

- 1 -

Learning while optimizing a design: a situated agent-based design
interaction tool

WEI PENG, JOHN S. GERO

Key Centre of Design Computing and Cognition, University of Sydney, Australia

Abstract

This paper presents an approach that enables a design tool to learn through its use. This approach uses a situated agent that wraps
around a design tool and constructs concepts from interactions between the agent, the design problem and the use of the tool. The
concept underpinning this research is founded on the ideas of “situatedness”. Situatedness involves the context and the observer’s
experiences, as well as the interactions between them. A situated agent uses a constructive memory system to learn concepts
while interacting. When applied to design optimization fields, such a situated agent-based design interaction tool demonstrates
adaptive behaviours in reflexing, reacting and reflecting to various design optimization scenarios based on the incrementally
learned knowledge structures and their intentional descriptions – the conceptual knowledge. Design tools no longer simply
respond to their use based on a priori knowledge. Experiments show that a situated agent-based design optimization tool can
learn and develop adaptive behaviours to support design decision-making. A prototype system is presented.

Keywords: Learning; Situatedness; Constructive Memory; Adaptive Behaviour; Design Optimization Tool

1. INTRODUCTION

Designing is recognized as one of the most complex
human endeavours. Applying computers in building
design can be traced back to the 1950s. Computer-
aided design tools (CAD) were first introduced to
assist designers in evaluating the “goodness” of their
creations (Kalay, 1999). They have extended their
functionality to include three-dimensional modelling,
computer simulation, analysis, and integration
between applications. Whilst the functionalities of
design tools have been multiplying to embrace new
technologies, e.g., gesture recognition, multimedia,
and virtual reality (Myers, 1998), they continue to be
built on the paradigm that the tool is unchanged by its
use (Gero, 1996; 2003). Design tools keep repeating
themselves irrespective of their interactions with the
design environment. Designing is intrinsically
dynamic and interactive, in the sense that designers
reflect (Schon, 1983) and often change the course of
the developing design (Gero, 1998a). Knowledge-
based design systems have been widely applied to
provide knowledge support for tasks which require
human expertise, e.g., OPTIMA (Balachandran,
1988), KNODES (Rutherford & Maver, 1994) and
SEED (Flemming, 1994). These systems encode sets
of a priori design knowledge relating to the solutions
of various design problems. To address the

indeterministic nature of a design process, many
CAD researchers turned to building systems that can
learn automatically. Machine learning techniques
have been widely adopted in knowledge-based
systems to provide knowledge acquisition,
modification and generalization. These systems apply
a variety of machine learning algorithms to learn
design product and process knowledge, e.g. design
product learners like ID3 (McLaughlin & Gero,
1987), ECOBWEB (Reich & Fenves, 1991),
BRIDGER (Reich, 1993) and NODES (Persidis &
Duffy, 1991; Duffy et al., 1995); design process
learners such as BOGART (Mostow, 1989; Mostow et
al., 1992) and ARGO (Huhns & Acosta, 1992).
Classical design learning systems treat knowledge as
universal applicable and context-free generalizations
and descriptions (Reffat & Gero, 2000), so that they
can be reused in different contexts.

It is worth noting that an equally important notion
is “learning from a context”. Lieberman and Selker
(2000) pointed out that software that is sensitive to
context can reduce users’ frustrations in dealing with
the complexity of their functionalities. The intrinsic
interactive nature of design activities requires a
system that integrates generalization and context, in
the way that the system can learn and adapt to
experiences in different circumstances.

Recently, interaction has been taken into account
in developing systems to resolve uncertainty in a
dynamic process. This includes research in the field
of user modelling and intelligent interface, e.g.,

2 W. Peng, J.S. Gero

interface agents (Maes, 1994), the Lumiere project
(Horvitz et al., 1998) and PBE systems (Lieberman,
2001). These adaptive interfaces model users and
their interactions with computers with the aim of
producing adaptive behaviours. From their initial
endeavours based on the cognitive processes that
drive users’ actions in human computer interaction,
research on user modelling now concentrates on
learning users’ habitual actions in using software
applications. Adaptive interfaces provide proactive
help in the sense that they anticipate user needs and
present help before it is requested (Selker, 1994).
However, adaptive interfaces have to cope with the
“trade-off” between generalization and context
(Lieberman & Selker, 2000). This creates a
dichotomy between abstraction and context, which
should be viewed as a coherent unity in what we call
a concept.

In this paper, we present an approach founded on
concepts from both the cognitive and computational
domains. This approach uses a situated agent that
wraps around a design tool and constructs concepts
from interactions between the agent, the design
problem and the use of the tool. As a combination of
the agent’s interpretations and expectations of its
external and internal environment, a concept depicts
the memory learned in a constructive memory model
in a particular circumstance. A concept is a product
of coordination of data-driven processes from
contexts in the external world and expectation-driven
processes from the agent’s generalizations. It
contains both the context-sensitive information and
its grounded abstractions. A situated agent uses a
constructive memory system to learn concepts while
a designer is optimizing a design.

2. SITUATEDNESS AND CONSTRUCTIVE
MEMORY

Software agents are intentional systems that work
autonomously and interact with environments in
selecting actions to achieve goals (Wooldridge &
Jennings, 1995). A situated agent is a software agent
built on the notion of “situatedness”.

The concept of “situatedness” has its roots in
empirical naturalism (Dewey, 1896 reprinted in 1981)
and cognitive psychology (Bartlett, 1932 reprinted in
1977). It has been investigated in many different
areas with diverse terms. It is also termed as
“Situated Action” (Suchman, 1987), “Situated
Cognition” (Clancey, 1997) and “Situated Learning”
(Lave & Wenger, 1991). The notion of “situatedness”
is considered as a conditio sine qua non for any form
of “true” intelligence, natural or artificial (Lindblom
& Ziemke, 2002). Vygotsky contributed to the
concept of “situatedness” by introducing activity

theory, defining that activities of the mind cannot be
separated from overt behaviour, or from the social
context in which they occur. Social and mental
structures interpenetrate each other (Vygotsky, 1978;
Clancey, 1995).

The theory of situatedness claims that every
human thought and action is adapted to the
environment. They are situated because of what
people perceive, how people conceive of their
activity, and what people physically do develop
together (Clancey, 1997). It is postulated in situated
learning that knowledge is not a thing or set of
descriptions or collection of facts and rules. Neither
is it like procedures and semantic networks in a
computer program. Human knowledge should be
viewed as a capacity to coordinate and sequence
behaviour, to adapt dynamically to changing
circumstances (Clancey, 1995). In this vein,
situatedness involves both the context and the
observer’s experiences and the interactions between
them. Situatedness is paraphrased as “where you are
when you do what you do matters” (Gero, 1998b). It
is inseparable from interactions in which knowledge
is dynamically constructed. Situated cognition copes
with the way humans construct their internal worlds
via their interaction with the external world (Gero,
2003).

Central to the concepts of “situatedness” and a
situated agent is the notion of “constructive memory”.
Constructive memory contradicts many views of
knowledge as being unrelated to either its locus or
application (Gero, 1998b). A memory can be
regarded as a process of learning a concept. It is a
reflection of how the system has adapted to its
environment (Gero & Smith, 2006).

New memories of the experience are a
function of both the original experience
and previous memories of it. New
memories can be viewed as new
interpretations of the augmented
experience (Gero, 1999).

This process is biased by current environmental
cues, experience and the way the agent’s experiential
responses are developed into memories from
interactions between the agent and its environment.
In this paper, we suggest that a constructive memory
model can be implemented as a situated concept
formation engine, through which a design interaction
tool can learn.

3. SITUATED CONCEPT FORMATION

3.1. Concept Formation through a Situated Lens

Many researchers consider categorization the essence
of a concept and its formation. Concept formation has

Learning while optimizing a design 3

been regarded as a process of incremental
unsupervised acquisition of categories and their
intentional descriptions (Fisher & Pizzani, 1991).
Based on this theory, a broad spectrum of
computational models has been developed, including
inductive learning methods, explanation-based
learning approaches and connectionist algorithms.
Theories of concept formation that merely focus on
categorization are not able to address the complexity
of the world (Bisbey & Trajkovski, 2005). A concept
lacking an understanding of why the object, entity or
event has its particular properties is called a
protoconcept (Vygotsky, 1986; Bisbey & Trajkovski,
2005). We use the idea that learning a concept
inherently involves understanding its influence on its
environment. We believe that in the dynamic activity
of designing, concepts that incrementally capture the
knowledge of a design process are formed as a
consequence of “situatedness” (Gero & Fujii, 2000;
Peng & Gero, 2006).

Concepts are not only labelled structures, but also
“multimodal categorizations of perceptual
categorizations; ways of coordinating perception and
action; meaning and activity are inseparable”
(Clancey, 1997). It is the knowledge that enables an
agent to reuse past situations in new situations (Gero
& Fujii, 2000). We define concepts as the grounded
invariants over the agent’s experience. They are
abstractions of experience that confer a predictive
ability for new situations (Rosenstein & Cohen, 1998;
Smith & Gero, 2000). A concept provides means for
an agent to go beyond contexts and anticipate
potential acts.

On the other hand, concepts are grounded in
contexts. They are formed in the agent’s interactions
with the environment, and grounded as experiences
when receiving positive feedback.

3.2. Conceptual Coordination

A concept formation process can be regarded as the
way an agent orders its experience in time, which is
referred to as conceptual coordination (Clancey,
1999). A concept is a function of previously
organized perceptual categories and what
subsequently occurs (see Fig. 1).

A concept is formed by holding active a
categorization that previously occurred (C1) and
relating it to an active categorization (C2) (Clancey,
1999). Fig. 2 illustrates a scenario of such a situated
concept learning process. Perceptual category C1
groups sensory sequence “S1 S2” and activates the
agent’s experience to obtain similar organizations.
The agent’s experiential response (E1) represents the
agent’s expectations about what would happen later
in the environment.

Perceptual
Categorization 2

Perceptual
Categorization 1

C1

C2

What
I’m-doing-now

C

time t’

time t

Fig. 1. Conceptual coordination shows the conceptual
knowledge as a higher order categorization of a sequence

(after Fig. 1.6 in Clancey (1999)).

The agent uses E1 with environmental changes
(S3) to construct the current perceptual category C2.
This construction involves a validation process in
which environmental changes are matched with the
agent’s expectation. “Valid” means the
environmental changes are consistent with the
agent’s projection of such changes from a previous
time. The grounding process then reinforces a valid
experience. For invalid expectations, the agent
updates its perceptual category (C2) with the latest
environmental changes. The concurrence of
“situatedness” and “constructive memory” provides
the basis for concept formation in a situated manner.

C3

C1

S1

S2

time t’

time t

C: Perceptual
Categories

Experience

time t’’

S3

S: Sense-
data

C2

E1

E2

S4

E: Previous
Conceptual
Coordination

Fig. 2. A situated concept formation scenario.

4. A SITUATED AGENT-BASED DESIGN
INTERACTION TOOL IN OPTIMIZATION

The system is applied in the design optimization
domain. Design optimization is concerned with
identifying optimal design solutions which meet
design objectives while conforming to design
constraints. The design optimization process involves
some tasks that are both knowledge-intensive and

4 W. Peng, J.S. Gero

error-prone. Such tasks include problem formulation,
algorithm selection and the use of heuristics to
improve efficiency of the optimization process.
Designers rely on the experience that they have built
up through years of practice to carry out these tasks.
The outcome of this design process is constrained by
their expertise. Design knowledge plays a critical role
in improving the efficiency and efficacy of this
process. We concentrate on illustrating a scenario of
how the proposed model contributes to a design
optimization process.

4.1. Application Scenario

A large number of optimization algorithms have been
developed and are commercially available. Many
design optimization tools focus on gathering a variety
of mathematical programming algorithms and
providing the means for the user to access them to
solve design problems. For example, Matlab
Optimization Toolbox 3.0 1 includes a variety of
functions for linear programming, quadratic
programming, nonlinear optimization and nonlinear
least squares, etc. Choosing a suitable optimizer
becomes the bottleneck in a design optimization
process. The recognition of appropriate optimization
models is fundamental to design decision problems
(Radford & Gero, 1988). Some of the knowledge
required for recognition of an optimization problem
can be expressed in terms of semantic relationships
between design elements. An example of such
knowledge is illustrated in Table 1. The application
of this research to design optimization focuses on
learning and adapting the knowledge of applying
various optimization algorithms in different design
contexts. For example, a designer working on
optimizing a hospital layout may find that a certain
optimizer is more efficient in solving the problem
applied.

As the same or other designers tackle a similar
design problem, the same tool draws on its
experience to construct memories of a design
situation and anticipates the tool’s potential use. It
can therefore offer help to designers in their
interactions in designing even before they require it.
The design tool that adapts based on its experience of
its use is claimed to be effective (Gero, 2003). The
effectiveness of the tool describes the capability of
producing an effect.2 It is often associated with the
term “efficacy” when a design tool is applied in a
design activity. The efficacy of the tool concentrates
on the outcome and usually refers to the ability to

1 http://www.mathworks.com/products/optimisation/.
2 http://en.wikipedia.org/wiki/Effectiveness.

produce a desired amount of a desired effect.3 The
tool that maintains a predictive model based on valid
anticipations may improve the efficacy of a design
process through introducing the agent’s experience in
developing the design outcome. In a design
optimization scenario, it can be measured through the
correctness in recognising a design optimization
problem.
Table 1. An example of knowledge required in recognition
of an optimization problem (after Radford and Gero
(1988)).

if all the variables are of continuous type

and all the constraints are linear

and the objective function is linear

then conclude that the model is linear programming

and execute linear programming algorithm

4.2. Architecture of the Interaction Tool in
Optimization

Fig. 3 demonstrates a general architecture of this
situated agent-based design interaction tool used in
optimization. A situated agent wraps around an
existing design optimization tool. A user accesses a
design tool via a wrapper, whereby the situated agent
senses the events performed by that user.

Situated Agent

Interface Agent

Matlab
(Optimization

Toolbox)

Wrapper
(ToolWrapper

class) M-scripting
Agent

User

Callback
Agent

Sensor

Effector

Concept
Formation

Experience

Fig. 3. A general architecture of a situated agent-based

design interaction tool in optimization.

The situated agent uses its experience and concept
formation engine to generate a concept, which affects
the tool’s behaviour in designing. The user can also
directly communicate with the agent to obtain
additional information. Such a framework provides
the means that allows the agent to incrementally learn
new experiences. The system consists of two major
components: a situated agent and a tool platform

3 http://en.wikipedia.org/wiki/Effectiveness.

Learning while optimizing a design 5

which includes a design optimization tool, a tool
wrapper and interface agents.

4.3. Design Optimization Tool Platform

In this paper, the Matlab Optimization Toolbox
(version 3.0.1) is chosen as the design optimization
platform. It is a collection of functions that extend the
capability of the MATLAB numeric computing
environment (Release 14). The toolbox includes
routines for a variety of optimization classes
including unconstrained and constrained nonlinear
minimization, quadratic and linear programming, and
nonlinear optimization. Via the MATLAB command
line, Matlab users use a scripting language called M-
file to define and to solve optimization models.

The interface agent, which consists of a Callback
agent and an M-scripting agent, enables both users
and the situated agent to operate on the engines in the
Matlab Optimization Toolbox. A tool wrapper serves
as an interface between the user, the tool and agents.
It provides a simplified and efficient way to perform
design optimization using the Matlab Optimization
Toolbox.

4.4. A Situated Agent

A situated agent therefore contains sensors, effectors,
“experience” and a concept formation engine, which
consists of a perceptor, a cue_Maker, a conceptor, a
hypothesizer, a validator and related processes.
Sensors gather events from the environment. These
events include users’ actions performed in using a
design tool, such as key strokes, menu selections and
mouse clicks. Sense-data are environment variables
and their states that are captured by sensors. They are
triggered by external environmental changes
(exogenous). Exogenous sense-data (Se) take the
form of a sequence of actions. For example, some
sense-data at time “t” can be expressed as:

• Se (t) {…… “click on a certain text field”,
key stroke of “x”, “(”, “1”, “)”, “+”, “x”, “(,
“2”, “)”…}.

These sense-data are transferred into sensory data

which are grouped into categories according to their
initial descriptions. Sensory data (Se+a) consist of two
types of variables: the exogenous sense-data (Se) and
the autogenous sensory experience (Sa). Sa is
produced from matching the agent’s exogenous
sense-data (Se) with the agent’s sensory level
experience. Sensory data (Se+a) are a combination of
the agent’s exogenous sense-data (Se) and the related
autogenous information (Sa).

For example, these sense-data can be converted
into a sequence of labelled sensory data at time “t”:

• Se+a (t) {…… “text field label: key stroke of

“x”, “(”, “1”, “)”, “+”, “x”, “(, “2”, “)””…}.

Percepts are intermediate data structures that are

generated from mapping sensory data into categories.
The perceptor processes sensory data and groups
them into multimodal percepts. Percepts are
structured as triplets:

• P (Object, Property, Values of properties).

For example, perceptual data at time “t” (P (t)) built
on the above sensory data can be described as:

• P (t) { P1, Label for Text Field, “x(1)+x(2)”}.

Percepts can also be grouped into sequences of

categories. These are composed percepts. A
cue_Maker discerns whether a percept can be used to
create a memory cue. This is performed by matching
with the agent’s sensory-level experience. The
cue_Maker is also responsible for creating cues that
can be used to activate an agent’s context-addressable
experience.

The conceptor is the software object used to
generate concepts in the conception process. A
concept is regarded as a result of an interaction
process in which meanings are attached to a
perceptual category. In order to illustrate a concept
formation process, we use the term “proto-concept”
to illustrate the intermediate state of a concept. A
proto-concept is a knowledge structure that depicts
the agent’s interpretations and anticipations4 about its
external and internal environment at a particular time.
Through sensation and perception processes, the
contextual information is interpreted based on the
agent’s experience. With this initial transformation,
the agent creates a mapping between the context from
its external world and its internal world. It can cue its
experience structure to generate anticipations for the
interpreted perceptual category. The conception
process constructs a proto-concept based on the
interpreted and the anticipated information.

The conception process consists of three basic
functions: conceptual labelling (C1), constructive
learning (C2) and induction (C3). Conceptual
labelling creates proto-concepts based on experiential
responses to an environmental cue. This includes
deriving anticipations from these responses and

4 The interpretation is concerned with associating an initial
meaning to a context. Anticipation is the concept of an
agent making decisions based on predictions and
expectations about the future.
http://en.wikipedia.org/wiki/Anticipation.

6 W. Peng, J.S. Gero

identifying the target. Constructive learning allows
the agent to accumulate lower level experiences.
Induction can generalize abstractions from the lower
level experience and is responsible for generating
conceptual experience structures.

The validator pulls information from the
environment and examines whether the
environmental changes are consistent with the
agent’s anticipations. The hypothesizer generates
hypotheses from the learned proto-concepts when
they are not valid in interactions. This is where
reinterpretation takes place in allowing the agent to
learn in a “trial-and-error” manner. A situated agent
reinterprets its environment using hypotheses which
are explanations that are deduced from its domain
theory (usually conceptual experience). An agent
subsequently refocuses on or constructs a new proto-
concept based on hypotheses. An effector is the unit
via which the agent brings changes to environments
through its actions.

4.5. The Agent’s Experience

The agent’s experience is treated as knowledge
structures that hold sensory, perceptual and
conceptual representations and can be used to
construct a memory. They can be classified into three
categories.

1. Sensory experience holds discrete symbolic
labels for discerning sense-data. They are the
built-in features for sensors. Each sensor
captures a particular type of information. Once
an environmental stimulus is detected, the
agent attaches an initial meaning to it, based
on its sensory experience.

2. Perceptual experience captures historical
representations of perceptual categories and
their interrelationships. These include entities,
properties and entity–property relationships
with degrees of beliefs.

3. Conceptual experience comprises the
grounded invariants over the lower level
perceptual experience. The conceptual
experience explicitly states the regularities
over the past observations of perceptual
instances. It is obtained via grounding the
concepts formed from interactions.

4.5.1. The agent’s sensory and perceptual experience
The sensory experience contains symbolic labels for
each sensory category. Based on this level of
experience which holds modality information, the
sense-data can be transformed into discrete
perceptual categories. Sensory experiences are labels
that are kept consistent with their higher level

organizations – the perceptual experience. For
instance, the name of “OBJF_Type” denotes a
sensory experience for a category “Objective
Function Type”.

Perceptual experience is organized into a
Constructive Interactive Activation and Competition
(CIAC) neural network, which is an extension of a
basic IAC network (McClelland, 1981; 1995). An
IAC network consists of two basic nodes: instance
nodes and property nodes. The instance node has
inhibitory connections to other instance nodes and
excitatory connections to the relevant property nodes.
The property nodes encode the special characteristics
of an individual instance (Medler, 1998). Property
nodes are grouped into cohorts of mutually exclusive
values. Each property node represents the perceptual
level experience which is processed from sensory
data. Instance nodes along with the related property
nodes describe an instance of a concept. Knowledge
is extracted from the network by activating one or
more of the nodes and then allowing the excitation
and inhibition processes to reach equilibrium (Medler,
1998).

As shown in Fig. 4, the shaded instance node ()
and related shaded property nodes () present a
context addressable memory cued from an
environmental stimulus, e.g., [Objective_Function,
f1]. Such knowledge is a dynamic construction in the
sense that the agent develops adapted experience as
environmental stimuli change.

Instance Node
(activated)

2

Activation

InhibitionProperty
Cohort

Instance
Cohort

Property Node
(activated)

1

Variable_Type

Objective_Function
Type

Objective_Function

Optimizer

Constraint_Type

Has_Hessian

o1 o2

c1

c2ft2

ft1

Property Node
(inhibited)

Instance Node
(inhibited)

h2

h1

f1 f2

v2

v1

Fig. 4. A CIAC neural network as a representation of the
agent’s experience; Property nodes are labelled by their

value, e.g., f1 represents a property node in the
Objective_Function cohort with objective function value f1.

An activation diagram (Fig. 5) outputs the
neurons winning at the equilibrium state, which
represent the activated memory. The horizontal line
shows the activation threshold, which is an empirical
value defining the boundary of the activation. Only
those neurons that surpass this value yield outputs.

Learning while optimizing a design 7

Based on the responses from a CIAC neural network,
the agent constructs initial concepts and displays the
constructed knowledge in the tool wrapper.

Table 2 illustrates the formulae that are used to
compute network input value (Ne), activation value
(Ac) for each node during the activation and
competition phases.

Fig. 5. Activation diagrams show the activated memory of

design experience 2 (“ins-2” stands for instance node 2,
which is connected to a number of property nodes, i.e.

“OBJF:x(1)^2”, “OBJF_Type: Quadratic”, ……,
“Optimizer: Quad-Programming”).

Table 2 also describes the formula that is applied
to adjust the weights of each excitatory connection of
the valid concept during the grounding via weight
adaptation process, so that those nodes that fired
together become more strongly connected. Weight
adaptation is formulated similar to a Hebbian-like
learning mechanism (Medler, 1998).

We use the response value Ra to measure the
strength of an experience. It is specified as follows:

∑
=

=
n

1i
iA aR (1)

where n is the number of nodes in the network and Ai
denotes an activation value of a node. Ra is defined as
the sum of activation values for the neurons at a
specific time. We utilize activation gain ΔA to
measure the increase of activation value for each
node for two consecutive cycles. Formula (2)
illustrates this variable.

jΑ−Α=ΔΑ i (2)
where Ai, Aj represents the activation values of a
node at two successive cycles. Therefore, the
equilibrium state refers to the state in which no more
activation gain (ΔA is less than a threshold) is
acquired by the network activation and competition
process.

The response diagram shows how an experience
is triggered during cycles of activation and
competition phases, Fig. 6, where the X coordinate
represents the cycle number, which is a time variable.

Table 2. Major formulae applied in CIAC neural network.
Ac represents the strength of belief of the activated node;
weight adaptation is a grounding process that verifies the
usefulness of a related experience in current situation.

Item Formulae

Network
Input
Values (Ne)

∑
=

+Ε=
n

1i
ii AW μeN

µ: excitatory gain for initial network stimulus, set to
4.0
E: initial network stimulus, default 1.0
Wi: inbound weights for a neuron
Ai: activation value for each inbound weight
n: number of neurons in a network

Activation
Values
(Ac)

If Ne > 0
() ()[]RANAAAA ceccc −−−+= −−− 11max1 ϕl

else
() ()[]RANAAAA ceccc −−−+= −−− 1min11 ϕl

Ac: activation value for node at current cycle
Ac-1: activation value for node at previous cycle
Ne: net input for each node
Amax: maximum activation value, set to 1.0
Amin: minimum activation value, set to -0.2
R: initial resting activation value, default -0.1
φ: the decay factor, default 1.0
ℓ: the learning rate, default 0.1;

Weight
Adaptation
(Wn):

If Wo >0
() ojioon WAAWWWW δ−−+= maxl

else
 on WW =

Wo: weight value before weight-adaptation
Wn: weight value after weight-adaptation
ℓ: learning rate, default 0.1
Wmax: maximum weight value, set to 1
 Ai, Aj: activation values for neuron i and j
 δ: weight decay factor, set to 0.1

The Y coordinate describes the response value

(for the curve) and the sum of activation gain ΔA
of the experience (for the line).

Fig. 6. The response diagram shows the dynamics of the

activation and competition processes.

4.5.2. The agent’s conceptual experience
The agent’s conceptual experience can be represented
in a decision-tree structure. Fig. 7 shows the learning
results and the performance of applying a decision

8 W. Peng, J.S. Gero

tree learner (in the induction function of the
conception process) to the agent’s experience.
Decision tree learning is a widely used method for
inductive inference. Each non-leaf node stands for a
test on an attribute. Edges of the decision tree coming
from the nodes are values of attributes for that node.
Leaf nodes are used to represent design decisions for
selecting optimizers. Numbers in parentheses
illustrate an observation for the class defined in the
leaf node. For example, “5/1” describes that there are
five positive observations and one negative
observation for that class. A conceptual knowledge
(or label) can be obtained by traversing from the root
node to a leaf node.

= Linear = Nonlinear = Quadratic

A conceptual label
is obtained by
traversing from the
root node to a leaf node

Root Node

Leaf nodes represent design decisions for selecting optimisers

Optimiser
Lin-Programming

(4/0)

Optimiser
Nonlin-Programming

(2/0)

Optimiser
Quad-Programming

(5/1)

OBJF_Type

Fig. 7. A decision tree learned from C4.5.

The agent’s conceptual experience serves as
domain theories for the agent’s hypothesizer to
construct explanations. Fig. 8 illustrates a hypothesis
created on the basis of the conceptual knowledge
obtained in Fig. 7. The hypothesis that is learned
from a deductive learner allows the agent to
reinterpret and re-anticipate a circumstance.

Fig. 8. A hypothesis and the related proto-concept.

4.6. Experiential Grounding

Symbolic grounding explores the means by which the
semantic interpretation of a formal symbol system
can be made intrinsic to that system rather than
relying on the meanings in the head of an external
interpreter or observer (Harnad, 1990). The
grounding problem generally refers to representation
grounding (Chalmers, 1992) or grounding of
concepts, in which concepts can be developed
through interactive behaviour in an environment
(Dorffner & Prem, 1993). An agent grounds its
behaviour and representations in its interaction with
the environment. The behaviour of the agent is
intrinsically meaningful to itself (Ziemke, 1999). The
key issue leading to a truly grounded AI system is
“getting there”, in the sense that the agent could
construct and self-organize itself and its own
environmental embeddings (Ziemke, 1999).

In this vein, in implementing a constructive
memory system, “experiential grounding” (Liew &
Gero, 2002) had been proposed as a process that
verifies the usefulness of a related experience in the
current situation. It has the effect of increasing the
likelihood of a previously cued memory as being
reactive in current time. In this paper, a grounding
process is referred to as the testing and the evaluation
of whether a constructed memory correctly predicts
environmental changes. A function called “weight
adaptation” (also in Table 2) is applied here. Fig. 9 (a)
shows an experience structure before the grounding
process.

This structure contains two design instance nodes,
among which “ins-2” denotes an instance of a
quadratic design optimization experience. The two
instance nodes (“ins-1” and “ins-2”) are shown in the
centre of the network. They are surrounded by and
connected with some property nodes. The label inside
a property node shows the cohort in which a node is
located and the value of that property node. For
instance, the label “OBJF_Type: Quadratic”
describes an “OBJF_Type” property node with value
“Quadratic”. The weighted connections between the
instance node (“ins-2”) and property nodes
“OBJF_Type: Quadratic” and “Optimizer: Quad-
Programming” are both “0.2942” (circled by dotted
lines in Fig. 9 (a)). Fig. 9 (b) presents the grounded
experience. It is noted that the connection weights
between instance node (“ins-2”) and property nodes
“OBJF_Type: Quadratic” and “Optimizer: Quad-
Programming” are enhanced to “0.3655” and
“0.3155” respectively. The amounts increased are not
only decided by the weights before the grounding
process, they are also influenced by the activation
values in the state of equilibrium.

Learning while optimizing a design 9

(a) (b)
Fig. 9. Grounding via weight adaptation changes the connections between neurons according to their usefulness in interaction.

Percepts at
Runtime

Initial Experience

(a) (b)
Fig. 10. A new experience is learned from perceptual categories at run-time.

10 W. Peng, J.S. Gero

Another process that contributes to grounding is
the constructive learning mechanism (Liew & Gero,
2002) of a constructive memory system. This allows
an agent to accommodate a new experience in an a
posteriori manner. Constructive learning (C-Learning)
has been implemented and illustrated in Fig. 10. Fig.
10 (a) describes an initial experience structure and
the percepts at run-time. The agent learns a new
experience based on these percepts. The new instance
node is depicted as “ins-2” in Fig. 10 (b).

4.7. Adaptive Behaviour

Adaptivity, the agent’s capability to learn and
improve with experience (Bradshaw, 1996), is a
significant property of a situated agent. Adaptation is
not only concerned with learning new knowledge
structures, it also refers to self-organizing the
system’s knowledge and behaviours in the
interactions. Adaptation refers to adjustments of a
situated agent’s behaviours in its interaction with the
environment. Adaptive behaviours, in terms of
reflexive, reactive and reflective behaviour (Maher &
Gero, 2002), can result from the agent’s internal
processes and constraints imposed by a situated agent
architecture.

An agent reflexes when its experiential response
to the current memory cue is sufficiently strong to
directly influence the action without reasoning. This
can be a result of highly grounded experience, i.e.,
the weighted connection between the node
representing an environmental cue and another
experience node reaches a certain threshold. In
reactive behaviour, the agent is able to activate an
existing experience on environmental cues. The
knowledge structures (CIAC network) of the agent’s

experience are involved in producing memory, which
is anticipation for the potential consequence of
environmental changes. The agent is able to evaluate
the experience of that memory by pulling
environmental changes and comparing these changes
with the activated memory.

The agent’s reflective mode is triggered by
discrepancies between the agent’s anticipation and
current environmental changes. There are two
scenarios of reflective behaviours. In reflective
behaviour scenario I, a memory is reactivated when
the agent’s initial experiential response to a memory
cue fails in the validation process, but a memory cue
is still able to be subsequently identified in the
environment. In reflective behaviour scenario II, a
deductive learner is employed to create hypotheses,
which are based on the explicitly represented domain
theories and its goal concept. The agent therefore
refocuses to an existing concept or initiates
constructive learning.

5. THE ARCHITECTURE OF THE
IMPLEMENTED SITUATED AGENT

The architecture of the implemented situated agent is
illustrated in Fig. 11. The tool wrapper interface
allows designers to define problems. Sensors gather a
user’s actions that comprise a design optimization
process and activate a perceptor to create percepts. A
percept cues the agent’s initial experience. Based on
the responses from the CIAC neural network, the
agent constructs initial concepts and displays the
constructed knowledge in the tool wrapper (solid
lines in Fig. 11).

Grounded Experience
via

Constructive Learning

Grounded Experience
via

Weight Adaptation

Initial
Experience

Activation Diagram

A

B

C cues

Activation
Explanation-based

Hypotheses

Grounding via
Constructive Learning
Grounding via
Weight Adaptation

Activating Existing
Experience

Backward-chaining Hypothesising

Inductive
Learning

Tool
Wrapper

Conceptual
Knowledge

Fig. 11. The architecture of the implemented situated agent.

Learning while optimizing a design 11

The grounding process initiates a validation function
that matches the initially constructed concepts with
environmental changes. Weight adaptation increases
the connection weights of the valid concept and
grounds Experience A to Experience B (dash dot
lines in Fig. 11). In the agent’s reflective concept
learning process, the explanation-based learner is
used to form a new concept (square dot lines in Fig.
11). A percept at run-time can also be developed as a
new concept by a constructive learning process (dash
lines in Fig. 11). Experience C is learned using
constructive learning and the related conception
process.

Typical scenarios of experiential grounding have
already been demonstrated in Fig. 9 and Fig. 10, e.g.,
grounding of Experience A to B can be viewed in Fig.
9 (a) and Fig. 9 (b). Similarly, the grounding via the
constructive learning process that transfers
Experience A to Experience C can be found in Fig.
10 (a) and Fig. 10 (b). Conceptual knowledge and
explanation-based hypotheses shown in Fig. 11 have
also been described in Fig. 7 and Fig. 8.

6. EXPERIMENTS AND RESULTS

In this section, we describe a number of experiments
and discuss their results. The purpose of the
experiments is to evaluate the proposed interaction
tool through:

• examining whether the proposed approach
can learn new concepts from interactions;

• investigating whether the implemented
model can develop adaptive behaviours in
different circumstances, based on the
knowledge structures it learned;

• studying the characteristics of the agent’s
behaviours in various circumstances;

• evaluating the efficacy of the interaction tool.
We measure the system’s performance in
assisting a design optimization tool to
recognise novel design optimization
problems compared to other approaches.

Experiment I is concerned with investigating how a
situated agent develops knowledge structures and
behaviours in similar design optimization scenarios
over time. It measures the agent’s response value (Ra)
and response time (Te) in a number of linear design
optimization scenarios. Experiments II and III focus
on observing and analysing the tool’s behaviours in
heterogeneous design optimization scenarios.
Experiment IV is a comparative test of various
systems and their performance in learning to
recognize novel design optimization scenarios.

6.1. Experiment I

In this experiment, the initial agent holds a linear
design optimization experience, which is represented
as a CIAC neural network that contains one instance
node and related nine property nodes. This is a
structure that can be used to construct a memory of a
linear optimization problem. The learning rate of this
agent is set to 0.205 and the threshold of equilibrium
state (Teq) is 0.005. Each time the agent responds to a
memory cue “OBJF_Type:Linear”, it subsequently
grounds the constructed memory into a new
experience.

Fig. 12 shows a network view of such an initial
experience. Table 3 gathers the agent’s states in 10
consecutive testing epochs on linear design
optimization tasks. Response value Ra represents the
sum of the activation value for each node of the
CIAC neural network. The response time of the agent
Te can be obtained by counting computer cycles for a
CIAC network to reach the equilibrium state. “Mean
Activation” is the average activation value for a
CIAC network. “Sum of Δa” depicts the sum of the
activation gains (the increase of an activation value
for each node for two consecutive cycles) for each
node in the state of equilibrium. Weights of
connections of the CIAC network are also recorded
in a matrix file. The performance of the agent is
defined as the prediction correctness.

Fig. 12. The initial experience structure has one instance

node which is connected to nine property nodes with
connection weight 0.3. It denotes a scenario of linear

design optimization.

Fig. 13 illustrates how the agent modifies its
behaviours based on its experience. Exposed to
similar design problems, the agent improves its
responses based on the adaptation of its knowledge
structures. The strength of its experience is related to
the time (Te) and response value (Ra) with which the
agent responds to an environmental cue.

12 W. Peng, J.S. Gero

Table 3. Grounding of the agent’s experience in similar design optimization scenarios.

Testing
Epoch

Response
(Ra)

Time to
Equilibrium

(Te)

Mean
Activation

Sum of Δa Performance
(0.0 – 1.0)

Weighted
Connection

(0.3000 – 1.0000)
1 6.891 44 0.6981 0.2366 1.0 0.3000
2 7.478 39 0.7478 0.2283 1.0 0.3899
3 7.870 34 0.7870 0.2199 1.0 0.4616
4 8.130 31 0.8130 0.2155 1.0 0.5373
5 8.281 28 0.8281 0.2402 1.0 0.6053
6 8.429 27 0.8429 0.2183 1.0 0.6593
7 8.529 26 0.8529 0.2101 1.0 0.6981
8 8.596 25 0.8596 0.2119 1.0 0.7394
9 8.639 25 0.8639 0.2237 1.0 0.7657
10 8.696 25 0.8696 0.2007 1.0 0.7910

In Experiment I, the experience of the system is

enhanced by grounding via a weight-adaptation
process.

As illustrated in the results, the experience gained
in solving similar design problems is enhanced with

its response values increased and response time
reduced over time. The tool recognizes similar design
situations with a high accuracy and an improved
response rate.

5.0
5.5
6.0
6.5
7.0
7.5
8.0
8.5
9.0

1 2 3 4 5 6 7 8 9 10

Testing Epoch

R
es

po
ns

e
Va

lu
e

10
15
20
25
30
35
40
45
50

R
es

po
ns

e
Ti

m
e Response

Value (Ra)

Tim e to
Equilibrium
(Te)

Fig. 13. The agent adapts its experience in Experiment I.

6.2. Experiments II and III

Each experiment uses a sequence of simulated design
scenarios. Each scenario represents a design task
which is further composed of a number of design
actions. For example, a typical design optimization
task consists of a number of actions:

• defining an objective function;
• identifying the objective function type;
• defining design variables, variable types;
• describing design constraints, constraint

types;
• typing in the gradients of objective function

and constraints;
• defining matrices, such as Hessian matrix

and its type;
• selecting optimizers;

• submitting a design problem or editing a
design problem;

• submitting feedback on the agent’s outputs.

To support Experiment II, a sequence of 15 design
scenarios is created. The sequence of tasks is:

• {L, Q, Q, L, NL, Q, NL, L, L, NL, Q, Q, L, L,
L}

 “Q”, “L” and “NL” represent quadratic, linear and
nonlinear design optimization problems respectively.
The initial experience of the agent holds one instance
of a design optimization scenario solved by a
quadratic programming optimizer. Table 4 shows the
symbols used to represent behaviours of the agent.
The following seven internal states are recorded and
illustrated in Table 5:

Learning while optimizing a design 13

1. The knowledge structure is represented in a
Constructive Interactive Activation and
Competition (CIAC) neural network
composed of instance nodes connecting to a
number of property (or feature) nodes;

2. The expectations about environmental
changes are generated by the agent’s
experiential responses to environmental cues
(Ac);

3. The validator states show whether an agent’s
expectation is consistent with the
environmental changes (V1 and V2);

4. The reactivated experience or initially
validated experience is experience
reactivated during the reflective learning
process or the validated experience during
validation (Rc);

5. Hypotheses depict the agent’s
reinterpretation about its failures in creating
a valid expectation (Hs);

6. Concepts are the agent’s high-level
experiences, which are domain theories an

agent uses to classify and explain its
observations (Nk);

7. The directly observed system’s behaviours
are in terms of “sensation”, “perception”,
“conception 1-3”, “IAC neural network
activation”, “IAC neural network
reactivation”, “reflexive experience
response”, “hypothesizing”, “validation”,
and “grounding via weight adaptation”. It is
worth noting that we divide the conception
process into three types of behaviours: the
conceptual labelling (C1), constructive
learning (C2) and inductive learning (C3) to
demonstrate the methods via which the
system builds a concept.

6.2.1. Behaviour records
In this section, we measure the above-mentioned
behaviours of the system. The seven internal states
are summarized in Table 5.

Table 4. Symbols represent various behaviours.

SYMBOLS BEHAVIOURS (BE) DESCRIPTIONS

C1 Conception process 1 –
conceptual labelling

Focusing on the target concept from the
activated experience

C2 Conception process 2 –
conception via constructive
learning

Creating perceptual experience from memory
construction (constructive learning)

C3 Conception process 3 –
conception via inductive
learning

Creating conceptual experience from
generalization (inductive learning)

H Hypothesizing Deducing proto-concepts from hypotheses
Ia IAC neural network

activation
Activating the perceptual experience structure
(IAC) to get response

Ir IAC neural network re-
activation

Re-activating the perceptual experience
structure (IAC) to get response

P Perception Low-level behaviour in creating percepts and
memory cue

Rex Reflexive experience
response

Returning experience that reaches reflexive
threshold (no reasoning and activation
required)

S Sensation Low-level behaviour in creating sensory data
Vd Validation Comparing anticipation with environment

changes
Wa Weight adaptation Reinforcing the experience when it is useful

Table 5. Experiments with various design optimization scenarios and the agent’s behaviours. Ac denotes activated experience. Rc
shows the reactivated or initially validated experience. V1 represents the validator state for Ac. Hs are hypotheses. V2 describes
the validator states for Hs. Be is the abbreviation for the agent’s behaviours. Nk means new knowledge learned. √ shows that the
agent correctly predicts the situation and X shows the opposite.

14 W. Peng, J.S. Gero

TASKS AC V1 RC HS V2 BE NK

Task 1 N/A N/A N/A N/A N/A S, P, C2 New Experience Ins-2
Task 2 Ins-1 √ N/A N/A N/A S, P, Ia, C1, Vd, Wa Grounded Experience

Ins-1
Task 3 Ins-1 √ N/A N/A N/A S, P, Ia, C1, Vd, Wa Grounded

Experience
Ins-1

Task 4 Ins-2 N/A N/A N/A N/A S, P, Ia, C1, Vd, Wa Grounded Experience
Ins-2

Task 5 N/A N/A N/A N/A N/A S, P, C2 New Experience Ins-3
Task 6 Ins-1 √ N/A N/A N/A S, P, Ia, C1, Vd, Wa,

C3
Grounded Experience

Ins-1 and
New Concept 1

Task 7 Ins-3 √ N/A N/A N/A S, P, Ia, C1, Vd, Wa,
C3

Grounded Experience
Ins-3

Task 8 Ins-2 √ N/A N/A N/A S, P, Ia, C1, Vd, Wa,
C3

Grounded Experience
Ins-2

Task 9 Ins-2 √ N/A N/A N/A S, P, Ia, C1, Vd, Wa,

C3
Grounded Experience

Ins-2
Task 10 Ins-1

false
memory

X Ins-1,2,3
uncertain
Memory

Quadratic
Programming
Reactivated

Ins-1

X S, P, Ia, C1, Vd, Ir, C1,
H, Ir, C2, C3

New Experience Ins-4,
and New Concept 2

Task 11 Ins-4
false

memory

X Ins-4
false

memory

Quadratic
Programming
Reactivated

Ins-1

√ S, P, Ia, C1, Vd, Ir, C1,
H, Ir, Wa, C3

Grounded Experience
Ins-1

Task 12 Ins-4 false
memory

X Ins-4
false

memory

Quadratic
Programming
Reactivated

Ins-1

√ S, P, Ia, C1, Vd, Ir, C1,
H, Ir, Wa, C3

Grounded Experience
Ins-1

Task 13 Ins-2 √ N/A N/A N/A S, P, Ia, C1, Wa, C3 Grounded Experience
Ins-2

Task 14 Ins-2 √ N/A N/A N/A S, P, Ia, C1, Wa, C3 Grounded Experience
Ins-2

Task 15 Ins-2 N/A N/A N/A N/A S, P,
Rex, Wa, C3

Grounded Experience
Ins-2

New Concept 1:
• OBJF_Type = Quadratic Optimizer = Quad

Programming;
• OBJF_Type = Linear Optimizer = Lin-Programming;
• OBJF_Type = Nonlinear Optimizer = Nonlinear-

Programming;

New Concept 2:
• Provide_Hessian = false and OBJF_Type = Quadratic

Optimizer = Nonlinear-Programming
• Provide_Hessian = false and OBJF_Type = Linear

Optimizer = Lin-Programming
• Provide_Hessian = false and OBJF_Type = Nonlinear

Optimizer = Nonlin-Programming
• Provide_Hessian = true Optimizer = Quad-

Programming

6.2.2. Behaviour analysis
The behaviours recorded in this experiment are
shown in Fig. 14 and Fig. 15. Fig. 14 shows changes
of behaviours of the system from tasks 1 to 8, and Fig.
15 describes behaviours emerging from tasks 9 to 15.

We can identify a number of behaviour patterns
from these two figures, which allows us to trace the
role of the interaction in shaping the system’s
behaviours. Table 6 shows a number of behaviour
patterns and the underlying causalities for their
formations.

Learning while optimizing a design 15

Stage I

1
e1 e2 e3 e 4

2 3 4 5 6 7
e1 e2 e3 e 4 e5 e6 e1 e2 e3 e 4 e1 e2 e3 e1 e2 e3 e 4 e5 e6 e1 e2 e3 e 4 e1 e2 e3 e 4 e1 e2 e3 e 4

8

S
P

Ia
Vd

Wa

Ir
C1

C2

C3

Rex

H
Stage II

Tasks and Events

Be
ha

vi
ou

rs

P C1

Vd

H
Ia

Ir

C3

C2

Wa

Rex

S
Reactive
Behaviour

Validate,
Ground
Proto-concept

Reflective
Behaviour

Reflexive
Behaviour

Construct
New
Memory

Inductive
Learning1

2

3

5 6

4

1 2

3

2 2 2 2 2

3 3 3 3

1

4 4 4

Fig. 14. Behaviour chart for the system during tasks 1–8.

Stage II Stage III

e1 e2 e3 e 4 e5 e6 e7 e8

9
e1 e2 e3 e 4

10 11
e1 e2 e3 e 4 e5 e6

12
e1 e2 e3 e 4 e5 e6 e1 e2 e3 e 4

13
e1 e2 e3 e 4

14
e1 e2 e3

15
Tasks and Events

B
eh

av
io

ur
s

S
P

Ia
Vd

Wa

Ir
C1

C2

C3

Rex

H

P C1

Vd

H
Ia

Ir

C3

C2

Wa

Rex

S
Reactive
Behaviour

Validate,
Ground
Proto-concept

Reflective
Behaviour

Reflexive
Behaviour

Construct
New
Memory

Inductive
Learning1

2

3

5 6

4

2 2 2 2 2 2

3 3 3

4 4 4 4 4 4 4
5 5 5

1
6

Fig. 15. Behaviour chart for the system during tasks 9–15.

16 W. Peng, J.S. Gero

Table 6. Behaviour patterns, their formations and causalities.

Pattern Name Descriptions Causalities

1 Construct new
memory

Activation sequence:
S P C2,
Performing constructive learning.
Behaviours marked with “1” in Fig. 14
and Fig. 15

The coordination of micro-interaction and
macro-interaction when no previous
experience is valid.

2 Reactive behaviour
pattern

Activation sequence:
S P Ia C1,
behaviours marked with “2” in Fig. 14
and Fig. 15

The coordination of micro-interaction and
macro-interaction when previous experience is
activated and constructed into a proto-concept.

3 Validate and
ground the proto-
concept

Activation sequence:
Vd Wa, behaviours marked with “3”
in Fig. 14 and Fig. 15

The coordination of micro-interaction and
macro-interaction when receiving affirmative
feedbacks from macro-interaction.

4 Inductive learning C3, behaviours enclosed in ellipses and
marked with “4” in Fig. 14 and Fig. 15

Micro-interaction that generalizes invariants
from low-level experience.

5 Reflective
behaviour pattern

Activation sequence:
Ir C1 H Ir, behaviours marked
with “5” in Fig. 15

The coordination of micro-interaction and
macro-interaction. This involves reactivating
the system’s experience, using conceptual
knowledge to deduce hypotheses and
subsequently refocusing on (or creating) an
existing (or new) proto-concept.

6 Reflexive
behaviour pattern

Activation sequence:
S P Rex, behaviours marked with
“6” in Fig. 15 (Task 15)

The coordination of micro-interaction and
macro-interaction when the system has a very
strong experience to an environmental
stimulus.

Compound
pattern 1

Pattern 2 3 React then ground (Tasks 2-3, 6-9, 13-
14)

This happens when the system’s perceptual
level experience is useful.

Compound
pattern 2

Pattern 2 5 1 React, reflect then construct new
memory (Task 10)

This happens when the system’s experience is
not available.

Compound
pattern 3

Pattern 2 5
Wa

React, reflect, then reinforce the
experience
(Tasks 11-12)

This happens when the system’s conceptual
experience is useful in creating hypotheses.

We can further cluster the system’s learning

behaviour into three stages based on aggregations of
these patterns: Stages I, II and III. We use behaviour
rate (Br) to measure distributions of various
behaviours in each stage. The behaviour rate (Br) for
each stage is defined as:

stagetheinbehavioursofnumbersTotal
behaviourparticularaofNumbersB r =

The Br of a particular behaviour represents the

frequency of this behaviour in the learning stage in
which it occurs. The results of various Br for the three
stages are presented in Fig. 16, Fig. 17 and Fig. 18.
Stage I consists of tasks 1 to 5. No high-level
experience or processes (C3, H) are involved in this
stage. The system reacts and learns via C2
(constructive learning), as depicted in Fig. 16.

.

S 21%

P 22%

H 0%Wa 13%

Rex 0%Ia 13%
Vd 9%

Ir 0%

C1 13%

C2 9%
C3 0%

Fig. 16. Agent’s behaviours in Stage I.

Learning while optimizing a design 17

S 11%

P 11%

H 5%

Rex 0%

Ia 11%

Vd 13%
Ir 10%

C1 16%

C2 2%

C3 11%

Wa 10%

Fig. 17. Agent’s behaviours in Stage II.

In Stage II (tasks 6 to 12), high-level processes,
such as reactivation (Ir), inductive learning (C3) and
hypothesizing (H) become dominant and the system
is concentrated on reflection. As illustrated in Fig. 17,
the agent’s reflection-related behaviours, such as H
and Ir contribute to 5% and 10% of its overall
behaviours, compared to 0% in other stages.

S 15%

P 15%

H 0%

Rex 5%

Ia 11%Vd 11%Ir 0%
C1 11%

C2 0%

C3 16%

Wa 16%

Fig. 18. Agent’s behaviours in Stage III.

In Stage III (tasks 13 to 15), the experience for a
certain type of design optimization problem becomes
highly grounded and the system commences its
reflexive behaviour, as illustrated in Fig. 18.

A comparative study of these learning stages is
presented in Table 7.

Table 7. The comparison of behaviours of the system in different stages; (A) represents the absolute value and (B) shows the
percentage value.

 S P REX IA VD IR C1 C2 C3 WA H

Stage I
(A)

5 5 0 3 2 0 3 2 0 3 0

Stage I
(B)

21% 22% 0% 13% 9% 0% 13% 9% 0% 13% 0%

Stage II
(A)

7 7 0 7 8 6 10 1 7 6 3

Stage II
(B)

11% 11% 0% 11% 13% 10% 16% 2% 11% 10% 5%

Stage III
(A)

3 3 1 2 2 0 2 0 3 3 0

Stage III
(B)

15% 15% 5% 11% 11% 0% 11% 0% 16% 16% 0%

In Table 7, the light grey shade shows a higher

percentage of C2 (constructive learning) in Stage I
(9%, compared with 2% for Stage II and 0% for
Stage III). This means that the system is in the initial
stage of learning – constructing new memories. With
conceptual knowledge being formed at the beginning
of Stage II, the system manifests a reflective
behaviour in which it revisits its experience to
reactivate and make hypotheses. It can be observed
that the system shows both a higher percentage (5%
in Stage II, compared to 0% for the system in the
other stages, dark grey shade in Table 7) and absolute
value (3, compared to 0 for the system in the other

stages, Table 7) of the hypothesizing processes in this
stage. A new concept (Concept 2) is formed based on
the agent’s interaction with the environment.

The salient feature for Stage III (underlined
numbers in Table 7) is that the system demonstrates a
higher percentage of reflexive behaviour (5% against
0%) than those in the other two stages.

These results are also illustrated in Fig. 19, in
which a comparative visual analysis can be
performed to provide a cross-reference for these
findings. Fig. 19 (a) shows that there are no high-
level behaviours (Ir, H, C3) and much higher
percentages of sensation (S) and perception (P) in the

18 W. Peng, J.S. Gero

initial stage of learning (Stage I). The system’s
behaviours are more low-level at this stage, due to
the lack of resources in generalization. Stages I, II
and III are similar in reaction, validation and
grounding related behaviours, such as Ia Vd and Wa,

because the system has similar proportions of
grounded reactive experience. The stacked histogram
in Fig. 19 (b) presents the distribution of each process
in three stages.

0%

10%

20%

30%

P
er

ce
nt

ag
e

of
 b

eh
av

io
ur

s
in

 th
e

th
re

e
st

ag
es

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

Stage I Stage II Stage III

BehavioursS P Rex Ia Vd Ir C1 C2 C3 Wa H

(a)

BehavioursS P Rex Ia Vd Ir C1 C2 C3 Wa H

(b)

N
um

be
r o

f b
eh

av
io

ur
s

in
 th

e
th

re
e

st
ag

es

Fig. 19. A comparative study of the agent’s behaviours and processes in various stages of learning: (a) shows percentages of

behaviours in these three stages; (b) demonstrates absolute values of behaviours in the three stages.

These three stages can be explained by the internal
structures created in the experiment. It is noted that
conceptual knowledge is learned at task 6, which is
the grounded commonality over the incrementally
gathered perceptual experience (from the CIAC
neural network). This concept (Concept 1 in Table 5)
enables the system to create hypotheses and therefore
contributes to the system’s reflective behaviour in
Stage II. At the end of task 14, the experience for the
linear optimization problem is so strong that it is on
the threshold of producing the reflexive behaviour in
Stage III.

In Experiment III, the agent exhibits similar
behaviours to Experiment II. The conceptual
knowledge (Concepts 1 and 2) gained from
Experiment III are different from those from
Experiment II, due to heterogeneous interaction
schemes.

6.3. A Comparison Test

In this test, we investigate the performance of three
systems: a static system, a reactive system and a
situated system, in learning to recognize design
optimization problems. The design scenarios that
were used in Test II are adopted. A static system can
only use the predefined knowledge to predict a
design task. A reactive system can use a priori
knowledge to respond to an environmental cue. It can
also learn via constructive learning, provided it
encounters a new design problem. A situated system
not only employs its existing experience to react, it
also reflects using the hypotheses created based on
the accumulated conceptual knowledge.

The performance is defined as the correctness of
the system’s response to an environmental cue, which
predicts an interaction situation, and hence assists the
applied design task.

Learning while optimizing a design 19

Table 8 shows performances of this comparison
experiment. The “0-1” loss function is applied to
measure the outcomes of the prediction. It is more
appropriate than using probability assessment in this
test, because the ultimate application is merely a
prediction of the outcome and the prediction is not
subject to further processing (Witten & Frank, 2005).
We use prediction success rate (Ps) to measure the
overall performance of a system in this test:

testtheinspredictionofnumbersTotal
spredictioncorrectofNumberPs =

Table 8. Performances of three different systems.

Design
Tasks

Static
System

Reactive
System

Situated
System

1 0 0 0
2 1 1 1
3 1 1 1
4 0 1 1
5 0 0 0
6 1 1 1
7 0 1 1
8 0 1 1
9 0 1 1
10 0 0 0
11 1 0 1
12 1 0 1
13 0 1 1
14 0 1 1
15 0 1 1

Table 9. Confusion matrices for a situated system, Ps
stands for Prediction Success Rate.

Predicted Class Situated
System

 Q L NL Uncertain Total

Q 5 0 0 0 5
L 0 6 0 1 7
NL 1 0 1 1 3

Actual
Class

Total 6 6 1 2
Ps (5+6+1)/15 = 0.8

Table 9, Table 10 and Table 11 show confusion

matrices for these three types of systems. Each matrix
element shows the number of test examples for which
the actual class is presented in the row and the
predicted class is the column (Witten & Frank, 2005).
For example, in row 2 of Table 9, the situated system
predicts 7 instances of “L” (linear optimization
problem), within which six instances are correctly
predicted as “L” and one instance is an uncertain case.

Table 10. Confusion matrices for a reactive system.

Predicted Class Reactive
System

 Q L NL Uncertain Total

Q 3 0 2 0 5
L 0 6 0 1 7
NL 1 0 1 1 3

Actual
Class

Total 4 6 3 2
Ps (3+6+1)/15 = 0.67

Table 11. Confusion matrices for a static system.

Predicted Class Static
System

 Q L NL Uncertain Total

Q 5 0 0 0 5
L 0 0 0 7 7
NL 0 0 0 3 3

Actual
Class

Total 5 0 0 10
Ps (5+0+0)/15 = 0.33

Static System

0.00.20.40.60.81.0

1 3 5 7 9 11 13 15
Task
(a)

P
er

fo
rm

an
c

e

Reactive System

0.0
0.2
0.4
0.6
0.8
1.0

1 3 5 7 9 11 13 15
Task
(b)

Pe
rfo

rm
an

ce

Situated System

0.0
0.2
0.4
0.6
0.8
1.0

1 3 5 7 9 11 13 15
Task
(c)

Pe
rfo

rm
an

ce

Fig. 20. (a) shows the prediction success rate for a static

system; (b), (c) illustrate the prediction success rates for a
reactive and a situated system.

20 W. Peng, J.S. Gero

The main diagonal elements (shaded cells in Table 9)
show the correctly predicted classes.

The prediction success rate corresponds to the
percentage of correctly predicted examples over total
test examples. Based on the results measured from
this test, we can calculate prediction success rates for
each system. As shown in the performance chart (Fig.
20), a situated system produces a prediction success
rate of 0.8. We conjecture the reason for this is the
ability of a situated system to generalize across
observations and subsequently to deduce
explanations for environmental changes. It is also
noted that the agent uses the conceptual knowledge to
hypothesize and reflect from Task 10, thus providing
better performance from that point.

7. CONCLUSION

Experiment results show that the implemented
system can learn new concepts through its use in
interactions in design optimization. Another finding
is that the agent can develop adaptive knowledge
structures through constructing a memory, during
which the agent coordinates the system’s experience
and environmental context in a situated manner. The
system exhibits adaptive behaviours to this end. With
regard to a static system based on pre-defined
knowledge and a reactive agent which merely learns
by the constructive learning, this situated agent-based
design interaction tool performs better.

In summary, the proposed situated agent-based
design interaction tool plays a potential role in
supporting decision-making in a dynamic design
process, where a priori knowledge is not adequate.
The framework developed here may also lay
foundations for future quests into adaptive and
personalized design tools.

ACKNOWLEDGEMENTS

This work is supported by a Cooperative Research
Centre for Construction Innovation (CRC-CI)
Scholarship and a University of Sydney Sesqui R and
D grant.

REFERENCES
Balachandran, M.B. (1988). A Model for Knowledge-Based

Design Optimisation. PhD Thesis. Sydney: University
of Sydney.

Bartlett, F.C. (1932, reprinted in 1977). Remembering: A
Study in Experimental and Social Psychology.
Cambridge: Cambridge University Press.

Bisbey, P.R. & Trajkovski, G.P. (2005). Rethinking
Concept Formation for Cognitive Agents. Working
Paper, Towson University.

Bradshaw, J. (Ed.) (1996). Software Agents. Cambridge:
MIT Press.

Chalmers, D.J. (1992). Subsymbolic computation and the
Chinese room. In The Symbolic and Connectionist
Paradigms: Closing the Gap (Dinsmore, J., Ed.), pp.
25–48. Hillsdale, NJ: Lawrence Erlbaum.

Clancey, W. (1995). A tutorial on situated learning. Proc.
Int. Conf. Computers and Education, pp. 49-70.
Charlottesville, VA: AACE.

Clancey, W. (1997). Situated Cognition: On Human
Knowledge and Computer Representations. Cambridge:
Cambridge University Press.

Clancey, W. (1999). Conceptual Coordination: How the
Mind Orders Experience in Time. New Jersey:
Lawrence Erlbaum Associates.

Dewey, J. (1896, reprinted in 1981). The reflex arc concept
in psychology. Psychological Review, 3, 357–370.

Dorffner, G. & Prem, E. (1993). Connectionism, symbol
grounding, and autonomous agents. Proc. 5th Annual
Meeting of the Cognitive Science Society, pp. 144–148.
Hillsdale, NJ: Lawrence Erlbaum.

Duffy, A.H.B., Persidis, A. & MacCallum, K.J. (1995).
NODES: A numerical and object based modelling
system for conceptual engineering design. Knowledge-
Based Systems, 9(3), 183–206.

Fisher, D.H. & Pizzani, M. (1991). Computational models
of concept learning. In Concept Formation: Knowledge
and Experience in Unsupervised Learning (Fisher,
D.H., Pazzani, M.J. & Langley, P., Eds), pp. 3–43. San
Mateo, CA: Morgan Kaufmann.

Flemming, U.J. (1994). Case-based design in the SEED
system. In Knowledge-Based Computer-Aided
Architectural Design (Carrara, G., Kalay, Y.E., Eds),
pp. 69–91. Amsterdam: Elsevier Science.

Gero, J.S. (1996). Design tools that learn: A possible CAD
future. In Information Processing in Civil and
Structural Design (Kumar, B., Ed.), pp. 17–22.
Edinburgh: Civil-Comp Press.

Gero, J.S. (1998a). Conceptual designing as a sequence of
situated acts. In Artificial Intelligence in Structural
Engineering (Smith, I., Ed.), pp. 165–177. Berlin:
Springer.

Gero, J.S. (1998b). Towards a model of designing which
includes its situatedness. In Universal Design Theory
(Grabowski, H., Rude, S. & Grein, G., Eds), pp. 47–56.
Aachen: Shaker Verlag.

Gero, J.S. (1999). Recent design science research:
Constructive memory in design thinking. Architectural
Science Review, 42, 3-5.

Gero, J.S. (2003). Design tools as situated agents that adapt
to their use. Proc. 21st Int. eCAADe Conf., pp. 177–180.
Austria: Graz University of Technology.

Gero, J.S. & Fujii, H. (2000). A computational framework
for concept formation in a situated design agent.
Knowledge-Based Systems, 13(6), 361–368.

Gero, J.S. & Smith, G.J. (2006). A computational
framework for concept formation for a situated design

Learning while optimizing a design 21

agent, Part B: Constructive memory. Working Paper.
Key Centre of Design Computing and Cognition,
University of Sydney.

Harnad, S. (1990). The symbol grounding problem.
Physica D, 42, 335–346.

Horvitz, E., Breese, J., Heckerman, D., Hovel, D. &
Rommelse, K. (1998). The Lumiere project: Bayesian
user modeling for inferring the goals and needs of
software users. Proc. Fourteenth Conf. Uncertainty in
Artificial Intelligence, pp. 256–265. Madison, WI:
Morgan Kaufmann.

Huhns, M. & Acosta, R. (1992). Argo: An analogical
reasoning system for solving design problems. In
Artificial Intelligence in Engineering Design (Tong, C.,
Sriram, D., Eds), pp. 105–144. San Diego, CA:
Academic Press.

Kalay, Y.E. (1999). The future of CAAD: From computer-
aided design to computer-aided collaboration. Proc.
Eighth Int. Conf. Computer-Aided Architectural Design
Futures, pp. 14–39.

Lave, J. & Wenger, E. (1991). Situated Learning:
Legitimate Peripheral Participation. Cambridge.
University of Cambridge Press.

Lieberman, H. (Ed.) (2001). Your Wish is My Command:
Programming by Example. San Francisco: Morgan
Kaufmann.

Lieberman, H. & Selker, T. (2000). Out of context:
Computer systems that adapt to, and learn from,
context. IBM Systems Journal, 39(3&4), 617–632.

Liew, P. & Gero, J.S. (2002). An implementation model of
constructive memory for a situated design agent. In
Agents in Design 2002 (Gero, J.S., Brazier, F., Eds), pp.
257–276. Australia: Key Centre of Design Computing
and Cognition, University of Sydney.

Lindblom, J. & Ziemke, T. (2002). Social situatedness:
Vygotsky and beyond. Proc. 2nd Int. Workshop on
Epigenetic Robotics: Modeling Cognitive Development
in Robotic Systems, pp. 71–78. Edinburgh, Scotland.

Maes, P. (1994). Agents that reduce work and information
overload. Communications of the ACM, 37, 31–40.

Maher, M.L. & Gero, J.S. (2002). Agent models of 3D
virtual worlds. Proc. ACADIA 2002, pp. 127–138.
Pomona, CA: California State Polytechnic University.

McClelland, J.L. (1981). Retrieving general and specific
information from stored knowledge of specifics. Proc.
Third Annual Meeting of the Cognitive Science Society,
pp. 170–172. Hillsdale, NJ: Erlbaum.

McClelland, J.L. (1995). Constructive memory and
memory distortion: A parallel distributed processing
approach. In Memory Distortion: How Minds, Brains,
and Societies Reconstruct the Past (Schacter, D.L., Ed.),
pp. 69–90. Cambridge, Massachusetts: Harvard
University Press.

McLaughlin, S. & Gero, J.S. (1987). Acquiring expert
knowledge from characterised designs. Artificial
Intelligence for Engineering Design, Analysis and
Manufacturing, 1(2), 73–87.

Medler, D.A. (1998). A brief history of connectionism.
Neural Computing Surveys, 1(1), 61–101.

Mostow, J. (1989). Design by derivational analogy: Issues
in the automated replay of design plans. Artificial
Intelligence, 40, 119–184.

Mostow, J., Barley, M. & Weinrich, T. (1992). Automated
reuse of design plans in bogart. In Artificial Intelligence
in Engineering Design (Tong, C., Sriram, D., Eds), Vol.
2, pp. 57–104. San Diego, CA: Academic Press.

Myers, B. (1998). A brief history of human computer
interaction technology. ACM Interactions, 5(2), 44–54.

Peng, W. & Gero, J.S. (2006). Concept formation in a
design optimisation tool. Proc. Design & Decision
Support Systems 2006, pp. 293–308. Berlin: Springer-
Verlag.

Persidis, A. & Duffy, A. (1991). Learning in engineering
design. In Intelligent CAD III (Yoshikawa, H., Arbab, F.
& Tomiyama, T., Eds), pp. 251–272. Amsterdam:
Elsevier Science.

Radford, A.D. & Gero, J.S. (1988). Design by Optimization
in Architecture and Building. Reinhold. NY. Van
Nostrand.

Reffat, R. & Gero, J.S. (2000). Computational situated
learning in design. In Artificial Intelligence in Design
'00 (Gero, J.S., Ed.), pp. 589–610. Dordrecht: Kluwer
Academic Publishers.

Reich, Y. (1993). The development of BRIDGER: A
methodological study of research in the use of machine
learning in design. Artificial Intelligence in
Engineering, 8(3), 165-181.

Reich, Y. & Fenves, S. (1991). The formation and use of
abstract concepts in design. In Concept Formation:
Knowledge and Experience in Unsupervised Learning
(Fisher, D., Pazzani, M. & Langley, P., Eds), pp. 323–
353. San Mateo, CA: Morgan Kaufmann.

Rosenstein, M.T. & Cohen, P.R. (1998). Concepts from
time series. Proc. Fifteenth National Conf. Artificial
Intelligence, pp. 739–745.

Rutherford, J.H. & Maver, T.W. (1994). Knowledge-based
design support. In Knowledge-Based Computer-Aided
Architectural Design (Carrara, G., Kalay, Y.E., Eds),
pp. 243–267. Amsterdam: Elsevier Science.

Schon, D. (1983). The Reflective Practitioner: How
professionals think in action, London: Basic Books.

Selker, T. (1994). COACH: A teaching agent that learns.
Communications of the ACM, 37(7), 92–99.

Smith, G. & Gero, J.S. (2000). The autonomous, rational
design agent. Workshop on Situatedness in Design,
Artificial Intelligence in Design '00, pp. 19–23.
Worcester, MA.

Suchman, L.A. (1987). Plans and Situated Actions: The
Problem of Human-machine Communication.
Cambridge, University of Cambridge Press.

Vygotsky, L.S. (1978). Mind in Society: The Development
of Higher Psychological Processes. Cambridge, MA.
Harvard University Press. (Original work published in
1934.)

22 W. Peng, J.S. Gero

Vygotsky, L.S. (1986). Thought and Language. Cambridge,
Mass: MIT Press.

Witten, I.H. & Frank, E. (2005). Data Mining: Practical
Machine Learning Tools and Techniques (Second
Edition). San Francisco, CA: Morgan Kaufmann.

Wooldridge, M.J. & Jennings, N.R. (1995). Intelligent
agents: Theory and practice. Knowledge Engineering
Review, 10(2), 115–152.

Ziemke, T. (1999). Rethinking grounding. In
Understanding Representations in the Cognitive
Sciences (Riegler, A., Peschl, M. & Stein, A., Eds), pp.
177–190. New York: Plenum Publisher.

