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Abstract. This chapter explores the perception and modeling of style in design re-
lating to visuo-spatial representation and reasoning. We approach this subject via 
cognitive and contextual considerations significant to the role of style during de-
signing. A designer’s ability to represent and reason about design artifacts visually 
and spatially allows meaningful ‘chunks’ of design information to be utilized rela-
tive to the designer’s task and context. Central to cognitive and contextual notions 
of style are two issues, namely the level of semantic interpretation, and the com-
parative method’s degree of contextual sensitivity. This compound problem re-
quires some explicit and cognitively plausible ordering principle and adaptive 
measure capable of allowing for dependencies in reasoning about similarities. This 
chapter first investigates the perception of style in relation to these modeling re-
quirements before demonstrating and testing their implementation. We then dis-
cuss style in relation to design tasks and how they can be supported via the classi-
fication and retrieval of designs from large databases of visuo-spatial information.  

1. Introduction 

The term style is polysemous and can refer to ideas concerning the product, proc-
ess, modality, period, region, society, culture, etc. The conceptualization of style 
explored in this chapter is based on the visual and spatial perception of an arti-
fact’s style. That is, when we are consciously aware of the similarity between arti-
facts it becomes a concept in its own right and is what we referred to as ‘style’ [1]. 
Our study of style therefore proceeds using a product or object-based viewpoint. A 
well accepted definition of this perspective, characterizes style as an ordering 
principle that allows artifacts to be structured according to some set of criteria [2].  
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In design, the comparison of artifacts and assignment of formal or ad-hoc styles 
plays a crucial role. Across a range of different design domains, such as architec-
ture, industrial design and graphic design, an individual’s abilities to perceive, (de-
tect and recognize) shapes, their spatial relationships and the similarities between 
them are important cognitive ‘mechanisms’. These cognitive abilities are integral 
to, for example, Architectural and Art History in enabling the formal recognition 
and labeling of styles such as ‘Romanesque’, ‘Gothic’ and ‘Baroque’.  

However, these abilities also play an essential role in the design process allow-
ing ad-hoc styles to be applied so as to structure information and create categories 
of visuo-spatial information whilst designing. Two-dimensional (2D) design dia-
grams, such as architectural plan and elevation diagrams, are an interesting in-
stance of the artifacts that designer’s typically reason about and between during 
designing. Architectural design diagrams are an attractive application area for 
studying style via visual and spatial representation and reasoning because they 
capture and convey designs of the built environment using properties of constitu-
ent geometric components, allowing tractable investigations and modeling. 

Accordingly, this chapter explores the perception and modeling of style in de-
sign, and asks: what makes the style of a design diagram perceptible and how can 
we model style such that the automated analyses of designs are sensitive to (and 
therefore useful within) the designer’s context?  

We approach the first part of this question, from a qualitative feature-based 
standpoint. The perception of design style requires judgments of visuo-spatial 
similarity such that two or more artifacts can be decomposed into elements in 
which they are the same and elements in which they are different. Researchers 
have shown that the information utilized by human observers during visuo-spatial 
reasoning is typically qualitative in nature [3]. In other words, in judgments of 
physical similarity, reasoning is typically intuitive and based on the individual’s 
commonsense knowledge [4, 5, 6].  

The second part of the question, how can we model style, is a computational 
analysis problem that depends largely on the design domain of interest, the data-
base in question, and the amount of a priori information available. We approach 
this analysis-based problem in light of a number of cognitive and contextual con-
siderations which are significant to how the boundary of a style can be drawn dif-
ferently according to the design task. In building on the foundation of qualitative 
re-representation we underscore the importance of the preservation of salient de-
sign feature semantics. Our approach therefore also emphasizes the contextual 
properties of comparative visuo-spatial analyses. Accounting for context is impor-
tant since during designing, designers are capable of perceiving a design artifact’s 
physical characteristics, interpreting their feature semantics, assigning higher im-
portance/weighting to certain features and comparing each design using a number 
of different visual and spatial dimensions – and all relative to their design task. 
How similarities are perceived and where the boundaries of a design style are 
drawn by a designer may be influenced by the designer’s intentions and goals. In-
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terpreting a diagram and distinguishing some design style can be dependent on the 
relevance of physical characteristics relative to the designer’s context.  

In considering both cognitive and contextual aspects of style this chapter’s 
main objectives are highlighted, namely to (1) bridge the gap between the low-
level structural features of design artifacts and the high-level semantics used by 
designers to understand design content; and (2) develop a model of style which is 
cognitively plausible and sensitive to context. Addressing these issues is critical to 
creating a digital characterization of style which is useful to designers.  

1.2 Overview 

The remainder of the chapter presents our investigation into the visuo-spatial per-
ception and modeling of style. Section 2 continues with an examination of style in 
relation to the properties of similarity, explores the case for qualitative reasoning 
and presents our earlier research on computational stylistics in design. Section 3 
outlines a digital characterization of style and method of analysis. Sections 4 
briefly presents the details of the approach. This section firstly reviews the basics 
of a qualitative encoding schema for representing visual and spatial information 
and deriving feature and shape semantics. Secondly we present the technique for 
assessing design diagrams using multi-dimensional datasets and an artificial neu-
ral network. Section 5 tests the model’s cognitive plausibility and contextual sen-
sitivity so as to investigate the qualitative, multi-dimensional and context-
dependent approach to visuo-spatial reasoning. Lastly, in Section 6 we discuss the 
results of our experiments in relation to an object-viewpoint of style and current 
perspectives within and outside the design field. The aim of this discussion is to 
analyze our results and the insights that can advance our understanding of style 
with regard to how designers may be assisted in visual and spatial reasoning de-
sign tasks. Whilst a number of hypotheses and results are validated, others suggest 
specific areas for future experimentation.  

2. Perception of Design Style  

Identifying the style of a design is a judgment process. Human observers are able 
to search for, recognize, and interpret salient features in design diagrams (as well 
as all other visually and spatially perceptible artefacts) enabling the detection of 
physical resemblance and ultimately the identification of a member or many mem-
bers of a style. Design artefacts can be described as belonging to the same style to 
the degree that they have a particular dimension in common and are not 
differentiated by any distinctive one, that is, the degree of their similarity. An ob-
ject viewpoint of style can therefore be closely coupled to the concept of simi-
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larity; and approaching style via this related concept raises important properties 
surrounding visuo-spatial similarity detection and the nature of reasoning used in 
making comparisons. 

2.1 Style and Similarity 

The last 40 years of research surrounding the concept of similarity has provided a 
variety of insights on both theoretical and empirical levels; see [7, 8, 9, 10]. How-
ever, ongoing debate persists regarding the cognitive (or psychological) and con-
textual properties of similarity. Many studies centre on the analysis of whether 
similarity satisfies properties of triangle inequality, symmetry and minimality in 
relation to the metric distance function utilised for comparative analysis; whilst 
others focus on contextual aspects related to visual and spatial reasoning.  

Triangle inequality is one of the most common properties of similarity explored 
by researchers; see [7, 8, 11, 12]. Triangle inequality implies that if a is similar to 
b, and b is similar to c, then a and c cannot be very dissimilar from each other. 
Looking at an example of this property, if the Frank Lloyd Wright plan shown in 
Fig. 1a is similar to the Louis Kahn plan in Fig. 1b; and if the Louis Kahn plan in 
Fig. 1b is similar to the Alvar Alto plan shown in Fig. 1c, then the Frank Lloyd 
Wright plan must be somehow similar to the Alvar Alto plan. However whilst it is 
possible to recognise similarities between plans in Fig. 1a and 1b and between 
plans in Fig. 1b and 1c intuitively, this statement is hard to accept, as can be seen 
in the case of the plans shown in Fig. 1a and 1c. 

 

  

Fig. 1.  Frank Lloyd Wright, Louis Kahn, and Alvar Alto residential plan design diagrams 

This example illustrates that similarity is not always transitive and triangle in-
equality fails due to the different emphasis on features and dimensions that are 
used to evaluate similarity [11, 12]. In the example above plan topology is the 
basis of the similarity between the Frank Lloyd Wright plan (Fig. 1a) and the 
Louis Kahn plan (Fig. 1b); whereas plan morphology is the basis of similarity be-
tween the Louis Kahn plan (Fig. 1b) and Alvar Alto plan (Fig. 1c).  
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Further, similarity is not always a symmetric relation [7]. That is, the similarity 
between a and b does not always equal the similarity between b and a. In the naïve 
view of the world, similarity defined in terms of conceptual distance is frequently 
asymmetric [13]. Asymmetry of similarity may result from the type of features 
characterising two objects [11]. Returning to the example in Fig. 1 we can see that 
the shape features that make up all three plans differ. Fig. 1a is composed of rec-
tangles and complex L-shapes, and in Fig. 1b varying sizes of square shapes are 
dominant, whereas in Fig. 1c there are a combination of squares and rectangles.  

Another property of similarity distance models is minimality. The property of 
minimality implies that the distance in similarity between a and itself will be less 
than the distance in similarity between a and b. Although most studies assume that 
similarity satisfies minimality, Tversky [7] argues that the same self-similarity for 
all objects implied by the minimality property does not hold for some similarity 
evaluations. For example, the variation of self-similarity may be related to proto-
typical characteristics of the design artefact within the domain. Consequently, the 
measure of similarity between a design and itself may be related to the status of 
the artefact within the domain [11]. Here we assume that similarity most often sat-
isfies the minimality property, because what matters is that the self-similarity must 
be larger than the similarity between two different objects. 

In addition to these cognitive properties of similarity, there are also related con-
textual aspects. Studies have found that the similarity of representations is influ-
enced by contextual dependencies [14]. Context in a design environment is a set of 
circumstances or facts that surround a particular design task.  

Other studies have demonstrated that similarity processing often depends on 
context [15] and increasing consensus therefore regards similarity as a context de-
pendent property [10, 16]. These views are particularly relevant in design since the 
designer operates within a context and their perception and judgement of design 
similarities are influenced by it. Yet they have largely been overlooked in model-
ing an object view of style and its analysis [17, 18]. 

Correspondence refers to when subjects pay more attention to those features 
that are similar in the assessment of objects, or pay more attention to distinctive 
features in the assessment of difference [7, 11]. Applying this notion to design, the 
similarity between two diagrams is only be established when their features are 
placed in correspondence, which is determined by their distribution. The degree of 
correspondence will depend on their consistency in relation to other diagrams in 
the set, as demonstrated by the example plan diagrams of Fig. 1. The matching of 
corresponding features has a greater contribution to the similarity rate than the 
matching of features that do not correspond [19, 20] . 

Another contextual aspect that can influence similarity assessment is classifica-
tion itself. The diagnostic value of a feature is determined by the frequency of its 
classification that it is based on. Thus, similarity has two faces, causal and deriva-
tive. It serves as a basis to classify objects, but can also be influenced by the ad-
opted classification [7]. The effects of the range and frequency of similarities are 
also associated with categorical judgements along any single dimension. 
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2.2 Style and Reasoning 

How human observers reason about and between the similarity of artifacts is a 
main concern in an understanding the perception of style. Psychologists and cog-
nitive scientists have pursued questions of how people classify objects, form con-
cepts, solve problems and make decisions based on perceived similarity [see: 7, 8, 
9, 10, 15, 16, 21, 22]. Much of this debate has surrounded the investigation of the 
variables used for reasoning and the different forms of reasoning. 

However, in design research, there is still a lack of understanding of how de-
signers classify, form concepts and make decisions based on the similarity per-
ceived between two or more designs. Tversky [23] has shown in cognitive ex-
periments that when reasoning about design diagrams, individuals are able to 
make comparisons across a variety of dimensions intuitively using abstraction, 
approximation, aggregation and other techniques to generate manageable spatial 
descriptions. However, a deeper understanding of the nature of visuo-spatial com-
parisons and forms of visuo-spatial reasoning in the design domain is lacking [24]. 

Our own cognitive studies in the design domain investigating the process of 
visuo-spatial categorisations have shown that during designing, ad hoc visual sort-
ing of 2D design diagrams largely depends on an initial similarity assessment 
which is then later revised [24]. From this regard, the high-level semantic content 
contained in design diagrams often results in the initial assessment being revised a 
number of times in light of the designer’s task. The process may be intuitive and 
yet meta-cognitive as an awareness of the similarities between each diagram’s fea-
tures emerges on subsequent revisions of initial assessments. Further, when de-
signers judged the similarity of two diagrams the dimensions themselves or even 
the number of dimensions were not known and what might have appeared intui-
tively to be a single dimension were in fact be a complex of several [17].  

Thus, the information used to perceive information exists on a number of dif-
ferent visuo-spatial dimensions. There are two general criteria, which have been 
distinguished by Shapiro [25] as significant to the characterisation of style and are 
therefore considered here as essential: (i) shape elements and attributes; and (ii) 
spatial relationships. The approach to re-representation in a computational model 
plays an important role in providing cognitively plausible comparisons not only 
from the perspective of what and how many dimensions are represented but also 
how they are re-represented. Qualitative approaches to representation are a com-
mon analysis paradigm in design reasoning applications because they provide a 
mean to map on to feature semantics. Using such common-sense descriptors sup-
ports the identification and comparison of designs that are not only structurally or 
spatially close but also conceptually close, whilst not being identical.  

Yet, the qualitative encoding of a design diagram using multiple spatial ontolo-
gies so as to obtain a rich variety of feature semantics is a complex re-
representation problem. Due to the complexity of imputing semantics relevant to a 
specific domain, this approach has been less prominent in models of style. 
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Furthermore, an important issue not addressed in style related research in de-
sign, is the issue of the cognitive validity of spatial representation languages and 
their ability to capture information significant to reasoning tasks. For example, in 
the field of computer vision, claims that qualitative reasoning is akin to human 
reasoning have typically not been supported with empirical justification. Excep-
tions to this can be found in contributions made by Gould et al. [26] of a calculus 
for representing topological relations between regions and lines, and by Knauff et 
al. [27], who investigated the preferred Allen relation. Until recently, no such 
studies existed in design research to support the validity of a proposed qualitative 
language for re-representing visuo-spatial information and its significance in the 
assessment of style. In previous research we have sought to address this gap, see 
[17, 24]. We shall return to this issue in the first experiment in Section 5. 

3. Computational Stylistics  

Other chapters of this book, namely the semantic analysis of texts discussed 
(Chapter ?? Argamon and Koppel), and the relation of musical perception to the 
production of rules (Chapter ?? Koppel), both approach style via the assessment of 
the composition of information contained in some artefact. Whilst text and music 
analysis fields are more common research domains in computational stylistics, in 
design, there is also a growing interest in its application. Despite the lack of cogni-
tive studies and model validation, in design a variety of computational models 
have been developed. Here we shall look at related models within design before 
presenting our own digital characterisation of style.   

3.1 Previous Research in the Design Domain  

A number of frameworks and models providing automated analysis of design arte-
facts have been developed [28, 29, 30, 31, 32, 33]. These models are typically 
based on a re-representation of either 2D or 3D design artefacts and some function 
of similarity that allows those artefacts to be compared and ordered. These models 
have been developed as design support systems to aid in decision making, analogy 
and the perception of Gestalts. Most have directly applied or adapted similarity 
functions from other fields of research, such as psychology and cognitive science 
as well as information analysis and retrieval systems. However these existing ap-
proaches are limited since comparison ultimately depends on quantifying common 
elements independent of a designer’s task. They therefore present limitations in re-
lation to the cognitive and contextual properties of similarity.  

As a result, computational models of style have inherited an emphasis on linear 
analysis, which focus on distance measures that maintain a static world assump-
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tion, that is, where style is treated as unrelated to its locus of application. It is ne-
cessary to reformulate approaches to comparative by moving away from the idea 
of style as the outcome of a direct comparison and move towards the idea that it is 
a process whose outcome is reported in a post-hoc fashion.  

Toward this aim, researchers have sought the benefits of artificial neural net-
works. Utilising artificial neural networks has many advantages in the treatment of 
design style as a multi-dimensional, contextually sensitive similarity measure. The 
underlying mathematical properties of most neural networks used in categorisation 
are scalar distance-based algorithms. Of these, the Self-Organising Map (SOM) is 
a typical representative. SOMs can be used in a variety of ways, with a number of 
different configurations available [34]. Whilst extensively used in other fields of 
research such as text and image retrieval, SOMs have not been widely utilized in 
design categorisation systems.  

One application known to the authors is a model proposed by Colagrossi et al. 
[35] for categorising works of art. Colagrossi and his colleagues measured the 
similarity of Mondrian’s Neoplasticist paintings according to a selection of fea-
tures. By consolidating algebraic functions a variety of parameters were processed 
with only a few neurons in both the input and output of the SOM. Those param-
eters considered useful by the authors included line type, line weight and colour. 
Yet, the application of the SOM by Colagrossi does not address the many of the 
cognitive and contextual properties of similarity discussed in Section 2.1. This is 
in part due to Colagrossi’s restricted application domain, i.e., distinct design cor-
pus, lack of semantics and contextual relevancies. Under this and other existing 
approaches to similarity assessment in design, contextually relevant categorisa-
tions, are unable to be obtained.  

SOMs as a measure of design similarity can be improved by utilising both 
qualitative descriptions and contextual input. On the one hand, the visuo-spatial 
information that can be derived from un-annotated diagrams requires rich re-
representations at successive levels of abstraction [21] and neural networks are 
able to process multiple data sets based on qualitative re-representations. On the 
other hand, the designer may be an inseparable part of the assessment process and 
neural networks are capable of integrating query by pictorial example (QBPE), 
which is a common retrieval paradigm in content-based image retrieval applica-
tions [36] or via inputting relevance feedback. That is, design queries can be based 
on an example design diagram available either from the database itself or as a re-
sult of the designer’s task. The designer classifies an example diagram as relevant 
or non-relevant to the current classification task, allowing selection of such styles 
the designer is most likely to be interested in.  

QBPE and relevance feedback (RF) is commonly used in text classification and 
retrieval systems [37]. Yet there appears to be no model of similarity in design 
that integrates relevance feedback in this way. The implementation of SOM and 
RF presents a unique approach to computational stylistics in design. Since an 
analysis of style in the context of some design task may not be capable of return-
ing the relevant style in its first response, the classification process becomes an it-
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erative and interactive process towards the desired style and outcome. The as-
sessment of style may therefore be treated not as a fixed and irreducible concept, 
but as a process, which takes place over some more-or-less open and variable di-
mensions of the designs being represented and compared. Under this treatment, 
the style of a design diagram is contextually-dependent. This view gives less ex-
planatory force to style because it demands analysis of the design attributes whose 
similarity it computes in relation to context.  

3.2 Our Research on Computational Stylistics  

Our previous research on a computation model to analyse an artefact’s design 
style has approached style assessment as transient, where the perceived similari-
ties may depend on the corpus in question, the amount of a priori information 
available, the order of design comparison and, when considered in relation to a 
task specific context, may also depend on design objectives and requirements.  

The model, called Q-SOM:RF, [18] has three main components, which are il-
lustrated in Fig. 2, including: (i) Qualitative feature-based re-representation; (ii) 
Self-organising maps; and (iii) Relevance feedback (RF).  

 

 
Fig. 2   Q-SOM:RF, stages of un-annotated 2D diagram categorization. 

Within the three main components are five consecutive stages: (1) recognition, 
extraction and encoding of three different levels of spatial attributes, (2) initial 
feature selection of encoded spatial attributes and combination of feature lists, (3) 
categorisation via unsupervised learning of design diagrams based on available 
features, (4) positive and negative feedback processes via the observer’s input, and 
(5) resulting weight adjustment and re-categorisation of design diagrams. 
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In stage one, each diagram in the design corpus is encoded using a qualitative 
schema capable of describing sets of higher-level semantics corresponding to three 
prescribed spatial ontologies. During stage two, feature sets undergo a selection 
process as part of input pre-processing. A feature subset is produced using either 
principal component analysis or manual feature selection by the observer. The 
third stage utilises the feature subset as input to the SOM and categorisation oc-
curs via unsupervised learning. How distances in various feature spaces are 
weighted and combined to form a scalar suitable for minimization, creates an op-
portunity to integrate contextual dependencies in the architecture of the SOM [38, 
39]. The fourth stage continues as an interactive process that moves from unsu-
pervised categorisation to one which is guided by the observer. The final stage re-
categorises diagrams which are similar to the observer’s target diagram, meeting 
some set of target criteria, by ordering those diagrams whose distance to the target 
is minimal in any or all feature sets. The model is therefore capable of automati-
cally structuring a large design corpus according to selected features or feature 
semantics as an iterative process, which adapts to an observer’s requirements and 
preferences. Adaptation is based on the relevance of clusters which are judged in 
relation to some design task.  

4. Computational Analysis 

This section presents additional detail on the computational approach to style ex-
plored in this chapter. We briefly summarise the qualitative representation schema 
for describing a hierarchy of spatial ontologies and Self-organizing maps (SOM) 
as the method for design comparison. For more detail see [17] and [18, 40]. 

4.1 Qualitative Re-representation 

Design diagrams are an explicit representation of the artifact’s geometry, and it is 
reasonable to expect that categorization be based on 2D criterion that incorporates 
geometric properties which are: (i) generic – so that they have applicability over a 
wide spectrum of application domains, characterize as many physical dimensions 
of the diagram as possible including orientation, distance and topology; (ii) have 
both local and global support, i.e., they should be computable on shape primitives 
and spatial relations; (iii) provide descriptions capable of higher-level semantic 
mapping, (iv) are invariant over ranges of viewpoint and scale; and (v) are robust, 
and readily detectable by procedures that are computationally stable. 

To satisfy these requirements the process of encoding follows from physicality 
to symbol to regularity to feature, where: (i) Physicality – refers to the graphic de-
scriptions of diagrams indicating the geometric information and is the pre-
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representation, upon which a process of information reduction is applied succes-
sively over three levels of abstraction; (ii) Symbol – refers to the unrefined sym-
bolic encoding of graphic information, whereby spatial attributes are recognized 
and converted into qualitative symbol values; (iii) Regularity – is the syntactic 
matching stage in which regular or repetitious patterns of encodings are identified 
and grouped; where detecting characteristics relies on ‘chunking’ [41]; and (iv) 
Feature – involves matching pre-determined syntactic patterns with meaningful 
design semantics.  

Fig. 3 shows an example of an encoded design diagram labelled according to 
the principles of physicality to symbol to regularity to feature defined within the 
qualitative encoding schemata. The example is a simple 2D residential plan draw-
ing of the Farnsworth House, designed by Mies van der Rohe. 

The first of four stages commences from the original representation of the de-
sign diagram is transformed in to vectorial format. After contour vectorization, 
three consecutive encoding stages then follow. The mapping from physicality to 
symbol to regularity to feature involves detecting regularities and matching fea-
tures from the geometric information so that specific patterns correspond to 
known feature semantics [41]. 

 

 
Fig. 3 Example of physical to symbol to regularity to feature mapping for the Farnsworth House 
by Mies van der Rohe.   

This process illustrated above is summarized in the following two sections de-
scribing firstly, diagram decomposition and re-representation and secondly, ab-
straction and re-representation. 
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4.1.1 Diagram Decomposition and Re-representation 

Decomposition and representation (DeREP) divides the problem into smaller more 
tightly constrained sub-problems by partitioning shapes into vertices and contours. 
To achieve this, the process eliminates the primary source of complexity by sepa-
rating unrelated variables into distinct shapes. This process results in a compact 
and easily understandable description of the structure of the diagram.   

The sequence of vertex labelling occurs as an iterative process: contour tra-
versal, vertex detection, value assignment, contour traversal… until circuit com-
pletion (shape closure). The problem of computing all possible circuits in the dia-
gram so that each circuit contains all vertices exactly once is achieved by finding 
all Hamiltonian circuits [42]. A contour cycle (i.e., closed loop) algorithm is im-
plemented where the agent starts the cycle from each point in the diagram and vis-
its each adjacent vertex exactly once until a closed shape is generated or until a 
maximum branch limit is reached. This process iterates until all possible shapes 
are found. Once all closed shapes are found starting from all points in the diagram, 
the final set is filtered to eliminate shapes containing other shapes so that the re-
sulting set contains only the smallest shape units. The perimeter shape is then 
found as the sum of all of the smallest shape units. Fig. 4 shows a sample diagram 
and the resulting closed shapes detected.  

 

 
Fig. 4. (a) Original diagram, (b) Hamiltonian circuit, (c) all closed shapes found (d) smallest 
shape units (e) perimeter or boundary shape and (f) landmarks for labeling.   

As line contours are scanned vertex by vertex, the angle and length magnitudes 
of the previous line segment become the landmark point for the following seg-
ment, i.e., landmarks and intervals are set each time a new contour is compared. 
This enables a description of shape morphology to be obtained.  
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Morphology Descriptors 

Sign values for specifying specific qualities of isolated shape structures are based 
on a description of attributes encoded at a landmark vertex (intersection) where 
properties for line contours are divided into two separate codes. The first is a pri-
mary code and represents the relative angle of the line contour. The second is an 
auxiliary code and represents the relative length of the line contour. The formal 
definitions of primary and auxiliary codes are presented in Table 1. Also see [4]. 

Table 1 Definition of Qualitative Syntax for Morphology. 

 ANGLE CODES LENGTH CODES 
Numeric value range 0 ≤ θ ≤ 2π -∞ ≤ l ≤ ∞ 

Landmark set {0, π} {-∞, 0, ∞} 
Interval set {(0,π),(π,0)} {(-∞,0),[0,0],(0,+∞)} 
Q-code set { L ,  } { L, }  {– ,=,+} 

 
Where an angular change occurs, landmarks are initially set to π, separating 

convex and concave angles. The scanning order for each vertex is set to a counter-
clockwise direction and the magnitude of the vertex is also measured in this direc-
tion. The addition of codes capturing the relative length of contours provides a de-
scription capable of distinguishing between shapes without increasing the number 
of primitives unnecessarily. The two primary codes L and  represent a vertex so 
that individual shapes can be described qualitatively.  

Encoding results in a symbol string and a syntactic handling method employing 
a simple pattern recognition technique is used to group structural and identify se-
mantic aspects of regularities. That is, patterns of symbol sequences denoting spe-
cific categories of features that are familiar in contour or identify some particular 
shape semantic are identified. The descriptions of simply patterns reflect basic 
repetitions and convexity and simple semantic labels, including: indentation, pro-
trusion, [44], iteration, alternation and symmetry [45] are identified. From these 
more complex semantic mappings are then defined including primary shape types 
such as ‘rectangle’, ‘square’, ‘L-shape’, ‘U-shape’, ‘T-shape’, and ‘cruciform’. 
Ever more complex semantics that incorporate domain specific knowledge can 
also be obtained which provide a description of the design concepts, for example, 
“chambers” and “niches”.  

These shape patterns are derived from low level structural primitives and de-
scribe what we shall refer to from this point as local shape features, or LSF. Fea-
tures already stored in a database identify syntactic patterns and where the search 
and matching process examines the type and occurrence of ‘chunks’ and their 
structure as a sequence is then labelled. A systematic search for every possible 
pattern is necessary for the given shape or spatial description.  
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4.1.2 Abstraction and Re-representation 

The DeREP process described above is followed by abstraction and representation 
(AbREP) which automates the derivation and encoding of two subsequent graph 
representations from the original diagram. The systematic processing of spatial re-
lations pertaining to topological and mereotopological attributes requires the map-
ping from physicality to symbol to follow a similar conversion process from the 
graphic state to the symbolic state as implemented in the DeREP process, i.e., con-
tour traversal, vertex detection, value assignment, contour traversal… etc. AbREP 
uses the array of symbols describing intersections of line contours and labelling 
relies on the data structures built from the previous stage.  

To encode multiple line attributes, graph diagrams derived from the original 
contour representation are used as the means by which to parse information in a 
consistent manner. An ‘abstract landmark’, see Fig. 5, is created as an array and 
labelled according to a vertex’s specific characteristics. This is achieved by iterat-
ing between each set of new graph vertices and traversing every pair. In this way, 
graphs provide a notion of hierarchy and support bottom-up development. 

 

    
Fig.  5 Shape Encoding: abstract landmark and shape adjacency relations   

There is an important aspect of the AbREP process, whereby sets of arrays de-
scribing shapes are analysed based on the relationship between each shape. At the 
contact of two or more shapes, specific extraction and embedding relationships re-
lating the intersection of line contours exists [6]. Where this occurs there is a 
transformation in representation which extends the encoding of two line intersec-
tions to include multiple lines. This is a reduction process whereby some structural 
information about the shape is lost. However shape adjacencies are captured using 
a description of vertex arrays. Once the new arrays are derived and labelled a rep-
resentation of adjacencies is captured. At this level, arrays constitute an approxi-
mate representation of the topology of shapes. 
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Topology Descriptors 

The specification method at the level of topology builds on the previous morpho-
logical level and such that it is possible to provide a description of spatial attrib-
utes in terms of shape adjacencies and area descriptors. The symbols used to de-
scribe edges of graphs concern the disposition of physical intersections of lines 
which have been used to generate the polygon fields that are subsequently ana-
lysed as graphs. Edges are labelled according to the intersection type of the two 
vertices belonging to the line contour it crosses creating a ‘dyad’ symbol. In other 
words the pairs of syntax at the level of morphology are collapsed to create a dyad 
symbol.  

The representation of dyad symbols reveals distinctive topological characterist-
ics that are recognised from syntactic regularities. Once the new set is formed the 
area of a shape is calculated and compared to the area of the adjacent shape to ob-
tain a description of the relative area. As a result the list of area magnitudes com-
bined with their adjacency types is created for each abstract landmark. Formal 
definitions are presented in Table 2. 

Table  2. Dyad symbols -qualitative syntax for topology. 

 ANGLE CODES AREA CODES 
Numeric value range 0 ≤ θ ≤ 2π -∞ ≤ l ≤ ∞ 

Landmark set {0, π} {-∞, 0, ∞} 
Interval set {[0,0],(0,π),[π,π],(π,0)} {(-∞,0),[0,0],(0,+∞)} 
Q-code set { L , , T, ⊥, C } { L , , T, ⊥, C }  {– ,=,+} 

 
Unlike morphological features, topological ones contain variations based on a 

reference frame. Using the dyad symbols in conjunction with a reference point, 
three types of adjacency semantics can be defined including: complete adjacency, 
partial adjacency and offset. These regularities identified in dyad symbols are 
deemed intermediary shape features, ISF, since the ‘neighbourhood’ of the de-
scription is based on local attributes as well as information describing topological 
properties. Like LSF, ISF are identified by matching an existing feature database.  

Mereotopology Descriptors 

The next level of abstraction describes the mereotopology of the spatial character-
istics conveyed in the diagram. Mereotopology describes part, (i.e., a shape) to 
whole (i.e., overall plan shape) relations. The dual of the graph diagram is used to 
derive composite symbol values in order to describe part-whole relations. Abstrac-
ting the initial graph to its corresponding dual graph ensures that unambiguous 
mappings can be derived. Once all mappings have been established, the dual is 
used to derive feature semantics. This results in transformations that are much 
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clearer and easier to understand while still based, by virtue of the mapping, on the 
original 2D representation. The second dual graph allows further derivation of 
spatial relationships.  

By labelling the new dual-edges, ‘tuple’ codes derived from dyad symbols (de-
fined at the previous level of topology) are created. For each edge of the dual 
graph, labels are derived from the symbol values identified at the previous level. 
Labelled dual edges allow regularities to be identified and feature semantics de-
scribing part-to-whole relationships between two or more shapes are identified. 
Since dual graphs are undirected, regularities are identified from within the tuple 
itself and not from a string. Formal definitions of dyads are presented in Table 3.  

Table  3. Tuple symbols -qualitative syntax for mereotopology. 

 ADJACENCY CODES 
Numeric value range 0 ≤ θ ≤ 2π 0 ≤ θ ≤ 2π   -∞ ≤ l ≤ ∞ 

Landmark set {0, π}  {0, π}   {-∞, 0, ∞} 
Interval set {[0,0],(0,π),[π,π],(π,0)}  {(-∞,0),[0,0],(0,+∞)} 
Q-code set { L , , T, ⊥, C }  { L , , T, ⊥, C }  { >,=,<} 

 
The semantic features identified at this level account more thoroughly for 

mereotopology. The regularities defined here are similar to Allen’s thirteen inter-
val relations for the temporal domain [46]. Mereotopological feature semantics in-
clude: meets/met-by, overlaps/overlapped-by, starts/finishes, contains/contained-
by, equals and during. Allen’s interval calculus has previously been extended to 
other visual domains [47, 48] unlike previous approaches, here it is not restricted 
to rectangles and although is strictly based on orthogonal shapes, is still capable of 
handling arbitrary multi-sided forms.  

Like the features identified for morphology and topology, spatial semantics de-
rived from visual patterns are identified and domain semantics are integrated using 
design concepts that map onto spatial features. Continuing with the example ap-
plication of the architectural domain, spatial concepts relating to the use or behav-
iour of a space such as corridor, quadrangle, and courtyard are mapped to patterns 
detected in each tuple. Since all features are derived from higher level spatial 
primitives they are defined as global shape features, GSF.  

The three level schema summarised here is characterised by the class aspect of 
handling and labelling design concepts and is useful when dealing with different 
design categorization scenarios. The concession of the approach is that it is essen-
tial to have a large database of concept-to-feature mappings. 

4.1.3 Pre-Processing Feature Sets 

Each type of feature representation identified using the DeREP and AbREP oper-
ations, i.e., morphological, topological or mereotopological, can be used to create 
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a subsets of feature semantics. At this level of implementation the model has two 
approaches to pre-processing of feature sets, where dimensionality reduction can 
be undertaken manually by the user or by using a statistical approach.  

In manual selection of feature sets, subsets can be created directly by selecting 
those features of interest to categorisation. These may also be based on the feature 
sets derived from a target diagram (if known). For example, an observer may wish 
to identify the style of design precedents based on certain topological relation-
ships, such as having complete adjacency, and in conjunction with certain mor-
phological constraints such as an external or bounding cruciform shape and con-
taining all internal rectangular shapes. 

Using the statistical approach, feature subsets can be created automatically us-
ing Correlation-based Feature Selection (CFS) [49]. CFS provides a filter based 
feature selection algorithm that uses correlation among features to select the best 
features for the given subset. CFS evaluates the worth of a set of attributes by con-
sidering the individual predictive ability of each feature along with the degree of 
redundancy.  

4.1.4 Unsupervised Categorisation 

The main advantage of using SOMs in design comparison is that they do not re-
quire target values for their outputs and learning occurs unsupervised. Since there 
is no absolute definition of the commonalities between design artifacts in terms of 
their spatial descriptions, there is no single definitive exemplar to establish reliable 
target outputs that can be used to train a supervised network. For this reason, 
SOMs using unsupervised learning are commonly used to find and construct clas-
sifiers. Hence the SOM can provide a continuous topological mapping between 
the feature space and the 2D mesh of neural units in the competitive layer. This is 
an important property since it enables the representation of a mapping, which pre-
serves relations in the input space while at the same time performing a dimension-
ality reduction onto the 2D mesh. 

To interpret, categorise and visualize the multi-dimensional datasets of seman-
tic features, the SOM learns unsupervised and initially categorisation begins with 
a corpus of reference diagrams. The map consists of a regular “city-block” grid of 
neurons and categorisation follows three steps: (i) the distances between the input 
vector x and all reference vectors (i.e., weight vectors) are computed using a 
Euclidean distance measure; (ii) a winner (i.e., a neural unit for which the corres-
ponding weight vector is at a minimum distance from the input vector) is deter-
mined; (iii) the weight vectors corresponding to the winner and the neural units in 
its topological neighbourhood are updated to align them towards the input vector. 
The SOM then attempts to represent the corpus of diagrams with optimal accuracy 
using the selected subset of features. 

The SOM is able to learn to recognise different patterns in the input data and 
allocate them to appropriate ‘bins’ (styles) in the output array, each bin represent-
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ing a specific pattern. Therefore if we see the output as an array of ‘classification 
bins’ (each representing a specific pattern in the input data) that are arranged in an 
ordered way such that near neighbours represent similar styles and distant neigh-
bours represent different styles. 

Since there does not and will not ever exist one single “correct” answer to the 
central issue of a definition of design style, the ability to combine the distances 
calculated in different feature spaces provides the critical point where relevance 
feedback can be incorporated. The SOM’s matching process can therefore also be 
driven by contextual considerations, where the observer is able to determine the 
relative importance of distinguishing features by adjusting their weights. When 
contextual information is used for determining the importance of distinguishing 
features the correlation between the designer’s requirements and the styles identi-
fied can therefore increase. 

4.2.4 Relevant Styles 

The correspondence between high-level design concepts and lower level physical 
features can often depend on the context of the observer. Consequently each de-
sign categorisation may be different due to the hidden conceptions in the relevance 
of diagrams and their mutual similarity. This is the rationale behind the fourth 
stage where if the design clusters selected by the observer map closely to each 
other on the SOM, then the corresponding feature performs well on the present 
categorisation and the relative weight of its opinion is increased. This is known as 
relevance feedback, or RF, and is the iterative refinement of an initial SOM cate-
gorization.  

RF is provided using dynamic weight adjustments that allow the SOM to learn 
the optimal correspondence between the high-level concepts that the observer uses 
and the feature semantics automatically derived from 2D diagrams. In text and 
image-based research, RF is an established approach that enables contextual-
dependencies to be integrated for document and image retrieval. Recently this ap-
proach has been adopted by researchers using SOMs to retrieve information from 
large databases [38, 39, 40].  

In an analogous manner, we have aimed at integrating RF with a SOM in the 
design domain, by treating this process as a form of learning that moves from un-
supervised learning to being partially supervised. The model tries to learn the ob-
server’s visual preferences by adjusting the feature weights accordingly. Feature 
weights in subsequent categorisations are adjusted using the information gathered 
from the observer’s feedback. The observer’s feedback guides the system in the 
following rounds of the assessment process to better approximate their present de-
sign requirements/ preferences.  

The task of assigning specific weights which coincide with the observer’s per-
ception of each feature set is not feasible and therefore the initial results from the 
unsupervised clustering are displayed using the topographic map so that weights 
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can be derived from user input. It is crucial that the results from the initial round 
are categorised in a manner such that a level of visual similarity is evident to the 
observer – this being the primary objective of integrating qualitative encoding. 
The observer is not required to explicitly specify weights for different features and 
instead weights can be formed implicitly from the positive and negative values as-
signed to a diagram or cluster of diagrams.  

This process follows whereby: (i) an unsupervised SOM categorises a design 
corpus; (ii) the first round of results are displayed and stored to avoid the system 
entering a loop; (iii) the observer indicates which diagrams are to some extent rel-
evant to the present design context and which are not and assigns positive and 
negative values accordingly; (iv) the adjusted weights are utilised in a re-
initialised SOM and the design corpus is re-categorised; (v) the second and any 
subsequent round of results are displayed to the user and stored; and (vi) the pro-
cess continues until the observer is satisfied. 

By marking on the map, the categories the observer deems relevant, we are able 
to adjust each unit or node assigned a positive and negative value depending 
whether the observer has selected or rejected the corresponding design classifica-
tion. The marking operation indicates correctly classified design clusters as posi-
tive. Diagrams are accumulated during the categorisation process into sets and 
weights are adjusted in succeeding iterations, moving from an unsupervised SOM 
to one which is partially supervised or guided.  

5. Experiments 

Two classes of experiments were carried out to assess the cognitive plausibility 
and contextual sensitivity strength of our approach to computational stylistics in 
design. In conducting these experiments, we also aim to test the utility of the 
model as an aide to designers.  

The first experiment tests the discriminatory power of the qualitative schema 
combined with the SOM’s ability to categorise encoded diagrams using specific 
feature sets, i.e., Q-SOM without RF. The second experiment tests the complete 
system, i.e., Q-SOM:RF, where the relevance of categorisations is provided by an 
observer’s feedback in the context of a design scenario. As a result we test the 
model’s ability to handle the cognitive-contextual properties and cognitive-
psychological properties of style. 

The design corpus used in all experiments consists of 2D architectural design 
diagrams. The Exemplar diagrams from each architect and a sample of the feature 
sets extracted (as raw unprocessed data) are shown in Table 4. 
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Table 4. Exemplar diagrams based on Architect 

EXEMPLAR 
DIAGRAM EXEMPLAR LSF EXEMPLAR ISF EXEMPLAR GSF 

ARCHITECT/ 
BLDG TYPE/ 

PERIOD 

 

Alternation, Sym-
metry, Square, Rectan-
gle, Chamber, Niche 

Complete Adja-
cency, Partial Adja-
cency,  

Meets / Met-by, 
Contains / Con-
tained-by, Over-
laps / Overlapped-
by, Starts / Fin-
ished-by, Corri-
dor, Portico 

Palladio 
Residential Public 

1528 - 1580 

 

Indentation, Protru-
sion, Iteration, Alterna-
tion, Square, Rectan-
gle, “L”-shape, “T”-
shape, Niche, Stepped 
forward, Hearth 

Complete Adja-
cency, Partial Adja-
cency, Offset 

Meets / Met-by, 
Contains / Con-
tained-by, Over-
laps / Overlapped-
by, Starts / Fin-
ished-by, Equals, 
Corridor, Portico 

Frank Lloyd 

Wright 

Residential 

1888 - 1959 

 

Indentation, Protru-
sion, Iteration, Alterna-
tion, Symmetry, Rec-
tangle, “U”-shape 

Complete Adja-
cency, Partial Adja-
cency,  

Contains / Con-
tained-by, Over-
laps / Overlapped-
by, Starts / Fin-
ished-by, During, 
Equals, Corridor, 
Veranda 

Mies van der 
Rohe 

Residential, Public 
(Religious, Li-
brary, Theatre) 

1912 - 1958 

 

Indentation, Protru-
sion, Iteration, Alterna-
tion, Symmetry, 
Square, Rectangle, 
“U”-shape, “L”-shape, 
Niche, Stepped back-
ward. 

Complete Adja-
cency, Partial Adja-
cency 

Contains / Con-
tained-by, Over-
laps / Overlapped-
by, Starts / Fin-
ished-by, During, 
Equals, Portico, 
Courtyard 

Le Corbusier 
Residential, Public: 

(Religious) 
1908 - 1965 

 

Indentation, Protru-
sion, Iteration, Alterna-
tion, Symmetry, 
Square, Rectangle, 
“U”-shape, Chamber, 
Locked Space, Niche, 
Gallery, Hearth 

Complete Adja-
cency, Partial Adja-
cency, Offset  

Meets / Met-by, 
Contains / Con-
tained-by, Over-
laps / Overlapped-
by, Starts / Fin-
ished-by, Equals, 
Courtyard, Quad-
rangle 

Louis Kahn 
Residential, Public 

(Religious, Li-
brary, Theatre) 

1951 - 1969 

 

Indentation, Protru-
sion, Iteration, Alterna-
tion, Symmetry, 
Square, Rectangle, 
“L”-shape, Chamber, 
Locked Space 

Complete Adja-
cency, Partial Adja-
cency, Offset 

Meets / Met-by, 
Contains / Con-
tained-by, Over-
laps / Overlapped-
by, Starts / Fin-
ished-by, Equals, 
Courtyard 

Mario Botta 
Residential 
1969 - 1996 

 
The corpus tested is relatively large, totalling 131 diagrams and representing 

six architects, namely: Palladio, Frank Lloyd Wright, Mies van der Rohe, Le Cor-
busier, Louis Kahn, and Mario Botta. The two studies here undertaken use net-
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works that have been trained using 36 diagrams, which comprise six designs ran-
domly selected from each of the six architects.  

The number of features extracted from the design corpus totalled 37,367 and 
there is an average of 287 features from 59 sets associated with each diagram. The 
characteristics of feature sets in relation to each architect are shown in Table 5.  

Table 5. Characteristics of each feature set based on Architect 

TYPE (ARCHITECT)  AVERAGE No. OF 
FEATURES 

TOTAL No. OF 
FEATURES 

No. 
DIAGRAMS 

PALLADIO 254 3810 15 
FRANK LLOYD WRIGHT 306 18360 61 

MIES VAN DER ROHE  268 4288 16 
LE CORBUSIER 221 1547 7 

LOUIS KAHN 327 6213 19 
MARIO BOTTA 243 3159 13 

 
The level of complexity of the corpus is considered to be relatively high since 

although all diagrams are from a single domain, i.e., architecture, the corpus con-
sists of designs from a number of architects and several different building typolo-
gies including small and large scale residential, as well as a variety of public 
buildings. 

5.1 Experiment 1: Q-SOM 
The first experiment is designed to assess the effectiveness of the derivation of 
semantic features and ascertain the benefits of dimensionality reduction in dia-
gram categorisation. This experiment is therefore designed to test the visuo-spatial 
re-representations of the pictorial content of the diagram as qualitative features 
and feature sets. We trained, tested and evaluated networks using a variety of net-
work topologies and different feature subsets. 

5.1.1 Pre-Processing 

Pre-processing of input data was undertaken using the statistical feature selection 
method outlined in Section 4.2., and using CFS we evaluated subsets of features 
by the correlation among them. In the first study we used only a re-representation 
of morphology (i.e., the LSF) extracted from the corpus for dimensionality reduc-
tion and eight LSF were identified as significant by CFS including: Protrusion_0, 
Protrusion_3, Iteration_2, Alternation_1, Symmetry, Square, Cruciform and 
Niche. From this point, we shall refer to all networks created using this subset as 
SOML. 

In the second study, dimensionality reduction included all feature sets extracted 
using the DeREP and AbREP operations and in addition to the eight LSFs identi-
fied above, four GSFs: Contains/Contained_by, Overlaps/Overlapped_by, Equals, 
and Courtyard were evaluated as an optimal subset of attributes for clustering. In-
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terestingly, no ISF were identified. Categorisation therefore relies on a combina-
tion of feature classes where the ratio of local to global features is 2:1. We shall 
refer to all networks created using this subset as SOML+G.  

5.1.2 Training  

For all Q-SOM experiments, two different feature vector models were constructed 
using the subsets identified in the previous section. In all SOML networks, each 
diagram had an average of 35 features and the final vector model contained 1239 
feature instances, which created a unique feature vector for each 2D plan diagram. 
In SOML+G networks each diagram contains an average of 50 features and the final 
vector model contained 1812 feature instances comprising of feature vectors from 
1,239 LSF and 573 GSF feature instances. 

In addition to the two different feature vector models, training was also varied 
in terms of the topology of the network and the number of cycles, where 500, 
1000 and 1500 training cycles were used. Table 6 shows the training variables for 
each Q-SOM. 

Table 6. Characteristics of different Q-SOM networks used in diagram classification. 

VECTOR MODELS NETWORK CHARACTERISTICS 
FEATURE SUBSET NO. INPUT NODES TOPOLOGY TRAINING CYCLES 

SOML 8 
SOML+G 12 

3x3, 5x5, 10x10
 

500, 1000, 1200
 

 
Neither SOML nor SOML+G utilise any other information about the diagram, 

i.e., the architect, building type, period, etc. Since there is no access to prior 
knowledge regarding the number of clusters in the data, the SOM proceeds unsu-
pervised.  

Based on a visual inspection the 5x5 SOML, trained for 500 cycles, performed 
the best and resulted in the clusters as shown in the topographic map in Fig. 6. Re-
sults show categorisation of diagrams can be roughly linked to the architect as in-
dicated by the map and labelled key in Fig. 6 showing each architect, where: A ≈ 
Palladio; B ≈ Wright, C ≈ Van Der Rohe, D ≈ Le Corbusier, E ≈ Kahn, and F ≈ 
Botta. A node may represent more than one diagram, but with different activation 
values. In some cases the node contains two architects (approximately 20%) and 
each label has been assigned on the basis of the dominant feature vector. Also ob-
served from the map, the network appears to have clusters distributed separately 
corresponding to the same architect, including: Wright (C), Kahn (E) and Botta 
(F). 
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Fig. 6. Training result: SOML clustering. 

The 5x5 SOML+G, trained for 500 cycles, also resulted in well defined clusters, 
as shown in Fig. 7. Like the results obtained for the 5x5 SOML, the results ob-
served in the topographic map show categorisation of diagrams can be linked to 
the architect. The topological ordering of the diagrams in the 5x5 SOML+G shows a 
better result than obtained for the 5x5 SOML training. This is evident from the 
separate clusters and the distinctive change of clusters across the map, where 
Kahn’s diagrams, E, are located in the upper left-hand corner of the map and the 
architect gradually changes towards the bottom-right corner to Le Corbusier, D. 
Although the 5x5 SOML+G also distributed two clusters for Wright’s designs, B, 
clustering is more consistent across individual architects.  

 

 

Fig. 7. Training results: SOML+G clustering. 
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Significantly, in the 5x5 SOML+G, all nodes except for the node marked “x” in 
Fig. 7 contain input vectors from the same architect. This can also be observed 
from the activation weights given to each individual input vector. The SOML input 
vectors have much lower activations when compared to the SOML+G input vectors. 
Testing was then carried out to evaluate the clustering effectiveness of the trained 
networks. The objective of testing is to evaluate the success of each trained net-
work using the two different approaches to constructing feature vectors, i.e., man-
ual versus CFS selection.  

5.1.3 Testing  

The SOML and SOML+G networks were tested and their clustering ability was ob-
served. As in training, the 3x3, 5x5 and 10x10 maps were all tested. To analyse 
the results of categorisation between the topographic maps we utilised techniques 
from conventional text-based categorization analysis including: Precision [50], the 
Jacaard or JAC method [51], and the Fowlkes-Mallows or FM method [52]. Since 
classification is unsupervised it is not possible to apply these evaluation methods 
directly as would be the case for supervised learning.  

To analyse results of testing unsupervised SOMs it is necessary to utilise the 
most dominant label of each cluster (obtained during training) for all diagrams. 
For this reason, the labels (architects) identified from training are maintained so as 
to assign categories. The “micro-averaged” precision matrix method [50] was first 
used to evaluate each network and the well-established JAC and FM methods 
were then used to evaluate cluster quality; see [40] for further details of these ev-
aluation methods. 

The three topologies of SOML were tested and each network’s ability to catego-
rise the entire design corpus was analysed. The 5x5 map was found to have the 
best results for all evaluation techniques measured, as shown in Table 7, with Pre-
cision and JAC results being comparable. The results of FM also show how the 
5x5 map outperformed both the 3x3 and the 10x10 maps. 

Table 7. Clustering ability of different map topologies trained on SOML Feature subsets 

STUDY 1: Q-SOM  PRECISION JAC  FM 

SOML 3x3 0.49 0.29 0.37 
SOML 5x5 0.62 0.38 0.45 

SOML 10x10 0.53 0.32 0.30 

 
Next, we tested Q-SOML+G, and again the 5x5 map has the best results for all 

evaluation techniques measured. As expected the 5x5 SOML+G produced better re-
sults for precision, JAC and FM than SOML results, shown in Table 8. 
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Table 8. Clustering ability of different map topologies trained on SOML+G Feature subsets 

STUDY 2: Q-SOM PRECISION JAC  FM 

SOML+G 3x3 0.61 0.46 0.42 

SOML+G 5x5 0.74 0.53 0.50 

SOML+G 10x10 0.60 0.46 0.39 

5.1.4 Assessment of Clusters  

The nature of the categories produced by the two best performing networks, i.e., 
5x5 SOML and SOML+G are difficult to evaluate, except via visual (subjective) 
processes. Recently, conventional clustering techniques (e.g. K-means, EM, Hier-
archical, etc.) have been used to resolve this problem. Ahmad and Vrusias [52] 
demonstrate the effectiveness of using conventional statistical clustering tech-
niques, in evaluating the output of maps of unsupervised networks. Sequential 
clustering, i.e., first clustering using an unsupervised network and then clustering 
the output map, facilitates visualising clusters that are otherwise implicit in the 
output map. 

We have used a sequential clustering method, Q-SOM followed by K-means, to 
examine the categories obtained. An application of K-Means clustering on the 
output of the 5x5 SOML and SOML+G maps shows how they have found data in 
proximate types defined by both the architect and building type. Tables 9a and 9b 
compare K-Means clustering of all 131 plan diagrams for both 5x5 networks. 

Table 9. Distribution of plan diagrams using K-Means clustering: (a) SOML and (b) SOML+G, 
where A = Palladio Residential and Public Bldgs., B = Wright Residential Prairie Bldgs., C = 
Wright Residential Usonian Bldgs., D = Mies Van Der Rohe Residential Bldgs., E = Mies Van 
Der Rohe Public Bldgs., F = Le Corbusier Residential Bldgs., G = Le Corbusier Public Bldgs., H 
= Kahn Residential Bldgs., I = Kahn Public Bldgs., and J = Botta Residential Bldgs. 
 

 CLUSTERS BY K-MEANS ON SOML 

Archi-
tect  

A B C D E F G H I J 

 A   9       2 3 1 

 B  6 19 2  1   5  1 

 C  7 14  4      

D   1  2 3 1 1    1 

E     1  4   1 2  

F     1  3     

G       3 0    

 H      2  1  8   

 I   1  1 1    5  

 J  1   2 1 2    7 

 
 CLUSTERS BY K-MEANS ON SOML+G 

Archi-
tect  

A B C D E F G H I J 

 A   12    1   1  1 

 B  1 25 2  1   5  1 

 C  4 19  1  2 1   

D   1  1 6  1     

E       5   1 2  

F     1  3     

G     1   2    

 H        1  10   

 I  1  1      7  

 J       2    11 

 (a)  (b) 
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The two tables show the distribution of plan diagrams where the feature vector 

models can be used to cluster diagrams according to an architect and their residen-
tial or public building types. Using the sequential clustering method Table 9a 
shows clustering of the design corpus based on the LSF subset (SOML) has not 
proven to be as defined. Diagrams associated with both architect and building type 
(represented using the combined LSF and GSF subset), shown in Table 9b, have 
generally been well clustered except for Le Corbusier’s designs where no distinct 
clusters are distinguishable. Significantly for both SOML and SOML+G networks, 
Wright’s designs are distinguished relative to two periods of Wright’s work – the 
Prairie and Usonian houses -  where clustering defines 87% of Wright’s Prairie 
design diagrams and 84% of his Usonian. 

5.2 Experiment 2: Q-SOM:RF 

Based on the results obtained from the 5x5 SOML+G, the final experiment trains 
and tests a network’s ability to categorise the same corpus using the complete Q-
SOM:RF model to obtain clusters which are relevant to some design context. Pre-
processing is again used in dimensionality reduction to create feature vectors and 
categorisation proceeds as a sequential process based on manual selection of dia-
grams. In this experiment, categorisation is evaluated in the context of a design 
task where the observer (the author) has provided positive and negative values to 
the units of the network.  

5.2.1 Design Context 

A simple design task was formulated using a brief specifying the requirements of 
a residential plan design for a family of four. The brief specifies alterations and 
additions of an existing residential design to increase sleeping and living spaces, 
according to the following specifications of building layout: additional sleeping 
areas to accommodate two children; larger lounge, dining and kitchen areas; and 
outdoor living area. 

A conceptual design sketch was then produced using the systems digital draw-
ing interface which constrains sketching to orthogonal axis. Fig. 8a presents the 
design sketch produced as a result of the brief’s requirements and Fig. 8b shows 
the sketch as interpreted by the vectorization process of the system. The sketch 
was encoded (all labels are ignored) and included in the design corpus with the 
other 131 plan diagrams. 
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(a)      (b) 

Fig. 8. Design sketch (a) original sketch of residential dwelling (b) contour vectorization 

5.2.2 Pre-Processing 

In this experiment, the original (raw) feature set was processed manually. Manual 
processing is utilised since it enables the selection of a feature subset relevant to 
the design task. Since it is the aim for categorisation to be grounded by the design 
task, the style of diagrams can be determined based on those features extracted 
from the design sketch shown in Fig. 8. Therefore from the 59 possible feature 
classes, selection of one or many feature subsets to create vector models is facili-
tated from the encoding of the design sketch. Salient features were identified from 
the local, intermediate and global shape features contained within design sketch. 
All features classes extracted from the design sketch are shown in Table 10.  

Table 10. Reduced feature subset and user subset 

FEATURES EXRACTED BY DeREP & AbREP SUBSET  

Indentation 0 1 2 3     

Protrusion 0 1 2 3     

Iteration 0 1 2 3     

Alternation 0 1 2 3     
LSF (Geometry-based) 

Symmetry 0 1 2 3     

Stepped forward  
LSF (Domain-based Semantics) 

Niche  

Complete Adjacency  

Partial Adjacency  ISF (Geometry-based) 

Offset  

Contains / Contained-by  

Overlaps / Overlapped-by  GSF (Geometry-based) 

Starts Finished-by  

Corridor  

Portico  GSF (Domain-based Semantics) 

Stepped  
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The feature classes within the design sketch were then used to create feature 

vector models to classify the design corpus. A total of 31 feature classes were ex-
tracted from the design sketch, which were distributed between local, intermediate 
and global feature classes as: 22, 3 and 6 respectively.  

Using the reduced feature subset it is possible to identify other feature subsets 
which may be deemed to be more salient in relation to design requirements. To 
demonstrate the utility of selecting a user-specific subset from the design sketch, a 
feature subset is shown in the final column of Table 10 (shown as ticked), where 
11 feature types have been selected based on the preferences of the designer. In 
addition, three other feature subsets were selected, namely: (i) LSF, (ii) ISF and 
(iii) GSF.  

Five feature vector models were then constructed consisting and network train-
ing was also varied in terms of the number of cycles, where 500, 1000 and 1500 
training cycles were again used. Table 11 shows the final training variables for 
each of the five qualitative feature-based SOMs. 

Table 11. Characteristics of the different neural network systems used in diagram classification. 

VECTOR MODEL NETWORK CHARACTERISTICS 

FEATURE SUBSET NO. INPUT NODES TOPOLOGY TRAINING CYCLES 
All Features 31 
User Subset 11 

LSF 22 
ISF 3 

GSF 6 

5x5
 

500, 1000, 1500
 

5.2.3 Training and Testing Using Relevance Feedback 

All five feature vector models were trained using the 5x5 topography. However, 
before testing could commence it is necessary to make explicit the targeted cate-
gories. In order to demonstrate and then evaluate the performance of the five fea-
ture vector models in conjunction with RF, a category of designs must first be de-
fined within the corpus as the desired target/s. We selected two targets: (i) 
Wright’s Usonian period and (ii) Kahn’s residential designs. Each target contains 
27 and 11 plan diagrams respectively. Each category was selected simply based on 
observer preferences. Neither target is necessarily more “correct” or valid than any 
other potential category of designs. However because Wright’s Usonian and 
Kahn’s residential designs can now be explicitly targeted by the observer using RF 
it is then possible to evaluate how well the system refines sequential categorisa-
tion. 

Based on positive and negative feedback, each SOM tested resulted in a re-
categorisation of the corpus where the iterative process continued until the ob-
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server was satisfied. The clustering of each model was produced by returning the 
best-scoring diagrams in each iteration step from the selections of the relevant de-
signs among them. Results from testing the five networks show that the SOM that 
utilised ‘All Features’ performed the best, and provided well defined clusters. The 
remaining networks also resulted in well defined clusters, however the categorisa-
tions observed (on visual inspection) in these topographic maps do not, appear to 
be as well defined.  

Formal evaluation methods used here rely on JAC and FM measures to analyse 
the results of each SOM’s. The first map, the ‘All Features’, returned the highest 
performance and the second map, the ‘User Subset’, also produced comparable re-
sults for JAC and FM measures. The performance of the remaining three maps 
was lower as shown in Table 12. 

Table 12. Clustering ability of different feature vector models  

Experiment 2: Q-SOM:RF  JAC  FM 

All Features 0.53 0.50 
User Subset 0.46 0.42 

LSF 0.46 0.39 
ISF 0.38 0.45 

GSF 0.32 0.30 
 

The result of the best performing network, the 5x5 ‘All Features’ is illustrated 
in Fig. 9, which was trained for a total of 1000 cycles. Results observed in the map 
show categorisation of diagrams can be roughly linked to two architects as indi-
cated by the map and labelled key. 

 

 

Fig. 9. Final categorization formed by ‘All Features’ for Q-SOM:RF 

The labelled key in Fig. 9 indicates each architect, where: A ≈ Wright (Uson-
ian); B ≈ Wright (Prairie) and C ≈ Kahn. Other architects whose dominant feature 
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vectors defined some labels included: D ≈ Palladio; E ≈ Van Der Rohe, F ≈ Le-
Corbusier, and G ≈ Botta. Unlike previous results shown in Section 5.2 Experi-
ment 1, there are multiple nodes of the map that contain input vectors from differ-
ent architects. Significantly, only 5% of the nodes where Wright and Kahn’s 
diagrams are clustered contain another architect whereas the majority of the re-
maining nodes contain more than one architect (approximately 50%) and include 
some of Wright’s and Kahn’s diagrams.  

5.2.4 Assessment of Cluster and Feature Subsets 

We evaluated the performance of the networks that used the Q-SOM:RF process 
using a method that resembles “target testing” developed by Cox et al. [54]. Here, 
instead of a single target, testing evaluates the two targeted categories: Wright’s 
Usonian and Kahn’s residential designs. To obtain the performance measure τ, the 
targeted category TC, of designs defined by the user’s requirements r is used. For 
each diagram in category TC, the total number of different clusters categorised by 
the network until the final category is reached is recorded. From this data, the av-
erage number of clusters formed before the final “correct” response is divided by 
the total number of diagrams k. The performance measure of the target category is 
then obtained as:  

 
 (1) 

where φ (C , A) is the a priori probability of the category TC , given by TC  / k. 
In general the smaller τ , i.e., τ < 0.5, the better the performance .  

The results of the performance measures for all five networks are shown in Ta-
ble 13. The two feature subsets containing ‘All Features’ and the ‘User Subset’ 
yielded better results than the LSF, ISF or GSF subsets, which can be observed in 
the first two rows of the table. 

Table 13. Resulting τ values in the Q-SOM:RF experiment 
TARGET CLUSTER FEATURE SUBSET 

Usonian Kahn (Residential) 
All Features 0.23 0.26 

User Subset 0.29 0.31 
LSF 0.36 0.33 

ISF 0.54 0.62 

GSF 0.39 0.43 

 
The general trend observed from these results shows that using a larger set of 

features yields better results than using a smaller subset of features. Based on all 
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performance measures we can observe that using more or all feature classes to 
create feature vectors yields better results than any one single feature class. Thus, 
a combination of all available morphological, topological and mereotopological 
features in conjunction with RF has resulted in the highest performance measure.  

The implicit weight adjustments based on the relative importance of features 
contained in diagrams shows that the model is capable of categorisation using both 
geometric and semantic attributes contained in the corpus. This kind of automatic 
adaptation is desirable as it is generally not known which features would perform 
best in clustering the complex visuo-spatial information inherent in architectural 
diagrams.  

The experiments demonstrate that utilising Q-SOM:RF as a system for assess-
ing the similarity of design diagrams to distinguish style not only provides a useful 
method for initial unsupervised categorisation but also provides the flexibility to 
overcome a variety of problems resulting from context. The approach demon-
strated in this experiment provides a robust method for defining the style based on 
a feature space that is capable of adapting to the contextual relevance of multiple 
spatial ontologies defined by both lower-level geometric and higher-level seman-
tic features. 

6. Discussion 

In this chapter, we have investigated a conceptualization of style based on the vis-
ual and spatial perception of an artifact and tested implementations of an approach 
to automating the analysis of designs to identify style/s. Thus, like Stiny’s Chapter 
in this book, our explorations look to uncover how style is defined via observa-
tion, where the derivation of style depends on seeing and the process of compari-
son is not fixed but is subject to adaptations according to the observer’s context.  

Our approach to automated analysis has therefore focused on modelling and 
testing (in two separate experiments) a cognitively compatible analysis and a task 
relevant clustering method for identify style/s significant to a designer’s context. 
We have demonstrated how style is related to the way information is processed. 
and that the reporting of different design styles is as a meta-cognitive process [16] 
requiring explicit comparison of design information both prior and subsequent to 
processing by the system.  

6.1 Experiments 

We demonstrated and tested two systems, namely the Q-SOM and Q-SOM:RF 
models. The results of our experiments show that the first Q-SOM system was 
able to provide a mapping from the physicality of the diagram using qualitative re-
representation geometric and semantic feature sets are obtained and, as a result, 
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meaningful feature subsets can be analysed as input to the SOM; and that the sec-
ond extended Q-SOM:RF system was able to effectively select from sequential 
and iterative processing by adjusting weights of a SOM to coincide with an ob-
server’s conceptual view of a design artifact’s style. In other words, initial unsu-
pervised clustering was adaptive in sequential clustering stages and became more 
relevant according to the designer’s intentions. 

The strength of the approach lies in its utilisation of a multi-dimensional quali-
tative encoding schema and its ability to simultaneously assess multiple reference 
design diagrams. Since an individual diagrammatic feature or even a class of fea-
tures based on any one spatial dimension may not be sufficient for analysing the 
style of complex design diagrams the model enables the extraction of information 
from multiple dimensions so that the adaptation of the boundary of a style is based 
on a range of visuo-spatial features. In our computational experiments, the model 
has been shown to be capable of bridging the gap between the low-level visual 
features extracted from the design artefact and the high-level semantics used by 
designers to understand design content. The first experiment of the Q-SOM dem-
onstrates how the approach is capable of overcoming the cognitive properties of 
similarity-based classification outlined in Section 2.  

Furthermore the significance of features and feature subsets can be identified 
relative to the comparison’s context via feedback. The use of target categories in 
the final experiment demonstrates that when contextual information is integrated 
to determine the relative importance of features, the correlation between the sys-
tem’s results and the observer’s assessments increases. Significantly, this correla-
tion can be seen to result from the detailed definition, detection and extraction of 
feature classes and the observer’s feedback determining feature salience. In this 
way, the second experiment of the Q-SOM:RF model shows how the approach is 
capable of overcoming the contextual properties of similarity-based classification 
discussed in Section 2. 

6.2 Future Work 

In design research our approach, and specifically, the relevance feedback tech-
nique, differs from existing automated analytical systems of style. Typically exist-
ing systems have been based on simple feature-based distances measures, see for 
example [29, 31]. Yet, despite our model’s strengths, the approach to style tested 
here in relation to visuo-spatial information and its cognition require further ex-
ploration in modelling an object viewpoint of style.  

The promising results obtained so far require additional studies across a variety 
of design scenarios and where testing the interactive Q-SOM:RF system is based 
on multiple users with different level of design experience and knowledge. It is 
expected that in undertaking human-subject experiments, that the Q-SOM:RF sys-
tem should perform equally well as demonstrated here when using either expert or 
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novice designers. The performance of the model should not differ substantially be-
tween users since their individual assessments will be reflected by the model’s 
flexibility and adaptation to feedback. However a quantitative evaluation of the Q-
SOM:RF model’s performance in this respect is problematic due to occurrences of 
an individual preference and unique perceptual biases. Subjectivity is therefore a 
valid part of the iterative classification processes which takes place over open and 
variable dimensions of the designs being compared. 

Using a multiple user research programme, future studies must further test the 
approach so that two significant questions can be addressed: 

1. Is the model superior to existing approaches? And if so, how significant is 
the performance improvement? The studies reported here highlight the 
main differences between the Q-SOM:RF model and existing models based 
on the re-representation of single spatial ontologies and simple metric dis-
tance measures. We have also claimed that the Q-SOM:RF model is a good 
estimator of the similarity among design diagrams across local, intermedi-
ate and global levels of visual and spatial information. Future studies must 
examine whether or not the performance of our model (under the same set 
of evaluation criteria) is better than the performance of existing models. 
Such a study should lead to the conclusion that static linear based models 
cannot characterize style adequately. 

2. Is there a set of well-balanced features which on average, perform as well 
as possible? That is, are there specific subsets of features that can be used 
to create feature vector models and which can be inspected relative to de-
fined design styles? The objective of this research question is investigate 
the idea of feature centrality in the design domain relative to the effects of 
context and historically defined styles, e.g., Romanesque, Classical, Gothic, 
etc.  

6.3 Concluding Remarks 

By employing qualitative modeling and a self-organizing map with a relevance 
feedback, the concept of similarity has been shown to be an effective grouping 
principle so as to enable a digital characterization of style relative to context. The 
important and obvious implication of our approach and investigations is that iso-
lated features are insufficient in formulating fixed conclusions about distinctive 
boundaries or perimeters of design styles. Instead, causality must also be attrib-
uted to cognitive and context dependant factors that influence the perception and 
judgement of a feature, a diagram, a design corpus and as a result a style. Conse-
quently, the perceptual biases of different individuals or the same individual 
undertaking different design task, will influence classification and thus the boun-
daries delineating a style may be drawn differently.  
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Finally, in closing it is important to note the practical value of computational 
stylistics in design as a tool to facilitate style related tasks during the design proc-
ess, and where the benefits of such support to designers are manifold. Whilst cog-
nitively, human observers have limited capacity to compute large amounts of 
visuo-spatial data, the value of automated analysis is also in part due to the capac-
ity of individuals to discriminate and communicate what defines a style. For indi-
viduals, whilst the particular features and configurations of features is a determi-
nant of style [55], often what makes up a style is not always easy to identify and 
articulate even though an observer may be able to recognize an artifact’s style 
with little difficulty.  

Using on our approach to analysis, a computational stylistics tool can provide 
computational support across a range of design stages – from the early planning 
stages, to the conceptual and schematic design stages, to the specification stages. 
Consequently larger and more efficient search during design precedent analysis 
tasks, design inspiration gathering activities, and reuse of design details can be en-
abled. It is possible to support such design tasks using computational stylistics 
since visuo-spatial information can be classified and retrieved automatically by 
accessing large databases of existing design artifacts, including not only 2D dia-
grams but also potentially 3D models. Consequently, designers would able to ac-
tively participate in the definition of existing and new styles– changing, re-
defining and creating their boundaries as they generate their own designs. 
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