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Abstract 
 
This paper presents an approach that enables a design tool to learn through its use. This approach uses a situated agent that wraps 
around a design tool and constructs concepts from interactions between the agent, the design problem and the use of the tool. The 
concept underpinning this research is founded on the ideas of “situatedness”. Situatedness involves the context and the observer’s 
experiences, as well as the interactions between them. A situated agent uses a constructive memory system to learn concepts 
while interacting. When applied to design optimization fields, such a situated agent-based design interaction tool demonstrates 
adaptive behaviours in reflexing, reacting and reflecting to various design optimization scenarios based on the incrementally 
learned knowledge structures and their intentional descriptions – the conceptual knowledge. Design tools no longer simply 
respond to their use based on a priori knowledge. Experiments show that a situated agent-based design optimization tool can 
learn and develop adaptive behaviours to support design decision-making. A prototype system is presented.  
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1. INTRODUCTION 

Designing is recognized as one of the most complex 
human endeavours. Applying computers in building 
design can be traced back to the 1950s. Computer-
aided design tools (CAD) were first introduced to 
assist designers in evaluating the “goodness” of their 
creations (Kalay, 1999). They have extended their 
functionality to include three-dimensional modelling, 
computer simulation, analysis, and integration 
between applications. Whilst the functionalities of 
design tools have been multiplying to embrace new 
technologies, e.g., gesture recognition, multimedia, 
and virtual reality (Myers, 1998), they continue to be 
built on the paradigm that the tool is unchanged by its 
use (Gero, 1996; 2003). Design tools keep repeating 
themselves irrespective of their interactions with the 
design environment. Designing is intrinsically 
dynamic and interactive, in the sense that designers 
reflect (Schon, 1983) and often change the course of 
the developing design (Gero, 1998a). Knowledge-
based design systems have been widely applied to 
provide knowledge support for tasks which require 
human expertise, e.g., OPTIMA (Balachandran, 
1988), KNODES (Rutherford & Maver, 1994) and 
SEED (Flemming, 1994). These systems encode sets 
of a priori design knowledge relating to the solutions 
of various design problems. To address the 

indeterministic nature of a design process, many 
CAD researchers turned to building systems that can 
learn automatically. Machine learning techniques 
have been widely adopted in knowledge-based 
systems to provide knowledge acquisition, 
modification and generalization. These systems apply 
a variety of machine learning algorithms to learn 
design product and process knowledge, e.g. design 
product learners like ID3 (McLaughlin & Gero, 
1987), ECOBWEB (Reich & Fenves, 1991), 
BRIDGER (Reich, 1993) and NODES (Persidis & 
Duffy, 1991; Duffy et al., 1995); design process 
learners such as BOGART (Mostow, 1989; Mostow et 
al., 1992) and ARGO (Huhns & Acosta, 1992). 
Classical design learning systems treat knowledge as 
universal applicable and context-free generalizations 
and descriptions (Reffat & Gero, 2000), so that they 
can be reused in different contexts. 

It is worth noting that an equally important notion 
is “learning from a context”. Lieberman and Selker 
(2000) pointed out that software that is sensitive to 
context can reduce users’ frustrations in dealing with 
the complexity of their functionalities. The intrinsic 
interactive nature of design activities requires a 
system that integrates generalization and context, in 
the way that the system can learn and adapt to 
experiences in different circumstances. 

Recently, interaction has been taken into account 
in developing systems to resolve uncertainty in a 
dynamic process. This includes research in the field 
of user modelling and intelligent interface, e.g., 
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interface agents (Maes, 1994), the Lumiere project 
(Horvitz et al., 1998) and PBE systems (Lieberman, 
2001). These adaptive interfaces model users and 
their interactions with computers with the aim of 
producing adaptive behaviours. From their initial 
endeavours based on the cognitive processes that 
drive users’ actions in human computer interaction, 
research on user modelling now concentrates on 
learning users’ habitual actions in using software 
applications. Adaptive interfaces provide proactive 
help in the sense that they anticipate user needs and 
present help before it is requested (Selker, 1994). 
However, adaptive interfaces have to cope with the 
“trade-off” between generalization and context 
(Lieberman & Selker, 2000). This creates a 
dichotomy between abstraction and context, which 
should be viewed as a coherent unity in what we call 
a concept. 

In this paper, we present an approach founded on 
concepts from both the cognitive and computational 
domains. This approach uses a situated agent that 
wraps around a design tool and constructs concepts 
from interactions between the agent, the design 
problem and the use of the tool. As a combination of 
the agent’s interpretations and expectations of its 
external and internal environment, a concept depicts 
the memory learned in a constructive memory model 
in a particular circumstance. A concept is a product 
of coordination of data-driven processes from 
contexts in the external world and expectation-driven 
processes from the agent’s generalizations. It 
contains both the context-sensitive information and 
its grounded abstractions. A situated agent uses a 
constructive memory system to learn concepts while 
a designer is optimizing a design.  

2. SITUATEDNESS AND CONSTRUCTIVE 
MEMORY 

Software agents are intentional systems that work 
autonomously and interact with environments in 
selecting actions to achieve goals (Wooldridge & 
Jennings, 1995). A situated agent is a software agent 
built on the notion of “situatedness”. 

The concept of “situatedness” has its roots in 
empirical naturalism (Dewey, 1896 reprinted in 1981) 
and cognitive psychology (Bartlett, 1932 reprinted in 
1977). It has been investigated in many different 
areas with diverse terms. It is also termed as 
“Situated Action” (Suchman, 1987), “Situated 
Cognition” (Clancey, 1997) and “Situated Learning” 
(Lave & Wenger, 1991). The notion of “situatedness” 
is considered as a conditio sine qua non for any form 
of “true” intelligence, natural or artificial (Lindblom 
& Ziemke, 2002). Vygotsky contributed to the 
concept of “situatedness” by introducing activity 

theory, defining that activities of the mind cannot be 
separated from overt behaviour, or from the social 
context in which they occur. Social and mental 
structures interpenetrate each other (Vygotsky, 1978; 
Clancey, 1995).  

The theory of situatedness claims that every 
human thought and action is adapted to the 
environment. They are situated because of what 
people perceive, how people conceive of their 
activity, and what people physically do develop 
together (Clancey, 1997). It is postulated in situated 
learning that knowledge is not a thing or set of 
descriptions or collection of facts and rules. Neither 
is it like procedures and semantic networks in a 
computer program. Human knowledge should be 
viewed as a capacity to coordinate and sequence 
behaviour, to adapt dynamically to changing 
circumstances (Clancey, 1995). In this vein, 
situatedness involves both the context and the 
observer’s experiences and the interactions between 
them. Situatedness is paraphrased as “where you are 
when you do what you do matters” (Gero, 1998b). It 
is inseparable from interactions in which knowledge 
is dynamically constructed. Situated cognition copes 
with the way humans construct their internal worlds 
via their interaction with the external world (Gero, 
2003).  

Central to the concepts of “situatedness” and a 
situated agent is the notion of “constructive memory”. 
Constructive memory contradicts many views of 
knowledge as being unrelated to either its locus or 
application (Gero, 1998b). A memory can be 
regarded as a process of learning a concept. It is a 
reflection of how the system has adapted to its 
environment (Gero & Smith, 2006). 

New memories of the experience are a 
function of both the original experience 
and previous memories of it. New 
memories can be viewed as new 
interpretations of the augmented 
experience (Gero, 1999). 

This process is biased by current environmental 
cues, experience and the way the agent’s experiential 
responses are developed into memories from 
interactions between the agent and its environment. 
In this paper, we suggest that a constructive memory 
model can be implemented as a situated concept 
formation engine, through which a design interaction 
tool can learn. 

3. SITUATED CONCEPT FORMATION 

3.1. Concept Formation through a Situated Lens 

Many researchers consider categorization the essence 
of a concept and its formation. Concept formation has 
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been regarded as a process of incremental 
unsupervised acquisition of categories and their 
intentional descriptions (Fisher & Pizzani, 1991). 
Based on this theory, a broad spectrum of 
computational models has been developed, including 
inductive learning methods, explanation-based 
learning approaches and connectionist algorithms. 
Theories of concept formation that merely focus on 
categorization are not able to address the complexity 
of the world (Bisbey & Trajkovski, 2005). A concept 
lacking an understanding of why the object, entity or 
event has its particular properties is called a 
protoconcept (Vygotsky, 1986; Bisbey & Trajkovski, 
2005). We use the idea that learning a concept 
inherently involves understanding its influence on its 
environment. We believe that in the dynamic activity 
of designing, concepts that incrementally capture the 
knowledge of a design process are formed as a 
consequence of “situatedness” (Gero & Fujii, 2000; 
Peng & Gero, 2006).  

Concepts are not only labelled structures, but also 
“multimodal categorizations of perceptual 
categorizations; ways of coordinating perception and 
action; meaning and activity are inseparable” 
(Clancey, 1997). It is the knowledge that enables an 
agent to reuse past situations in new situations (Gero 
& Fujii, 2000). We define concepts as the grounded 
invariants over the agent’s experience. They are 
abstractions of experience that confer a predictive 
ability for new situations (Rosenstein & Cohen, 1998; 
Smith & Gero, 2000). A concept provides means for 
an agent to go beyond contexts and anticipate 
potential acts. 

On the other hand, concepts are grounded in 
contexts. They are formed in the agent’s interactions 
with the environment, and grounded as experiences 
when receiving positive feedback.  

3.2. Conceptual Coordination 

A concept formation process can be regarded as the 
way an agent orders its experience in time, which is 
referred to as conceptual coordination (Clancey, 
1999). A concept is a function of previously 
organized perceptual categories and what 
subsequently occurs (see Fig. 1). 

A concept is formed by holding active a 
categorization that previously occurred (C1) and 
relating it to an active categorization (C2) (Clancey, 
1999). Fig. 2 illustrates a scenario of such a situated 
concept learning process. Perceptual category C1 
groups sensory sequence “S1  S2” and activates the 
agent’s experience to obtain similar organizations. 
The agent’s experiential response (E1) represents the 
agent’s expectations about what would happen later 
in the environment. 

 

Perceptual 
Categorization 2

Perceptual 
Categorization 1

C1

C2

What 
I’m-doing-now

C

time t’

time t
 

Fig. 1. Conceptual coordination shows the conceptual 
knowledge as a higher order categorization of a sequence 

(after Fig. 1.6 in Clancey (1999)). 

The agent uses E1 with environmental changes 
(S3) to construct the current perceptual category C2. 
This construction involves a validation process in 
which environmental changes are matched with the 
agent’s expectation. “Valid” means the 
environmental changes are consistent with the 
agent’s projection of such changes from a previous 
time. The grounding process then reinforces a valid 
experience. For invalid expectations, the agent 
updates its perceptual category (C2) with the latest 
environmental changes. The concurrence of 
“situatedness” and “constructive memory” provides 
the basis for concept formation in a situated manner. 

 

C3

C1

S1

S2

time t’

time t

C: Perceptual
Categories

Experience

time t’’

S3

S: Sense-
data  

C2

E1

E2

S4

E: Previous    
Conceptual  
Coordination  

Fig. 2. A situated concept formation scenario. 

4. A SITUATED AGENT-BASED DESIGN 
INTERACTION TOOL IN OPTIMIZATION 

The system is applied in the design optimization 
domain. Design optimization is concerned with 
identifying optimal design solutions which meet 
design objectives while conforming to design 
constraints. The design optimization process involves 
some tasks that are both knowledge-intensive and 
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error-prone. Such tasks include problem formulation, 
algorithm selection and the use of heuristics to 
improve efficiency of the optimization process. 
Designers rely on the experience that they have built 
up through years of practice to carry out these tasks. 
The outcome of this design process is constrained by 
their expertise. Design knowledge plays a critical role 
in improving the efficiency and efficacy of this 
process. We concentrate on illustrating a scenario of 
how the proposed model contributes to a design 
optimization process. 

4.1. Application Scenario 

A large number of optimization algorithms have been 
developed and are commercially available. Many 
design optimization tools focus on gathering a variety 
of mathematical programming algorithms and 
providing the means for the user to access them to 
solve design problems. For example, Matlab 
Optimization Toolbox 3.0 1  includes a variety of 
functions for linear programming, quadratic 
programming, nonlinear optimization and nonlinear 
least squares, etc. Choosing a suitable optimizer 
becomes the bottleneck in a design optimization 
process. The recognition of appropriate optimization 
models is fundamental to design decision problems 
(Radford & Gero, 1988). Some of the knowledge 
required for recognition of an optimization problem 
can be expressed in terms of semantic relationships 
between design elements. An example of such 
knowledge is illustrated in Table 1. The application 
of this research to design optimization focuses on 
learning and adapting the knowledge of applying 
various optimization algorithms in different design 
contexts. For example, a designer working on 
optimizing a hospital layout may find that a certain 
optimizer is more efficient in solving the problem 
applied. 

As the same or other designers tackle a similar 
design problem, the same tool draws on its 
experience to construct memories of a design 
situation and anticipates the tool’s potential use. It 
can therefore offer help to designers in their 
interactions in designing even before they require it. 
The design tool that adapts based on its experience of 
its use is claimed to be effective (Gero, 2003). The 
effectiveness of the tool describes the capability of 
producing an effect.2 It is often associated with the 
term “efficacy” when a design tool is applied in a 
design activity. The efficacy of the tool concentrates 
on the outcome and usually refers to the ability to 

                                                 
1 http://www.mathworks.com/products/optimisation/. 
2 http://en.wikipedia.org/wiki/Effectiveness.  

produce a desired amount of a desired effect.3 The 
tool that maintains a predictive model based on valid 
anticipations may improve the efficacy of a design 
process through introducing the agent’s experience in 
developing the design outcome. In a design 
optimization scenario, it can be measured through the 
correctness in recognising a design optimization 
problem.  
Table 1. An example of knowledge required in recognition 
of an optimization problem (after Radford and Gero 
(1988)). 

if            all the variables are of continuous type 

and        all the constraints are linear 

and        the objective function is linear 

then       conclude that the model is linear programming 

and        execute linear programming algorithm 

4.2. Architecture of the Interaction Tool in 
Optimization 

Fig. 3 demonstrates a general architecture of this 
situated agent-based design interaction tool used in 
optimization. A situated agent wraps around an 
existing design optimization tool. A user accesses a 
design tool via a wrapper, whereby the situated agent 
senses the events performed by that user.  

Situated Agent

Interface Agent

Matlab
(Optimization

Toolbox)

Wrapper
(ToolWrapper 

class) M-scripting
Agent

User

Callback
Agent

Sensor

Effector

Concept 
Formation

Experience

 
Fig. 3. A general architecture of a situated agent-based 

design interaction tool in optimization. 

The situated agent uses its experience and concept 
formation engine to generate a concept, which affects 
the tool’s behaviour in designing. The user can also 
directly communicate with the agent to obtain 
additional information. Such a framework provides 
the means that allows the agent to incrementally learn 
new experiences. The system consists of two major 
components: a situated agent and a tool platform 
                                                 
3 http://en.wikipedia.org/wiki/Effectiveness.  
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which includes a design optimization tool, a tool 
wrapper and interface agents. 

4.3. Design Optimization Tool Platform 

In this paper, the Matlab Optimization Toolbox 
(version 3.0.1) is chosen as the design optimization 
platform. It is a collection of functions that extend the 
capability of the MATLAB numeric computing 
environment (Release 14). The toolbox includes 
routines for a variety of optimization classes 
including unconstrained and constrained nonlinear 
minimization, quadratic and linear programming, and 
nonlinear optimization. Via the MATLAB command 
line, Matlab users use a scripting language called M-
file to define and to solve optimization models.  

The interface agent, which consists of a Callback 
agent and an M-scripting agent, enables both users 
and the situated agent to operate on the engines in the 
Matlab Optimization Toolbox. A tool wrapper serves 
as an interface between the user, the tool and agents. 
It provides a simplified and efficient way to perform 
design optimization using the Matlab Optimization 
Toolbox.  

4.4. A Situated Agent 

A situated agent therefore contains sensors, effectors, 
“experience” and a concept formation engine, which 
consists of a perceptor, a cue_Maker, a conceptor, a 
hypothesizer, a validator and related processes. 
Sensors gather events from the environment. These 
events include users’ actions performed in using a 
design tool, such as key strokes, menu selections and 
mouse clicks. Sense-data are environment variables 
and their states that are captured by sensors. They are 
triggered by external environmental changes 
(exogenous). Exogenous sense-data (Se) take the 
form of a sequence of actions. For example, some 
sense-data at time “t” can be expressed as: 
  

• Se (t) {…… “click on a certain text field”, 
key stroke of “x”, “(”, “1”, “)”, “+”, “x”, “(, 
“2”, “)”…}.  

 
These sense-data are transferred into sensory data 

which are grouped into categories according to their 
initial descriptions. Sensory data (Se+a) consist of two 
types of variables: the exogenous sense-data (Se) and 
the autogenous sensory experience (Sa). Sa is 
produced from matching the agent’s exogenous 
sense-data (Se) with the agent’s sensory level 
experience. Sensory data (Se+a) are a combination of 
the agent’s exogenous sense-data (Se) and the related 
autogenous information (Sa).  

For example, these sense-data can be converted 
into a sequence of labelled sensory data at time “t”: 

 
• Se+a (t) {…… “text field label: key stroke of 

“x”, “(”, “1”, “)”, “+”, “x”, “(, “2”, “)””…}.  
 
Percepts are intermediate data structures that are 

generated from mapping sensory data into categories. 
The perceptor processes sensory data and groups 
them into multimodal percepts. Percepts are 
structured as triplets:  
 

• P (Object, Property, Values of properties). 
 
For example, perceptual data at time “t” (P (t)) built 
on the above sensory data can be described as: 
 

• P (t) { P1, Label for Text Field, “x(1)+x(2)”}. 
 
Percepts can also be grouped into sequences of 

categories. These are composed percepts. A 
cue_Maker discerns whether a percept can be used to 
create a memory cue. This is performed by matching 
with the agent’s sensory-level experience. The 
cue_Maker is also responsible for creating cues that 
can be used to activate an agent’s context-addressable 
experience.  

The conceptor is the software object used to 
generate concepts in the conception process. A 
concept is regarded as a result of an interaction 
process in which meanings are attached to a 
perceptual category. In order to illustrate a concept 
formation process, we use the term “proto-concept” 
to illustrate the intermediate state of a concept. A 
proto-concept is a knowledge structure that depicts 
the agent’s interpretations and anticipations4 about its 
external and internal environment at a particular time. 
Through sensation and perception processes, the 
contextual information is interpreted based on the 
agent’s experience. With this initial transformation, 
the agent creates a mapping between the context from 
its external world and its internal world. It can cue its 
experience structure to generate anticipations for the 
interpreted perceptual category. The conception 
process constructs a proto-concept based on the 
interpreted and the anticipated information.  

The conception process consists of three basic 
functions: conceptual labelling (C1), constructive 
learning (C2) and induction (C3). Conceptual 
labelling creates proto-concepts based on experiential 
responses to an environmental cue. This includes 
deriving anticipations from these responses and 

                                                 
4 The interpretation is concerned with associating an initial 
meaning to a context. Anticipation is the concept of an 
agent making decisions based on predictions and 
expectations about the future. 
http://en.wikipedia.org/wiki/Anticipation.  
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identifying the target. Constructive learning allows 
the agent to accumulate lower level experiences. 
Induction can generalize abstractions from the lower 
level experience and is responsible for generating 
conceptual experience structures. 

The validator pulls information from the 
environment and examines whether the 
environmental changes are consistent with the 
agent’s anticipations. The hypothesizer generates 
hypotheses from the learned proto-concepts when 
they are not valid in interactions. This is where 
reinterpretation takes place in allowing the agent to 
learn in a “trial-and-error” manner. A situated agent 
reinterprets its environment using hypotheses which 
are explanations that are deduced from its domain 
theory (usually conceptual experience). An agent 
subsequently refocuses on or constructs a new proto-
concept based on hypotheses. An effector is the unit 
via which the agent brings changes to environments 
through its actions. 

4.5. The Agent’s Experience 

The agent’s experience is treated as knowledge 
structures that hold sensory, perceptual and 
conceptual representations and can be used to 
construct a memory. They can be classified into three 
categories. 
 

1. Sensory experience holds discrete symbolic 
labels for discerning sense-data. They are the 
built-in features for sensors. Each sensor 
captures a particular type of information. Once 
an environmental stimulus is detected, the 
agent attaches an initial meaning to it, based 
on its sensory experience.  

2. Perceptual experience captures historical 
representations of perceptual categories and 
their interrelationships. These include entities, 
properties and entity–property relationships 
with degrees of beliefs. 

3. Conceptual experience comprises the 
grounded invariants over the lower level 
perceptual experience. The conceptual 
experience explicitly states the regularities 
over the past observations of perceptual 
instances. It is obtained via grounding the 
concepts formed from interactions. 

4.5.1. The agent’s sensory and perceptual experience 
The sensory experience contains symbolic labels for 
each sensory category. Based on this level of 
experience which holds modality information, the 
sense-data can be transformed into discrete 
perceptual categories. Sensory experiences are labels 
that are kept consistent with their higher level 

organizations – the perceptual experience. For 
instance, the name of “OBJF_Type” denotes a 
sensory experience for a category “Objective 
Function Type”.  

Perceptual experience is organized into a 
Constructive Interactive Activation and Competition 
(CIAC) neural network, which is an extension of a 
basic IAC network (McClelland, 1981; 1995). An 
IAC network consists of two basic nodes: instance 
nodes and property nodes. The instance node has 
inhibitory connections to other instance nodes and 
excitatory connections to the relevant property nodes. 
The property nodes encode the special characteristics 
of an individual instance (Medler, 1998). Property 
nodes are grouped into cohorts of mutually exclusive 
values. Each property node represents the perceptual 
level experience which is processed from sensory 
data. Instance nodes along with the related property 
nodes describe an instance of a concept. Knowledge 
is extracted from the network by activating one or 
more of the nodes and then allowing the excitation 
and inhibition processes to reach equilibrium (Medler, 
1998).  

As shown in Fig. 4, the shaded instance node ( ) 
and related shaded property nodes ( ) present a 
context addressable memory cued from an 
environmental stimulus, e.g., [Objective_Function, 
f1]. Such knowledge is a dynamic construction in the 
sense that the agent develops adapted experience as 
environmental stimuli change.  

Instance Node
(activated)

2

Activation

InhibitionProperty
Cohort

Instance
Cohort

Property Node
(activated)

1

Variable_Type

Objective_Function
Type

Objective_Function

Optimizer

Constraint_Type

Has_Hessian

o1 o2

c1

c2ft2

ft1

Property Node
(inhibited)

Instance Node
(inhibited)

h2

h1

f1 f2

v2

v1

 
Fig. 4. A CIAC neural network as a representation of the 
agent’s experience; Property nodes are labelled by their 

value, e.g., f1 represents a property node in the 
Objective_Function cohort with objective function value f1. 

An activation diagram (Fig. 5) outputs the 
neurons winning at the equilibrium state, which 
represent the activated memory. The horizontal line 
shows the activation threshold, which is an empirical 
value defining the boundary of the activation. Only 
those neurons that surpass this value yield outputs. 
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Based on the responses from a CIAC neural network, 
the agent constructs initial concepts and displays the 
constructed knowledge in the tool wrapper. 

Table 2 illustrates the formulae that are used to 
compute network input value (Ne), activation value 
(Ac) for each node during the activation and 
competition phases. 

 

 
Fig. 5. Activation diagrams show the activated memory of 

design experience 2 (“ins-2” stands for instance node 2, 
which is connected to a number of property nodes, i.e. 

“OBJF:x(1)^2”, “OBJF_Type: Quadratic”, ……, 
“Optimizer: Quad-Programming”). 

Table 2 also describes the formula that is applied 
to adjust the weights of each excitatory connection of 
the valid concept during the grounding via weight 
adaptation process, so that those nodes that fired 
together become more strongly connected. Weight 
adaptation is formulated similar to a Hebbian-like 
learning mechanism (Medler, 1998). 

We use the response value Ra to measure the 
strength of an experience. It is specified as follows: 

∑
=

=
n

1i
iA   aR               (1) 

where n is the number of nodes in the network and Ai 
denotes an activation value of a node. Ra is defined as 
the sum of activation values for the neurons at a 
specific time. We utilize activation gain ΔA to 
measure the increase of activation value for each 
node for two consecutive cycles. Formula (2) 
illustrates this variable.  

jΑ−Α=ΔΑ i               (2) 
where Ai, Aj represents the activation values of a 
node at two successive cycles. Therefore, the 
equilibrium state refers to the state in which no more 
activation gain (ΔA is less than a threshold) is 
acquired by the network activation and competition 
process.  

The response diagram shows how an experience 
is triggered during cycles of activation and 
competition phases, Fig. 6, where the X coordinate 
represents the cycle number, which is a time variable. 

Table 2. Major formulae applied in CIAC neural network. 
Ac represents the strength of belief of the activated node; 
weight adaptation is a grounding process that verifies the 
usefulness of a related experience in current situation. 

Item Formulae 

Network 
Input 
Values (Ne) 

∑
=

+Ε=
n

1i
ii AW   μeN  

µ: excitatory gain for initial network stimulus, set to 
4.0 
E: initial network stimulus, default 1.0 
Wi: inbound weights for a neuron 
Ai: activation value for each inbound weight 
n:  number of neurons in a network 

Activation 
Values  
(Ac) 

If Ne > 0  
( ) ( )[ ]RANAAAA ceccc −−−+= −−− 11max1 ϕl  

else 
( ) ( )[ ]RANAAAA ceccc −−−+= −−− 1min11 ϕl

Ac: activation value for node at current cycle 
Ac-1: activation value for node at previous cycle 
Ne:  net input for each node 
Amax: maximum activation value, set to 1.0 
Amin: minimum activation value, set to -0.2 
R: initial resting activation value, default -0.1 
φ: the decay factor, default 1.0 
ℓ: the learning rate, default 0.1; 

Weight 
Adaptation  
(Wn): 
  

If Wo >0   
( ) ojioon WAAWWWW δ−−+= maxl

else  
    on WW =  

Wo: weight value before weight-adaptation 
Wn: weight value after weight-adaptation 
ℓ:  learning rate, default 0.1 
Wmax: maximum weight value, set to 1 
 Ai, Aj: activation values for neuron i and j 
 δ: weight decay factor, set to 0.1 

 
The Y coordinate describes the response value 

(for the  curve) and the sum of activation gain ΔA 
of the experience (for the  line). 

  

 
Fig. 6. The response diagram shows the dynamics of the 

activation and competition processes. 

4.5.2. The agent’s conceptual experience 
The agent’s conceptual experience can be represented 
in a decision-tree structure. Fig. 7 shows the learning 
results and the performance of applying a decision 
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tree learner (in the induction function of the 
conception process) to the agent’s experience. 
Decision tree learning is a widely used method for 
inductive inference. Each non-leaf node stands for a 
test on an attribute. Edges of the decision tree coming 
from the nodes are values of attributes for that node. 
Leaf nodes are used to represent design decisions for 
selecting optimizers. Numbers in parentheses 
illustrate an observation for the class defined in the 
leaf node. For example, “5/1” describes that there are 
five positive observations and one negative 
observation for that class. A conceptual knowledge 
(or label) can be obtained by traversing from the root 
node to a leaf node.  

= Linear = Nonlinear = Quadratic 

A conceptual label
is obtained by
traversing from the
root node to a leaf node

Root Node

Leaf nodes represent design decisions for selecting optimisers

Optimiser
Lin-Programming 

(4/0)

Optimiser
Nonlin-Programming 

(2/0)

Optimiser
Quad-Programming 

(5/1)

OBJF_Type

 
Fig. 7. A decision tree learned from C4.5. 

The agent’s conceptual experience serves as 
domain theories for the agent’s hypothesizer to 
construct explanations. Fig. 8 illustrates a hypothesis 
created on the basis of the conceptual knowledge 
obtained in Fig. 7. The hypothesis that is learned 
from a deductive learner allows the agent to 
reinterpret and re-anticipate a circumstance.  

 

 
Fig. 8. A hypothesis and the related proto-concept. 

 
 

4.6. Experiential Grounding 

Symbolic grounding explores the means by which the 
semantic interpretation of a formal symbol system 
can be made intrinsic to that system rather than 
relying on the meanings in the head of an external 
interpreter or observer (Harnad, 1990). The 
grounding problem generally refers to representation 
grounding (Chalmers, 1992) or grounding of 
concepts, in which concepts can be developed 
through interactive behaviour in an environment 
(Dorffner & Prem, 1993). An agent grounds its 
behaviour and representations in its interaction with 
the environment. The behaviour of the agent is 
intrinsically meaningful to itself (Ziemke, 1999). The 
key issue leading to a truly grounded AI system is 
“getting there”, in the sense that the agent could 
construct and self-organize itself and its own 
environmental embeddings (Ziemke, 1999). 

In this vein, in implementing a constructive 
memory system, “experiential grounding” (Liew & 
Gero, 2002) had been proposed as a process that 
verifies the usefulness of a related experience in the 
current situation. It has the effect of increasing the 
likelihood of a previously cued memory as being 
reactive in current time. In this paper, a grounding 
process is referred to as the testing and the evaluation 
of whether a constructed memory correctly predicts 
environmental changes. A function called “weight 
adaptation” (also in Table 2) is applied here. Fig. 9 (a) 
shows an experience structure before the grounding 
process.  

This structure contains two design instance nodes, 
among which “ins-2” denotes an instance of a 
quadratic design optimization experience. The two 
instance nodes (“ins-1” and “ins-2”) are shown in the 
centre of the network. They are surrounded by and 
connected with some property nodes. The label inside 
a property node shows the cohort in which a node is 
located and the value of that property node. For 
instance, the label “OBJF_Type: Quadratic” 
describes an “OBJF_Type” property node with value 
“Quadratic”. The weighted connections between the 
instance node (“ins-2”) and property nodes 
“OBJF_Type: Quadratic” and “Optimizer: Quad-
Programming” are both “0.2942” (circled by dotted 
lines in Fig. 9 (a)). Fig. 9 (b) presents the grounded 
experience. It is noted that the connection weights 
between instance node (“ins-2”) and property nodes 
“OBJF_Type: Quadratic” and “Optimizer: Quad-
Programming” are enhanced to “0.3655” and 
“0.3155” respectively. The amounts increased are not 
only decided by the weights before the grounding 
process, they are also influenced by the activation 
values in the state of equilibrium.  
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(a) (b)  
Fig. 9. Grounding via weight adaptation changes the connections between neurons according to their usefulness in interaction.  

 
 

Percepts at 
Runtime

Initial Experience

(a) (b)  
Fig. 10. A new experience is learned from perceptual categories at run-time. 
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Another process that contributes to grounding is 
the constructive learning mechanism (Liew & Gero, 
2002) of a constructive memory system. This allows 
an agent to accommodate a new experience in an a 
posteriori manner. Constructive learning (C-Learning) 
has been implemented and illustrated in Fig. 10. Fig. 
10 (a) describes an initial experience structure and 
the percepts at run-time. The agent learns a new 
experience based on these percepts. The new instance 
node is depicted as “ins-2” in Fig. 10 (b). 

4.7. Adaptive Behaviour 

Adaptivity, the agent’s capability to learn and 
improve with experience (Bradshaw, 1996), is a 
significant property of a situated agent. Adaptation is 
not only concerned with learning new knowledge 
structures, it also refers to self-organizing the 
system’s knowledge and behaviours in the 
interactions. Adaptation refers to adjustments of a 
situated agent’s behaviours in its interaction with the 
environment. Adaptive behaviours, in terms of 
reflexive, reactive and reflective behaviour (Maher & 
Gero, 2002), can result from the agent’s internal 
processes and constraints imposed by a situated agent 
architecture. 

An agent reflexes when its experiential response 
to the current memory cue is sufficiently strong to 
directly influence the action without reasoning. This 
can be a result of highly grounded experience, i.e., 
the weighted connection between the node 
representing an environmental cue and another 
experience node reaches a certain threshold. In 
reactive behaviour, the agent is able to activate an 
existing experience on environmental cues. The 
knowledge structures (CIAC network) of the agent’s 

experience are involved in producing memory, which 
is anticipation for the potential consequence of 
environmental changes. The agent is able to evaluate 
the experience of that memory by pulling 
environmental changes and comparing these changes 
with the activated memory.  

The agent’s reflective mode is triggered by 
discrepancies between the agent’s anticipation and 
current environmental changes. There are two 
scenarios of reflective behaviours. In reflective 
behaviour scenario I, a memory is reactivated when 
the agent’s initial experiential response to a memory 
cue fails in the validation process, but a memory cue 
is still able to be subsequently identified in the 
environment. In reflective behaviour scenario II, a 
deductive learner is employed to create hypotheses, 
which are based on the explicitly represented domain 
theories and its goal concept. The agent therefore 
refocuses to an existing concept or initiates 
constructive learning.  

5. THE ARCHITECTURE OF THE 
IMPLEMENTED SITUATED AGENT 

The architecture of the implemented situated agent is 
illustrated in Fig. 11. The tool wrapper interface 
allows designers to define problems. Sensors gather a 
user’s actions that comprise a design optimization 
process and activate a perceptor to create percepts. A 
percept cues the agent’s initial experience. Based on 
the responses from the CIAC neural network, the 
agent constructs initial concepts and displays the 
constructed knowledge in the tool wrapper (solid 
lines in Fig. 11).  
 

Grounded Experience
via

Constructive Learning

Grounded Experience
via

Weight Adaptation

Initial
Experience

Activation Diagram

A

B

C cues

Activation
Explanation-based

Hypotheses

Grounding via
Constructive Learning 
Grounding via 
Weight Adaptation 

Activating Existing 
Experience 

Backward-chaining Hypothesising 

Inductive 
Learning 

Tool
Wrapper

Conceptual 
Knowledge

 
Fig. 11. The architecture of the implemented situated agent.  
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The grounding process initiates a validation function 
that matches the initially constructed concepts with 
environmental changes. Weight adaptation increases 
the connection weights of the valid concept and 
grounds Experience A to Experience B (dash dot 
lines in Fig. 11). In the agent’s reflective concept 
learning process, the explanation-based learner is 
used to form a new concept (square dot lines in Fig. 
11). A percept at run-time can also be developed as a 
new concept by a constructive learning process (dash 
lines in Fig. 11). Experience C is learned using 
constructive learning and the related conception 
process.  

Typical scenarios of experiential grounding have 
already been demonstrated in Fig. 9 and Fig. 10, e.g., 
grounding of Experience A to B can be viewed in Fig. 
9 (a) and Fig. 9 (b). Similarly, the grounding via the 
constructive learning process that transfers 
Experience A to Experience C can be found in Fig. 
10 (a) and Fig. 10 (b). Conceptual knowledge and 
explanation-based hypotheses shown in Fig. 11 have 
also been described in Fig. 7 and Fig. 8. 

6. EXPERIMENTS AND RESULTS 

In this section, we describe a number of experiments 
and discuss their results. The purpose of the 
experiments is to evaluate the proposed interaction 
tool through: 
 

• examining whether the proposed approach 
can learn new concepts from interactions; 

• investigating whether the implemented 
model can develop adaptive behaviours in 
different circumstances, based on the 
knowledge structures it learned; 

• studying the characteristics of the agent’s 
behaviours in various circumstances; 

• evaluating the efficacy of the interaction tool. 
We measure the system’s performance in 
assisting a design optimization tool to 
recognise novel design optimization 
problems compared to other approaches.  

 
Experiment I is concerned with investigating how a 
situated agent develops knowledge structures and 
behaviours in similar design optimization scenarios 
over time. It measures the agent’s response value (Ra) 
and response time (Te) in a number of linear design 
optimization scenarios. Experiments II and III focus 
on observing and analysing the tool’s behaviours in 
heterogeneous design optimization scenarios. 
Experiment IV is a comparative test of various 
systems and their performance in learning to 
recognize novel design optimization scenarios.  

6.1. Experiment I 

In this experiment, the initial agent holds a linear 
design optimization experience, which is represented 
as a CIAC neural network that contains one instance 
node and related nine property nodes. This is a 
structure that can be used to construct a memory of a 
linear optimization problem. The learning rate of this 
agent is set to 0.205 and the threshold of equilibrium 
state (Teq) is 0.005. Each time the agent responds to a 
memory cue “OBJF_Type:Linear”, it subsequently 
grounds the constructed memory into a new 
experience.  

Fig. 12 shows a network view of such an initial 
experience. Table 3 gathers the agent’s states in 10 
consecutive testing epochs on linear design 
optimization tasks. Response value Ra represents the 
sum of the activation value for each node of the 
CIAC neural network. The response time of the agent 
Te can be obtained by counting computer cycles for a 
CIAC network to reach the equilibrium state. “Mean 
Activation” is the average activation value for a 
CIAC network. “Sum of Δa” depicts the sum of the 
activation gains (the increase of an activation value 
for each node for two consecutive cycles) for each 
node in the state of equilibrium. Weights of 
connections of the CIAC network are also recorded 
in a matrix file. The performance of the agent is 
defined as the prediction correctness. 

 
Fig. 12. The initial experience structure has one instance 

node which is connected to nine property nodes with 
connection weight 0.3. It denotes a scenario of linear 

design optimization. 

Fig. 13 illustrates how the agent modifies its 
behaviours based on its experience. Exposed to 
similar design problems, the agent improves its 
responses based on the adaptation of its knowledge 
structures. The strength of its experience is related to 
the time (Te) and response value (Ra) with which the 
agent responds to an environmental cue.  
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Table 3. Grounding of the agent’s experience in similar design optimization scenarios. 

Testing 
Epoch 

Response 
(Ra) 

Time to 
Equilibrium 

(Te) 

Mean 
Activation 

Sum of Δa Performance 
(0.0 – 1.0) 

Weighted 
Connection 

(0.3000 – 1.0000) 
1 6.891 44 0.6981 0.2366 1.0 0.3000 
2 7.478 39 0.7478 0.2283 1.0 0.3899 
3 7.870 34 0.7870 0.2199 1.0 0.4616 
4 8.130 31 0.8130 0.2155 1.0 0.5373 
5 8.281 28 0.8281 0.2402 1.0 0.6053 
6 8.429 27 0.8429 0.2183 1.0 0.6593 
7 8.529 26 0.8529 0.2101 1.0 0.6981 
8 8.596 25 0.8596 0.2119 1.0 0.7394 
9 8.639 25 0.8639 0.2237 1.0 0.7657 
10 8.696 25 0.8696 0.2007 1.0 0.7910 

 
In Experiment I, the experience of the system is 

enhanced by grounding via a weight-adaptation 
process.  

As illustrated in the results, the experience gained 
in solving similar design problems is enhanced with 

its response values increased and response time 
reduced over time. The tool recognizes similar design 
situations with a high accuracy and an improved 
response rate. 
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Fig. 13. The agent adapts its experience in Experiment I. 

 

6.2. Experiments II and III  

Each experiment uses a sequence of simulated design 
scenarios. Each scenario represents a design task 
which is further composed of a number of design 
actions. For example, a typical design optimization 
task consists of a number of actions: 
 

• defining an objective function; 
• identifying the objective function type; 
• defining design variables, variable types; 
• describing design constraints, constraint 

types; 
• typing in the gradients of objective function 

and constraints; 
• defining matrices, such as Hessian matrix 

and its type; 
• selecting optimizers; 

• submitting a design problem or editing a 
design problem; 

• submitting feedback on the agent’s outputs.  
 
To support Experiment II, a sequence of 15 design 
scenarios is created. The sequence of tasks is: 
 

• {L, Q, Q, L, NL, Q, NL, L, L, NL, Q, Q, L, L, 
L} 

 
 “Q”, “L” and “NL” represent quadratic, linear and 
nonlinear design optimization problems respectively. 
The initial experience of the agent holds one instance 
of a design optimization scenario solved by a 
quadratic programming optimizer. Table 4 shows the 
symbols used to represent behaviours of the agent. 
The following seven internal states are recorded and 
illustrated in Table 5: 
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1. The knowledge structure is represented in a 
Constructive Interactive Activation and 
Competition (CIAC) neural network 
composed of instance nodes connecting to a 
number of property (or feature) nodes; 

2. The expectations about environmental 
changes are generated by the agent’s 
experiential responses to environmental cues 
(Ac); 

3. The validator states show whether an agent’s 
expectation is consistent with the 
environmental changes (V1 and V2); 

4. The reactivated experience or initially 
validated experience is experience 
reactivated during the reflective learning 
process or the validated experience during 
validation (Rc); 

5. Hypotheses depict the agent’s 
reinterpretation about its failures in creating 
a valid expectation (Hs);  

6. Concepts are the agent’s high-level 
experiences, which are domain theories an 

agent uses to classify and explain its 
observations (Nk); 

7. The directly observed system’s behaviours 
are in terms of “sensation”, “perception”, 
“conception 1-3”, “IAC neural network 
activation”, “IAC neural network 
reactivation”, “reflexive experience 
response”, “hypothesizing”, “validation”, 
and “grounding via weight adaptation”. It is 
worth noting that we divide the conception 
process into three types of behaviours: the 
conceptual labelling (C1), constructive 
learning (C2) and inductive learning (C3) to 
demonstrate the methods via which the 
system builds a concept.  

6.2.1. Behaviour records 
In this section, we measure the above-mentioned 
behaviours of the system. The seven internal states 
are summarized in Table 5. 

 
 
 

Table 4. Symbols represent various behaviours. 

SYMBOLS BEHAVIOURS (BE) DESCRIPTIONS 

C1 Conception process 1 – 
conceptual labelling 

Focusing on the target concept from the 
activated experience 

C2 Conception process 2 – 
conception via constructive 
learning 

Creating perceptual experience from memory 
construction (constructive learning) 

C3 Conception process 3 – 
conception via inductive 
learning 

Creating conceptual experience from 
generalization (inductive learning) 

H Hypothesizing Deducing proto-concepts from hypotheses 
Ia IAC neural network 

activation 
Activating the perceptual experience structure 
(IAC) to get response 

Ir IAC neural network re-
activation 

Re-activating the perceptual experience 
structure (IAC) to get response 

P Perception Low-level behaviour in creating percepts and 
memory cue 

Rex Reflexive experience 
response 

Returning experience that reaches reflexive 
threshold (no reasoning and activation 
required) 

S Sensation Low-level behaviour in creating sensory data 
Vd Validation Comparing anticipation with environment 

changes 
Wa Weight adaptation Reinforcing the experience when it is useful 

 
 
Table 5. Experiments with various design optimization scenarios and the agent’s behaviours. Ac denotes activated experience. Rc 
shows the reactivated or initially validated experience. V1 represents the validator state for Ac. Hs are hypotheses. V2 describes 
the validator states for Hs. Be is the abbreviation for the agent’s behaviours. Nk means new knowledge learned. √ shows that the 
agent correctly predicts the situation and X shows the opposite. 
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TASKS AC V1 RC HS V2 BE NK 

Task 1 N/A N/A N/A N/A N/A S, P, C2 New Experience Ins-2 
Task 2 Ins-1 √ N/A N/A N/A S, P, Ia, C1, Vd, Wa Grounded Experience 

Ins-1 
Task 3 Ins-1 √ N/A N/A N/A S, P, Ia, C1, Vd, Wa Grounded 

Experience 
Ins-1 

Task 4 Ins-2 N/A N/A N/A N/A S, P, Ia, C1, Vd, Wa Grounded Experience 
Ins-2 

Task 5 N/A N/A N/A N/A N/A S, P, C2 New Experience Ins-3 
Task 6 Ins-1 √ N/A N/A N/A S, P, Ia, C1,  Vd, Wa, 

C3 
Grounded Experience 

Ins-1 and 
New Concept 1 

Task 7 Ins-3 √ N/A N/A N/A S, P, Ia, C1,  Vd, Wa, 
C3 

Grounded Experience 
Ins-3 

Task 8 Ins-2 √ N/A N/A N/A S, P, Ia, C1,  Vd, Wa, 
C3 

Grounded Experience 
Ins-2 

 
Task 9 Ins-2 √ N/A N/A N/A S, P, Ia, C1,  Vd, Wa, 

C3 
Grounded Experience 

Ins-2 
Task 10 Ins-1 

false 
memory 

X Ins-1,2,3 
uncertain 
Memory 

Quadratic 
Programming 
Reactivated 

Ins-1 

X S, P, Ia, C1, Vd, Ir, C1, 
H, Ir, C2, C3 

New Experience Ins-4, 
and New Concept 2 

Task 11 Ins-4 
false 

memory 

X Ins-4 
false 

memory 

Quadratic 
Programming 
Reactivated 

Ins-1 

√ S, P, Ia, C1, Vd, Ir, C1, 
H, Ir, Wa, C3 

Grounded Experience 
Ins-1 

Task 12 Ins-4 false 
memory 

X Ins-4 
false 

memory 

Quadratic 
Programming 
Reactivated 

Ins-1 

√ S, P, Ia, C1, Vd, Ir, C1, 
H, Ir, Wa, C3 

Grounded Experience 
Ins-1 

Task 13 Ins-2 √ N/A N/A N/A S, P, Ia, C1,  Wa, C3 Grounded Experience 
Ins-2 

Task 14 Ins-2 √ N/A N/A N/A S, P, Ia, C1,  Wa, C3 Grounded Experience 
Ins-2 

Task 15 Ins-2 N/A N/A N/A N/A S, P, 
Rex, Wa, C3 

Grounded Experience 
Ins-2 

New Concept 1:  
• OBJF_Type = Quadratic  Optimizer = Quad 

Programming; 
• OBJF_Type = Linear  Optimizer = Lin-Programming; 
• OBJF_Type = Nonlinear  Optimizer = Nonlinear-

Programming; 

New Concept 2:  
• Provide_Hessian = false and  OBJF_Type = Quadratic  

Optimizer = Nonlinear-Programming 
• Provide_Hessian = false and  OBJF_Type = Linear  

Optimizer = Lin-Programming 
• Provide_Hessian = false and  OBJF_Type = Nonlinear  

Optimizer = Nonlin-Programming 
• Provide_Hessian = true   Optimizer = Quad-

Programming 

 

6.2.2. Behaviour analysis 
The behaviours recorded in this experiment are 
shown in Fig. 14 and Fig. 15. Fig. 14 shows changes 
of behaviours of the system from tasks 1 to 8, and Fig. 
15 describes behaviours emerging from tasks 9 to 15.  

We can identify a number of behaviour patterns 
from these two figures, which allows us to trace the 
role of the interaction in shaping the system’s 
behaviours. Table 6 shows a number of behaviour 
patterns and the underlying causalities for their 
formations.  
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Fig. 14.  Behaviour chart for the system during tasks 1–8. 
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Fig. 15.  Behaviour chart for the system during tasks 9–15. 
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Table 6. Behaviour patterns, their formations and causalities. 

Pattern Name  Descriptions Causalities 

1 Construct new 
memory 

Activation sequence:  
S  P  C2, 
Performing constructive learning. 
Behaviours marked with “1” in Fig. 14 
and Fig. 15 

The coordination of micro-interaction and 
macro-interaction when no previous 
experience is valid. 

2 Reactive behaviour 
pattern 

Activation sequence:  
S  P  Ia  C1,  
behaviours marked with “2” in Fig. 14 
and Fig. 15 

The coordination of micro-interaction and 
macro-interaction when previous experience is 
activated and constructed into a proto-concept. 

3 Validate and 
ground the proto-
concept 

Activation sequence:  
Vd  Wa, behaviours marked with “3” 
in Fig. 14 and Fig. 15 

The coordination of micro-interaction and 
macro-interaction when receiving affirmative 
feedbacks from macro-interaction.  

4 Inductive learning C3, behaviours enclosed in ellipses and 
marked with “4” in Fig. 14 and Fig. 15 

Micro-interaction that generalizes invariants 
from low-level experience. 

5 Reflective 
behaviour pattern 

Activation sequence: 
Ir  C1  H  Ir, behaviours marked 
with “5” in Fig. 15 

The coordination of micro-interaction and 
macro-interaction. This involves reactivating 
the system’s experience, using conceptual 
knowledge to deduce hypotheses and 
subsequently refocusing on (or creating) an 
existing (or new) proto-concept.  

6 Reflexive 
behaviour pattern 

Activation sequence: 
S  P  Rex, behaviours marked with 
“6” in Fig. 15 (Task 15) 

The coordination of micro-interaction and 
macro-interaction when the system has a very 
strong experience to an environmental 
stimulus. 

Compound 
pattern 1 

Pattern 2  3 React then ground (Tasks 2-3, 6-9, 13-
14) 

This happens when the system’s perceptual 
level experience is useful. 

Compound 
pattern 2 

Pattern 2  5  1 React, reflect then construct new 
memory (Task 10) 

This happens when the system’s experience is 
not available. 

Compound 
pattern 3 

Pattern 2  5  
Wa 

React, reflect, then reinforce the 
experience  
(Tasks 11-12) 

This happens when the system’s conceptual 
experience is useful in creating hypotheses. 

 
 
We can further cluster the system’s learning 

behaviour into three stages based on aggregations of 
these patterns: Stages I, II and III. We use behaviour 
rate (Br) to measure distributions of various 
behaviours in each stage. The behaviour rate (Br) for 
each stage is defined as: 

 

stagetheinbehavioursofnumbersTotal
behaviourparticularaofNumbersB r =

 
The Br of a particular behaviour represents the 

frequency of this behaviour in the learning stage in 
which it occurs. The results of various Br for the three 
stages are presented in Fig. 16, Fig. 17 and Fig. 18. 
Stage I consists of tasks 1 to 5. No high-level 
experience or processes (C3, H) are involved in this 
stage. The system reacts and learns via C2 
(constructive learning), as depicted in Fig. 16.  

. 

 

S 21%

P 22%

H 0%Wa 13%

Rex 0%Ia 13%
Vd 9%

Ir 0%

C1 13%

C2 9%
C3 0%

 

Fig. 16. Agent’s behaviours in Stage I. 
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S 11%

P 11%

H 5%

Rex 0%

Ia 11%

Vd 13%
Ir 10%

C1 16%

C2 2%

C3 11%

Wa 10%

 
Fig. 17. Agent’s behaviours in Stage II. 

In Stage II (tasks 6 to 12), high-level processes, 
such as reactivation (Ir), inductive learning (C3) and 
hypothesizing (H) become dominant and the system 
is concentrated on reflection. As illustrated in Fig. 17, 
the agent’s reflection-related behaviours, such as H 
and Ir contribute to 5% and 10% of its overall 
behaviours, compared to 0% in other stages.  
 

S 15%

P 15%

H 0%

Rex 5%

Ia 11%Vd 11%Ir 0%
C1 11%

C2 0%

C3 16%

Wa 16%

 

Fig. 18. Agent’s behaviours in Stage III. 

In Stage III (tasks 13 to 15), the experience for a 
certain type of design optimization problem becomes 
highly grounded and the system commences its 
reflexive behaviour, as illustrated in Fig. 18. 

A comparative study of these learning stages is 
presented in Table 7. 

Table 7. The comparison of behaviours of the system in different stages; (A) represents the absolute value and (B) shows the 
percentage value.  

   S P REX IA VD IR C1 C2 C3 WA H 

Stage I 
(A) 

5 5 0 3 2 0 3 2 0 3 0 

Stage I 
(B) 

21% 22% 0% 13% 9% 0% 13% 9% 0% 13% 0% 

Stage II 
(A) 

7 7 0 7 8 6 10 1 7 6 3 

Stage II 
(B) 

11% 11% 0% 11% 13% 10% 16% 2% 11% 10% 5% 

Stage III 
(A) 

3 3 1 2 2 0 2 0 3 3 0 

Stage III 
(B) 

15% 15% 5% 11% 11% 0% 11% 0% 16% 16% 0% 

 
In Table 7, the light grey shade shows a higher 

percentage of C2 (constructive learning) in Stage I 
(9%, compared with 2% for Stage II and 0% for 
Stage III). This means that the system is in the initial 
stage of learning – constructing new memories. With 
conceptual knowledge being formed at the beginning 
of Stage II, the system manifests a reflective 
behaviour in which it revisits its experience to 
reactivate and make hypotheses. It can be observed 
that the system shows both a higher percentage (5% 
in Stage II, compared to 0% for the system in the 
other stages, dark grey shade in Table 7) and absolute 
value (3, compared to 0 for the system in the other 

stages, Table 7) of the hypothesizing processes in this 
stage. A new concept (Concept 2) is formed based on 
the agent’s interaction with the environment.  

The salient feature for Stage III (underlined 
numbers in Table 7) is that the system demonstrates a 
higher percentage of reflexive behaviour (5% against 
0%) than those in the other two stages.  

These results are also illustrated in Fig. 19, in 
which a comparative visual analysis can be 
performed to provide a cross-reference for these 
findings. Fig. 19 (a) shows that there are no high-
level behaviours (Ir, H, C3) and much higher 
percentages of sensation (S) and perception (P) in the 
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initial stage of learning (Stage I). The system’s 
behaviours are more low-level at this stage, due to 
the lack of resources in generalization. Stages I, II 
and III are similar in reaction, validation and 
grounding related behaviours, such as Ia Vd and Wa, 

because the system has similar proportions of 
grounded reactive experience. The stacked histogram 
in Fig. 19 (b) presents the distribution of each process 
in three stages. 
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Fig. 19. A comparative study of the agent’s behaviours and processes in various stages of learning: (a) shows percentages of 

behaviours in these three stages; (b) demonstrates absolute values of behaviours in the three stages. 

These three stages can be explained by the internal 
structures created in the experiment. It is noted that 
conceptual knowledge is learned at task 6, which is 
the grounded commonality over the incrementally 
gathered perceptual experience (from the CIAC 
neural network). This concept (Concept 1 in Table 5) 
enables the system to create hypotheses and therefore 
contributes to the system’s reflective behaviour in 
Stage II. At the end of task 14, the experience for the 
linear optimization problem is so strong that it is on 
the threshold of producing the reflexive behaviour in 
Stage III. 

In Experiment III, the agent exhibits similar 
behaviours to Experiment II. The conceptual 
knowledge (Concepts 1 and 2) gained from 
Experiment III are different from those from 
Experiment II, due to heterogeneous interaction 
schemes. 

 
 

6.3. A Comparison Test 

In this test, we investigate the performance of three 
systems: a static system, a reactive system and a 
situated system, in learning to recognize design 
optimization problems. The design scenarios that 
were used in Test II are adopted. A static system can 
only use the predefined knowledge to predict a 
design task. A reactive system can use a priori 
knowledge to respond to an environmental cue. It can 
also learn via constructive learning, provided it 
encounters a new design problem. A situated system 
not only employs its existing experience to react, it 
also reflects using the hypotheses created based on 
the accumulated conceptual knowledge.  

The performance is defined as the correctness of 
the system’s response to an environmental cue, which 
predicts an interaction situation, and hence assists the 
applied design task.  
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Table 8 shows performances of this comparison 
experiment. The “0-1” loss function is applied to 
measure the outcomes of the prediction. It is more 
appropriate than using probability assessment in this 
test, because the ultimate application is merely a 
prediction of the outcome and the prediction is not 
subject to further processing (Witten & Frank, 2005). 
We use prediction success rate (Ps) to measure the 
overall performance of a system in this test:  

 

testtheinspredictionofnumbersTotal
spredictioncorrectofNumberPs =  

 

Table 8. Performances of three different systems. 

Design 
Tasks 

Static 
System 

Reactive 
System 

Situated 
System 

1 0 0 0 
2 1 1 1 
3 1 1 1 
4 0 1 1 
5 0 0 0 
6 1 1 1 
7 0 1 1 
8 0 1 1 
9 0 1 1 
10 0 0 0 
11 1 0 1 
12 1 0 1 
13 0 1 1 
14 0 1 1 
15 0 1 1 

 
Table 9. Confusion matrices for a situated system, Ps 
stands for Prediction Success Rate. 

Predicted Class Situated 
System 

 Q L NL Uncertain Total 

Q 5 0 0 0 5 
L 0 6 0 1 7 
NL 1 0 1 1 3 

Actual 
Class 

Total 6 6 1 2  
Ps (5+6+1)/15 = 0.8 

 
Table 9, Table 10 and Table 11 show confusion 

matrices for these three types of systems. Each matrix 
element shows the number of test examples for which 
the actual class is presented in the row and the 
predicted class is the column (Witten & Frank, 2005). 
For example, in row 2 of Table 9, the situated system 
predicts 7 instances of “L” (linear optimization 
problem), within which six instances are correctly 
predicted as “L” and one instance is an uncertain case. 

Table 10. Confusion matrices for a reactive system. 

Predicted Class Reactive 
System 

 Q L NL Uncertain Total 

Q 3 0 2 0 5 
L 0 6 0 1 7 
NL 1 0 1 1 3 

Actual 
Class 

Total 4 6 3 2  
Ps (3+6+1)/15 = 0.67 

Table 11. Confusion matrices for a static system. 

Predicted Class Static 
System 

 Q L NL Uncertain Total 

Q 5 0 0 0 5 
L 0 0 0 7 7 
NL 0 0 0 3 3 

Actual 
Class 

Total 5 0 0 10  
Ps (5+0+0)/15 = 0.33 
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Fig. 20. (a) shows the prediction success rate for a static 

system; (b), (c) illustrate the prediction success rates for a 
reactive and a situated system. 
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The main diagonal elements (shaded cells in Table 9) 
show the correctly predicted classes.  

The prediction success rate corresponds to the 
percentage of correctly predicted examples over total 
test examples. Based on the results measured from 
this test, we can calculate prediction success rates for 
each system. As shown in the performance chart (Fig. 
20), a situated system produces a prediction success 
rate of 0.8. We conjecture the reason for this is the 
ability of a situated system to generalize across 
observations and subsequently to deduce 
explanations for environmental changes. It is also 
noted that the agent uses the conceptual knowledge to 
hypothesize and reflect from Task 10, thus providing 
better performance from that point. 

7. CONCLUSION 

Experiment results show that the implemented 
system can learn new concepts through its use in 
interactions in design optimization. Another finding 
is that the agent can develop adaptive knowledge 
structures through constructing a memory, during 
which the agent coordinates the system’s experience 
and environmental context in a situated manner. The 
system exhibits adaptive behaviours to this end. With 
regard to a static system based on pre-defined 
knowledge and a reactive agent which merely learns 
by the constructive learning, this situated agent-based 
design interaction tool performs better. 

In summary, the proposed situated agent-based 
design interaction tool plays a potential role in 
supporting decision-making in a dynamic design 
process, where a priori knowledge is not adequate. 
The framework developed here may also lay 
foundations for future quests into adaptive and 
personalized design tools. 
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