges and a
higher fractal dimension (~1.7).



Figure 10: A screenshot of the simulation clearly showing the two cliques. The squares represent
agents. The images show the currently selected genetic artwork for each agent. The number above each

square shows the agent’s attributed creativity. The dark lines between agents indicate the
communication of credit.

The stability of these cliques depends upon how similar the individuals in different
subgroups are and how often the agents in one subgroup are exposed to the artworks
of another subgroup. Cliques have been observed in simulations with agents that share
similar hedonic functions, but the cliques are often consist of 3-4 individuals and do
not last for long before the clique splits apart and the agents form new cliques with
other agents. Further research is needed to determine whether other factors of
individual behaviour can similarly affect the social structure.

7. FUTURE RESEARCH

The artificial creativity framework implemented here provides several opportunities
for developing future models of social creativity. Three possible directions for future
work are: (1) the simulation of larger creative societies, (2) the development of new
types of agents, and (3) the development of more complex social interactions.

7.1. Large Creative Societies
The ability to simulate larger creative societies will permit the study of the spread of
innovations (Gabora, 1997; Goldenberg et al., 2000) and styles. It may also facilitate
the emergence of new fields as cliques attain a critical size. Spatial and topological
relationships will become more important issues in large population models.

7.2. New Types of Agents
There are several other important players in creativity societies besides the producers
of innovations including, e.g. consumers, distributors, critics, etc. Each has their own
role to play in artificially creative societies; consumers evaluate products, distributors
distribute products widely, and critics distribute their evaluations widely. These roles
are illustrated in Figure 11.
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Figure 11: Three different types of individuals and their roles in the communication of
designs and evaluations in creative design societies.

Convincing other people that you’ve had a creative idea is often harder than
having the idea in the first place (Csikszentmihalyi, 1999). In non-homogenous
societies of agents, the selection of which agents to communicate with becomes
important for agents seeking recognition from their peers.

7.3. Strategic Knowledge
Simulations of technological innovation in industry show that the consideration of the
costs of innovation in decision-making can lead to complex behaviour (Haag and
Liedl, 2001). Simulating similar costs in the design process may provide a better
understanding of the economics of creative design in creative societies and the
strategies needed to manage creativity with limited resources.

8. CONCLUSIONS

The computational work presented in this paper has illustrated the artificial creativity
approach to developing models of creative societies. By adapting Liu’s dual generate-
and-test model of creativity we have produced a model of creative societies that can
be used to study socio-cultural creative behaviour as an emergent property arising
from the creative behaviour of individuals. The implemented system models the
evolution of notions of creativity within an artificial society over time as individuals
come and go, the field changes in composition, and the domain is altered.

The emergence of social behaviour, e.g. The Law of Novelty, and dynamic social
structures, e.g. cliques; suggest that the artificial creativity approach to developing
models of creative societies may contribute new insights into the nature of creative
design in socio-cultural situations. Figure 12 illustrates the different levels at which
creativity may be studied as a pyramid of emergent properties. Each level represents a
different aspect of creativity that is emergent from the ones below it. The foundations
of the creative pyramid are the processes internal to the creative agent that allows it to
generate-and-test ideas. The result of executing these processes is the creative
products. Traditionally, computational research has concentrated on these two levels
by encoding processes thought to be important in creativity in a piece of software and
getting experts to examine the results of running those processes to determine whether
the processes are creative. In traditional computational models, the higher levels of
the pyramid are not modelled in the software and are provided by people.
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Figure 12: A pyramid of creativity.

Artificial creativity suggests a different approach; instead of evaluating the
products of a piece of software to determine its creativity, it focuses upon the
behaviours of agents and artificial societies. Artificial creativity is concerned with
modelling the creative behaviours of individuals, e.g. curiosity, and studying the
emergent social behaviours when individuals are put together. Because individuals in
an artificial creativity simulation must be able to evaluate the creativity of
communicated products and hence other individuals, the details of the products of
individuals become less important. More important in the study of artificial creativity
are the socio-cultural structures that emerge as a consequence of the communication
of products and evaluations.

The artificial creativity approach presented here permits the computational study
of highest levels of creativity illustrated in Figure 12 without having to develop agents
that can integrate, and achieve creative status, in human society. Artificial creativity
simulations permit the experimentation with creativity in artificial societies that would
be impossible in the real world, allowing the study of creativity-as-it-is in the context
of creativity-as-it-could-be.
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