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ABSTRACT 
This paper describes the relationship between the modes of social 
learning and level of team familiarity, i.e. agents that have worked 
together before, on team performance. A computational model is 
implemented under a set of typical social learning modes in a 
team environment. In this model, agents can learn from personal 
interaction with other agents and the tasks, and by observing 
interaction among other agents and the tasks. Agents in the team 
are considered domain experts, which means the task knowledge 
is pre-coded. Agents learn about each others competence (i.e., 
who knows what), which leads to the formation of a team mental 
model. Agents that have team familiarity are expected to have 
developed each other’s mental model to the extent facilitated by 
the available learning modes. Simulations are conducted with 
team familiarity and learning modes as parameters. Simulation 
results indicate that team performance is positively correlated with 
social learning and team familiarity. Implications of the findings 
on managing information exchange within teams are discussed. 

KEYWORDS 
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1. INTRODUCTION 
Performing a task in a team environment is different to 
working in isolation. Agents, when assigned individual 
tasks in a team environment, need a well-developed mental 
model for the task, process, context and of the team for 
effective team performance [1, 2]. A group of individual 
experts may not lead to a high performance team [3]. 
Individual experts need to know about each other’s 
expertise for efficient task allocation and utilization of the 
knowledge distributed across the team under the 
presumption that each has the knowledge required to 
perform the task but that no one person has all of the 
knowledge or time to complete all of the tasks. This 
knowledge about each other is achieved through social 
interactions and observations. During these social 
interactions and observations, the ability of individuals to 
identify other individuals as intentional beings similar to 
them allows team members to make assumptions about 
each other and their actions, facilitating social learning, and 
learning about each other’s mental states. Social learning 
contributes to the formation of a team mental model 
(TMM) [1, 2], which is taken here as an individual agent’s 

knowledge of its own competence and the competence of 
all other agents in the team to perform the different tasks. 
In a typical team environment the social learning modes 
include: (1) learning from personal interaction with the task 
and other agents, (2) learning by observing interaction 
among other agents, and (3) learning by observing another 
agent interact with a task [4]. 

When agents work on the same project, depending upon 
what learning modes are available to them, they build a 
mental model of each other. When some of these agents 
with prior acquaintance (team familiarity) are part of 
another project team, this pre-existing mental model of 
each other should enhance team performance. This paper 
discusses the relationship between modes of social 
learning, team familiarity and team performance based on 
empirical results from simulations of a flat team with 
learning modes and team familiarity as the parameters. 
Agents in the team are considered domain experts, which 
means the task knowledge and process knowledge is pre-
coded. Agents learn about each other’s expertise (i.e. who 
knows what), which leads to the formation of a TMM. 
Team performance is measured in terms of the number of 
messages exchanged for the task to be completed. Higher 
team performance is correlated with lower numbers of 
messages exchanged.  

Section 2 summarizes prior work on team mental models 
and team performance. References to other agent-based 
models of learning in teams are provided to highlight the 
lack of comparative studies on the influence of modes of 
social learning on team performance. Section 3 briefly 
describes the computational model developed to include the 
modeling decisions and implementation details. Section 4 
describes the experiment matrix that presents the set of 
simulations conducted. Section 5 discusses the simulation 
results and a discussion and implications of these results 
are discussed in Sections 6, 7 and 8. 

2. Background 
The ability of humans to understand others as intentional 
beings similar to ones self, allows individuals to learn from 
social interactions and third party observations [5]. In a 
team environment, where members are brought together by 
common goals [6], often the intentions behind task 



allocation and handling are similar. Team members use this 
assumption of common goals and intentions to learn about 
each other through different modes of social learning. 
Social learning is important in the formation of TMMs, 
influencing the team performance. Separate studies have 
been conducted to investigate the relationships between 
TMMs and team performance [2, 7, 8], and different modes 
of social learning have been reported [4]. Literature on 
team familiarity [9] and transactive memory systems [10] 
has established the positive correlation of mental models 
with team performance. However, the contribution of the 
different modes of social learning on development of 
TMMs needs further investigation. Agent-based models of 
teams have been used for team based learning, cooperative 
learning, collaboration and problem-solving studies [4, 11, 
12, 13, 14, 15]. Specific studies have been conducted on 
models of social interaction but little comparative study has 
been reported on the influence of different learning modes 
(assumptions based on personal interaction vs observation) 
on team performance and formation of TMM.  
A computational model has been developed to study the 
role of different modes of social learning on the formation 
of a TMM in varied team environments. In this model team 
environment can vary in terms of team structure, level of 
team familiarity among team members and situational 
factors such as busyness and attrition. Variations in the 
team environment is expected to influence the amount of 
social learning and hence the TMM and team performance. 
This paper reports on simulations in which the level of 
team familiarity is the only team environment parameter 
that is varied, and modes of learning are the only agent 
parameters that are varied. Once the influence of team 
familiarity across different learning modes is understood 
other parameters can be varied in future simulations.  

3. Computational model  
3.1 Modeling decisions and implementation  
A computational model based on modeling team members 
as agents is adopted. A schematic representation of the 
simulation environment is given in Figure 1. All the agents 
within the team are sub-set of a predefined agent 
population. Each agent in the agent population has a unique 
ID and they must register with the Simulation Controller. 
At the time of registering with the Simulation Controller 
each agent registers its domain expertise areas and 
affiliations (task groups / social groups). A single agent can 
have expertise in multiple domains such that multiple 
agents may have expertise in the same domain. At the start 
of the simulation, a sub-set of the agent population is 
chosen as the team. The composed team has all the relevant 
expertise to complete the task.  

The computational model is implemented in the Java Agent 
Development Environment (JADE). Agents chosen into the 
team must register with the DF (Director Facilitator) agent, 

predefined in the JADE environment to provide “yellow 
page” services to other agents. If there is attrition (a 
member leaves the team) or acquisition (new member joins 
the team) the member must deregister or register with the 
DF agent. Thus, at each cycle, the DF agent maintains the 
list of current team members. This list is accessed by the 
Simulation Controller to maintain the team composition 
and to ensure that required expertise is there within the 
team at any given time. At the start of task cycle, the Client 
agent calls for a bid for the first task to all agents that are 
members of the team at that time. Once the lead agent is 
chosen by the client the team members interact within 
themselves to complete the task before informing the client 
of the completion of the task.   

 
Details of the model are as follows: 

3.1.1 Agent communication  
Agent interaction in the team is in the form of message 
passing. Agents exchange messages based on FIPA [16] 
protocols. In the simulations reported in this paper agents 
exchange messages to: (a) allocate tasks; (b) inform the 
source agent that the task is done; and, (c) send refusal 
messages to convey their inability to perform the task. 

3.1.2 Social observations  
Any information exchange in JADE is through message 
passing. Hence, even the social observations are 
implemented in the form of a message received by the 
observing agent. When an agent interacts with a third agent 
or with the task a duplicate message is sent to the observer 
agent, which is marked to be identified as a social 
observation. This message contains the ID of the 
interacting agents and the contents of interaction.  

3.1.3 Agent’s knowledge base  
An agent’s domain knowledge is fixed, i.e., for a specific 
input and required task, agents either know the solution or 
do not have any knowledge of the solution. In the case 
where the solution is not known, agents refuse the task. 
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Agents know all the task dependencies i.e. if an agent can 
perform a task, then it knows the next task that needs to be 
performed. The protocol for the task handling is also 
known to all the agents. When the team is initially formed, 
apart from the knowledge of their own capabilities, agents 
do not know capabilities of other agents or “who knows 
what”, i.e., the TMM is not developed. Once the simulation 
is started agents develop the TMM through different modes 
of learning.  

Implementation: When an agent is initialized, it has a 
default agent mental model (AMM) for all the agents in the 
agent population. This AMM consists of: (a) role identifier; 
(b) counters for P, the number of times the agent has 
performed the given task; and, (c) T the number of times a 
task has been allocated to the agent.  

The ratio P/T gives an agent’s competence value for a 
given role corresponding to a task. For each agent there are 
as many competence values as the total number of roles. 
When the agent is initialized, the default value for P is 1 
and T is 2 because, with no prior information, there is an 
equal chance that an agent may or may not have 
competence in the given role.  

The AMM is represented as an M-dimensional vector of 
competence values of the M roles within the team. The 
TMM is represented as an M × N matrix E, where N is the 
total number of agents. Each element Eij represents the 
competence of the jth agent for the ith role, such that 0< Eij 
<1.  

Updating AMM and TMM: When an agent receives a 
positive feedback on another agent’s competence, both P 
and T are incremented by one. In the cases where a 
negative feedback is obtained, then only the T value is 
incremented by one.  

3.1.4 Agent Learning  
Agents learn as they interact with their environment that 
includes the task and the other agents. This interaction with 
the environment includes the observations that the agents 
make based on the sense data available to them. Agent’s 
learning is limited to the TMM, which is primarily learning 
“who knows what”. Agents can learn from their personal 
interaction with other agents and through observations, 
Figure 2. Only the task-related interactions in the team are 
considered. In terms of task handling, all agents in the 
model consider other agents to be similar to themselves in 
their intentions and goals. This means: (a) if an agent has 
the competence to perform a task, it will; (b) agents always 
intend to allocate a task to an agent that it believes has the 
highest competence to do the task; and, (c) agents will 
refuse to do a task only if they do not have the competence 
to do it. These assumptions about others’ intentions and 
goals allow agents to learn about each other’s mental states 
as they interact with their environment. Learning is rule-
based, as given in Table 1.  

Table 1. Learning assumptions corresponding to learning 
opportunities shown in Figure 2 

Condition (IF) Deduction (THEN) 

If an agent A allocates 
a task T1 to another 
agent B 

then B knows that A does not have 
competence to perform task T1

 

 
If an agent B gives a 
feedback  to another 
agent A that had 
allocated task T1 to B 

then A knows about B’s capability 
at T1  

If an agent C receives 
a task T2 from another 
agent B  
 

then C knows that B has the 
competence to perform the task 
preceding T2 (i.e. T1) as per the task 
dependencies  

If an agent A observes 
another agent C 
allocating task T3 to a 
third agent D  

then A knows that: C does not have 
the competence to perform task T3. 

If an agent A observes 
another agent E 
performing Task T4 

then A knows that E has the 
competence to perform the task T4  

3.1.5 Task handling  
Using the AMM/TMM, agents select which agent should 
be assigned the new sub-task. Agents allocate the sub-task 
to the agent with the highest competence value for the role 
corresponding to the sub-task. Where multiple agents have 
the highest value of competence, then an agent is selected 
at random from the short-listed agents. New sub-tasks are 
obtained by looking up the task dependencies as pre-coded 
in the agent’s knowledge base. Figure 3 is the activity 
diagram for a typical agent.  

3.1.6 Attrition and member acquisition   
It is possible that agents leave the team mid-way through 
the project. Attrition of agents may necessitate the 
acquisition of new agents into the team to ensure that 
necessary domain expertise is maintained. This change in 
team composition may affect team performance. Hence, an 
agent attrition factor has been implemented.  

Implementation: The rate of attrition is modelled as the 
probability that an agent or a given percentage of agents 

A B C D E T1 T2 T3 
T4 

Task allocation Feedback Task performance 

Figure 2. Learning opportunities in a team environment 
(symbols are defined in Table 1). 

 
 



from the team will leave the team in a cycle of the 
simulation. The agent or agents that exit the team is chosen 
randomly. The Simulation Controller ensures that, at any 
given time, there is at least one agent for each role within 
the team. If the attrition of an agent leaves the team without 
some expertise on a specific role, another agent with that 
expertise is immediately introduced into the team. In the 
simulations reported in this paper, the attrition rate is kept 
constant at zero. These will be varied in future work. 

 

3.1.7 Team structure  
In general teams are either termed as “flat” or 
“hierarchical” based on their structure and interaction. Flat 
teams have no hierarchy and no sub-divisions. These kinds 
of teams are generally used in consultation, task-force and 
design exploration. Experts are drawn from multiple 
disciplines and there are no nominated leaders. A leader 
may emerge over time based on the interactions adopted by 
the team.    

Many work teams are organized into hierarchies. They 
have nominated leaders and are divided into expertise-
based sub-teams [8]. In such teams the task is passed to the 
sub-teams with relevant expertise.  

Implementation: Team structure has been implemented by 
constraining the interaction among agents and allocation of 
design tasks. In simulations, nominated leaders can be 
specified or a leader can be chosen at the run-time [17]. 
Run-time leaders are chosen by the client-agent through a 
bidding process. In the simulations reported in this paper 
only flat teams are considered. 

3.1.8 Busyness  
In a team, agents can learn from the observations they 
make based on the sense data available to them. This 
observable sense data includes agent-task interactions and 
agent-agent interactions. But this learning is subject to their 
attention. If an agent is busy (may or may not be with the 
current task) when the observable data is available, then the 
observation is not made in that instance. A “Busyness” 
factor is introduced for agent’s attention to observable data.  

Implementation: Busyness is implemented as the 
probability of an agent at any given cycle being able to 
sense the observable data available in that cycle. In the 
simulations reported in this paper, busyness factor is kept 
constant at zero. These will be varied in future work. 

3.1.9 Team familiarity 
When a new project team is formed, it is possible that some 
of the team members may have a prior acquaintance. This 
team familiarity means that agents have a partially-
developed AMM of known agents at the start of the 
simulation.  

Implementation: Team familiarity is implemented as the 
percentage of team members that are carried from one 
project onto the next project. 

In the simulations reported in this paper, the same project is 
repeated in the next cycle. This means that if all the agents 
are retained from one project to the other, i.e., if team 
familiarity is 100% and if all agents have identified the 
expertise of other agents, then the task should be completed 
with the theoretically lowest possible number of messages 
exchanged. 

3.2 Model validation  
Three types of validation of computational social models 
are discussed in the literature [18, 19], which include: (1) 
comparing the observed simulation data to actual 
predictable data for known cases; (2) comparing the 
observed social behaviors to expected behaviors, which is 
typical of social groups; and (3) docking the implemented 
tool against a similar tool by comparing the observed 
behaviors from simulations using the two different tools.  

This model has been validated by comparing observed data 
against predictable data for known cases i.e. cases for 
which values can be theoretically calculated, and 
demonstrating observable behaviors comparable to typical 
social behavior. The simulations conducted for model 
validation has been reported elsewhere [20].  

4. Experiment setup 
In experiments reported in this paper, six different values of 
team familiarity and four different learning cases were 
used. The four different learning cases are (1) Learning 
only from personal interactions with the other agents (PI) 

Figure 3. Activity diagram for a team agent  
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(2) PI + Learn about other agents by observing them 
perform tasks (TO) (3) PI + Learn about other agents by 
observing them interact with each other (IO), and (4) 
PI+TO+IO. A total of 24 (6x4) simulations were run, Table 
2. Each of these Monte Carlo simulations was run 120 
times.  

A team of 12 agents was used. In a given simulation, all 
agents were identical. The team needed to complete a 
sequential task consisting of 7 sub-tasks, and the 
knowledge distribution in the team was such that for 6 of 
the 7 sub-tasks, there are 2 agents that can perform the 
same sub-task. Each time a sub-task is allocated two 
messages (“call for proposal” and feedback) are passed. 
The minimum number of messages that must be exchanged 
is 15 (7x2 messages for task handling + 1 message for 
informing client about task completion).  

For each simulation, there is one repetition. In the first 
project cycle, agents learn about each other based on the 
available learning modes. In the second project cycle only 
some of these agents are retained, as determined by the 
level of team familiarity. Given the expertise distribution in 
these simulations, the minimum of messages exchanged 
should be 15, which is more likely in the best possible 
scenario where team familiarity= 100%.  

Table 2. Experiment setup- simulation combinations  

Team familiarity (%)  

17 33 50 67 75 100 

Personal interaction 
(PI)  

      

PI + Task 
observation (TO) 

      

PI+ Interaction 
observation (IO) 

      

M
od
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g 
 

PI+ TO+ IO       

5. Simulation results  
The number of messages required for task completion in 
the different simulations considered is shown in Figures 4, 
5, 6 and 7. When team members learn only from personal 
interactions, there exists a threshold beyond which the 
number of messages remains fairly constant with the 
decrease in team familiarity, Figure 4. This suggests than 
when agents learn only from personal interactions, there 
exists a minimum threshold level of team familiarity for 
team familiarity to have a positive effect on team 
performance. In this case this threshold is observed around 
66% team familiarity level.  

When team members can learn from task observations in 
addition to personal interactions, there exists a similar 

threshold for team familiarity to have a positive influence 
on team performance, Figure 5. However in this case this 
threshold is reduced to 50% team familiarity level. This is 
expected because now agents have an additional source to 
obtain information about each other. 

When agents learn from interaction observation, in addition 
to personal interaction the rate of increase in team 
performance with increase in level of team familiarity is 
more uniform, Figure 6, than task observation and personal 
interaction (Figure 5).  

In the case where agents can learn from all modes of 
learning, there is a decrease in the number of messages 
required to perform the task as the team familiarity 
increases, Figure 7. The rate of increase in number of 
messages reduces with decrease in team familiarity. This 
means that as team familiarity increases, the rate of team 
performance increases.  

The existence of a threshold in Figures 4 and 5 and lack of 
it in Figures 6 and 7 suggest differences in distribution of 
knowledge across the team members that become 
significant with varying level of team familiarity. This 
difference can be explained in terms of the type of 
knowledge obtained through different learning modes.    

When agents learn from personal interaction, their scope of 
learning is limited to agents that have assigned tasks to it or 
that have received tasks from this agent. This interaction 
allows agents to identify agents that are immediately 
related to the role this agent has performed in the particular 
project. If this agent is retained in the next team and so is 
the other agent that knows the next related task, then the 
task allocation is efficient. The likelihood of this is much 
higher at higher levels of team familiarity, and, hence, 
greater rate of increase in team performance at higher 
levels of team familiarity. If there were only one expert per 
role, i.e. no two agents knew about the same role, then at 
100% team-familiarity the team would have achieved 
optimum performance (15 messages). The optimum 
performance is achieved in this case because after the first 
run the agents identify other agents directly related to their 
role, and hence a critical task path is created. In the 
simulations, this has not been the case (18.67 messages) 
since there were multiple (2) agents for each role, and, 
hence, the critical task path (now multiple critical task 
paths exist) was not attained in all the simulation runs. 
When agents also learn from task observation in addition to 
personal interaction, each agent, whether it was part of the 
critical task path in the first project cycle or not, identifies 
an agent that can perform the related role. In this case, 
observations allow agents to identify the earlier critical task 
path, and optimum team performance is achieved at 100% 
team familiarity.  

When agents learn from interaction observation in addition 
to personal interaction, they may not have identified the 



task performers. This explains why even at 100% team 
familiarity, the team may not have achieved optimum 
performance. However, the primary difference that the 
ability to observe and learn from third party interactions 
brings is the lack of a threshold for level of team familiarity 
to influence the rate of team performance. This can be 
explained in terms of the importance of knowing who does 
not know what. Observing third party interactions allow 
agents to identify failed task allocations. This knowledge of 
who not to allocate the tasks to reduces the number of 
failed task allocations. Thus, in a team environment it is 
also important to know who lacks what competence. For 
the same reasons when all modes of social learning are 
available to agents, the rate of increase in team 
performance increases uniformly with the increase in prior-
acquaintance, without showing a threshold point.   

  
Figure 4. Number of messages needed when learning only 

from personal interactions   

  

Figure 5. Number of messages needed when learning only 
from personal interactions and task observations  

6. Discussion  
These simulation results demonstrate that team 
performance is correlated with different modes of social 
learning. The simulations only consider formal task-related 
interactions, limiting the scope of interaction. It is 
hypothesized that in real world environments the greater 
scope of learning (about task, team, process and context), 
and informal interactions will increase the dependency of 
team performance on different modes of learning.  

  
Figure 6. Number of messages needed when learning only 
from personal interactions and interaction observations  

  

Figure 7. Number of messages needed when all modes of 
learning are available  

In these simulations only flat teams have been used, where 
the team performance significantly depends on each agent 
knowing about other agents, since task allocation and 
coordination is distributed among agents. This may not be 
the case in hierarchical teams where team leaders 
coordinate task allocation and task handling. In such 
scenarios, performance will primarily depend upon the 
team leader’s knowledge of expertise distribution. Even in 
hierarchical teams, team members learn about each other 
through informal interactions, which are useful in learning 
tacit knowledge about task, process, context and the team. 
It is hypothesized that while modes of learning will 
positively influence team performance in both flat and 
hierarchical teams, the rate of change in team performance 
with changes in modes of social learning will be higher in 
flat teams than hierarchical teams.  

Some kinds of personal interactions such as querying an 
agent about another agent’s competence, explicit sharing of 
opinion or beliefs about other agents, and instructing, have 
not been considered in these simulations. It would be 
interesting to see how the results vary once more modes of 
learning are included. Similarly, social factors such as trust 
and reputation are likely to influence the resulting TMM 
and team performance.  



In this study it has been assumed that the intentions for task 
allocation are not biased, e.g. friendship bias, training bias 
etc, which means task allocation need not always be 
competence based as considered here.  

Further experiments are planned where other situational 
factors such as busyness will be varied. It is hypothesized 
that when busyness is higher the positive effects of team 
familiarity on team performance will be reduced. This is 
because in the case of high busyness levels, even with prior 
acquaintance, agents do not learn as much about each other 
as they could have if they were not busy at all. The higher 
the busyness rates agents learning tends to get closer to 
learning only through personal interactions.  

It is hypothesized that the positive correlation of team 
performance to modes of social learning will increase with 
the increase in task complexity. In these simulations we 
have considered routine tasks and agents with complete 
knowledge of the area of expertise. However, as tasks tend 
to become more non-routine and complex they require 
greater rework and greater coordination, where the scope of 
learning for TMM can be expected to be higher, and TMMs 
can be expected to have a greater role to play in affecting 
team performance.  

7. Implications for Team management  
Teams vary significantly in their scope of social interaction 
and dissemination of information among team members 
about their fellow team members. These variations in scope 
for social learning or learning about other team members 
can result from team structures, geographical distribution of 
team members, information protocols within teams, reports 
and documentations of past projects, and use of information 
and communication technology.  

Simulation results demonstrate that, apart from knowing 
who knows what, it is also very useful to know who does 
not know what. The performance reports and 
documentation of past projects that team members may 
have an access to should be more comprehensive. Quite 
often summary of work done does not include the entire 
history of failures and reworks. Though not a form of social 
interaction, such information sources also facilitate social 
learning. How the information is documented and presented 
determines what assumptions the information seeker is 
making.  

In a competitive team environment, quite often, multiple 
proposals for task solutions are called from within the team. 
Many a times the selection criteria of the proposals are not 
transparent and at times fluid. In such scenarios, members 
who have bid for the proposals or have observed others bid 
for the same proposal have to rely on assumptions about 
their own and others’ competence about the related tasks. 
How the information protocol is designed determines what 
the team members perceive of each other. Thus, 
assumption-based mental models are particularly critical 

when the task involved is non-routine and the knowledge of 
each others preferences for solutions is important for task 
coordination.  

Geographically distributed teams skew the opportunity for 
social learning. Co-located team members have multiple 
modes of communication channels available to them, while 
non-co-located team members are generally dependent on 
discrete set of information such as texts [21]. Social factors 
such as trust, reputation and confidence can be expected to 
have unequal influence on formation of TMM and team 
performance [21]. Whether these interactions are 
synchronous or asynchronous may be important. 
Asynchronous interactions are likely to provide greater 
control and a filter on how the information is presented, 
enabling team members to manipulate it to their advantage. 
Typically, in some of the fully virtual teams, such 
asynchronous interactions might be the only source of team 
building and team formation. Information protocols 
become even more critical in such team environments. 
Discussion forums, message blogs, and group mails are 
such other sources of information that team member use to 
impute about each others mental states.  

Teams are increasingly project based, distributed across 
different locations. Often part of the task is outsourced to 
other organizations, in which case some of the team 
members may come from other organizations, there may be 
no face-to-face interactions, and one or two representatives 
from one organization may relocate to other geographical 
locations to facilitate teamwork. In such a scenario the 
variability in the modes of social learning are expected to 
play an even more important role than for co-located teams. 
Knowing what the implications of the different modes of 
learning, knowing how the information sources are 
organized within the team, and knowing what are the 
available information modes will be useful for team 
managers in obtaining the optimal balance of team 
familiarity (prior-acquaintance) for desired team 
performance. Knowing the relationships between modes of 
social learning, team familiarity and team performance in a 
given team environment will also be useful in achieving the 
right balance of team composition for the induction of 
trainees and new members into a team without affecting the 
team performance significantly. 

8. Conclusion and future work 
An agent-based model has been implemented to study the 
roles of different modes of social learning on team 
performance under varied team environments. The results 
from the simulations conducted with different modes of 
social learning and different levels of team familiarity 
imply that social interactions and observations are 
important determinants of team performance. In general, 
team performance improves with team familiarity. 
However, when learning from social observations and third 
party interactions are absent, a threshold point exists 



beyond which the relationship between team familiarity 
and team performance is more direct. These simulations 
have been conducted with routine tasks, flat teams with 
other situational factors such as busyness rates fixed. 
Further experiments are planned where other variables will 
be introduced to compare the relative contribution of modes 
of social learning on team performance. As with other 
computational studies these results indicate social 
behavioral patterns, and further investigations must be 
conducted in real world settings to determine their 
veridicality.  
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