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Fig. 1. Folding process of a 11×11 Miura crease pattern (DOF = 220)
produced by the motion planner proposed in this paper.

Abstract— Recent advances in robotics engineering have en-
abled the realization of self-folding machines. Rigid origami
is usually used as the underlying model for the self-folding
machines whose surface remains rigid during folding except at
joints. A key issue in designing rigid origami is foldability that
concerns about finding folding steps from a flat sheet of crease
pattern to a desired folded state. Although recent computational
methods allow rapid simulation of folding process of certain
rigid origamis, these methods can fail even when the input
crease pattern is extremely simple. In this paper, we take
on the challenge of planning folding and unfolding motion
of origami tessellations, which are composed of repetitive
crease patterns. The number of crease lines of a tessellation
is usually large, thus searching in such a high dimensional
configuration space with the requirement of maintaining rigid-
ity is nontrivial. We propose a motion planner that takes
symmetry into consideration and reuses folding path found
on the essential crease pattern. Both of these strategies enable
us to fold large origami tessellation much more efficiently
than existing methods. Our experimental results show that
the proposed method successfully folds several types of rigid
origami tessellations that existing methods fail to fold.

I. INTRODUCTION

Rigid origami has been a fundamental model in many self-
folding machines [1] that are usually composed of mechan-
ical linkage of flat rigid sheets joined by hinges, such as
the micro-thick folding actuators [2]. In the past, people
have enjoyed many practical uses of rigid origami, ranging
from folding maps and airbags to packing large solar panel
arrays for space satellites and folding space telescope. In the
near future, rigid origami will take the form of self-folding
machines and provide much broader applications, such as
in minimally invasive surgery, where there is a need for
very small devices that can be deployed inside the body to
manipulate tissue [3]. Examples that illustrate the ability of
transforming rigid origami from a shape to another can be
found in Fig. 1, where a large flat sheet can be folded into
a compact stick.
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A key issue in designing rigid origami is foldability that
determines if one can fold a given origami form one state
to another. Researchers in computational origami have at-
tempted to simulate or plan the folding motion [4], [5], [6].
These existing methods, however, are known to be restricted.
For example, Balkcom’s method [6] cannot guarantee the
correct mountain-valley assignment for each crease. The
well-known Rigid Origami Simulator by Tachi [5] may
sometimes produce motion with self-intersection and can be
trapped in a local minimum. One of the main difficulties
of planning origami folding motion comes from its highly
constrained folding motion in high dimensional configuration
space. For example, there are 100 closed-chain constraints in
the 11×11 Miura origami shown in Fig. 1. These constraints
make most (if not all) existing motion planners impractical,
especially for folding large origami tessellations.

Moreover, it is known to the community that given a
crease pattern and a rigid goal configuration, the existence
of continuous rigid folding motion is not guaranteed in
general [7]. Unfortunately, there is no known criteria for
determining whether a crease pattern or its tessellation can
be folded between two rigid configurations without violating
the rigidity constraint. In practice, when a crease pattern is
designed, it usually requires its designer to create a physical
copy to verify that a rigid folding motion does exist to bring
the crease pattern to a rigid goal configuration. This process
can often be costly and time consuming.

This paper models rigid origami as a kinematic system with
closure constraints. Our ideas for addressing rigid foldabil-
ity issues include: adaptive randomized search and folding
path reuse. Specifically, we propose a deformation bounded
folding planner (in Section IV) that can ensure the rigidity
of the origami during continuous folding motions; such
planning has not been achieved before in the community.
Given a tessellation formed with repetitive crease patterns,
we further take advantage of its symmetry to reduce the
degrees of freedom (DOF). Our experimental results show
strong evidences that this strategy can significantly speed up
the computation (in Section V). We further propose the idea
of essential crease pattern in Section V-B. Fig. 1 shows a
folding sequence of a 11×11 Miura origami (220 DOF, with
<1% deformation) found by the proposed method within 1.7
seconds1. Examples and results of folding larger tessellations
can be found in Section V.

1All timing data reported in this paper are collected on a 2012 Macbook
Pro laptop with a 2.9GHz Intel Core i7 CPU and 16GB RAM.



II. RELATED WORK

Planning under closure constraints. There have been many
methods proposed to plan motion for articulated robots under
closed-chain constraints [8], [9]. Interestingly, we see many
similar ideas used in both closed-chain systems and origami
folding. For example, gradient decent was used by [5] for
rigid origami simulation and by [8] for generating valid
configuration of a closed-chain system. Another example
is inverse kinematics, which plays the central role both in
Balkcom’s simulator [6] and in constructing the so-called
kinematic roadmap [9], [10] for capturing the topology
of free configuration space. Tang et al. [11] proposed an
efficient sampling-based planner for spatially constrained
systems.

Planning and simulating origami motion. Song et al. [12]
presented a PRM based framework for studying folding
motion. However, their kinematic representation of origami
is a tree-structure model whose folding angle of each crease
line is independent of other crease lines. Although a tree-
structure model greatly simplifies the folding map that can
be easily defined along the path from base to each face,
this model is not applicable to represent the majority of
origamis, such as the one shown in Fig. 4(a), due to their
closure constraints. Tachi [5] proposed an interactive sim-
ulator for rigid origami model (known as Rigid Origami
Simulator (ROS)) which generates folding motion of origami
by calculating the trajectory by projection to the constrained
space based on rigid origami model, global self-intersection
avoidance and stacking order problems are not considered
in his work. An et al. [2] proposed a new type of self-
reconfiguration system called self-folding sheet. They first
construct the corresponding folded state for a given crease
pattern and angle assignment then continuously unfold the
paper using local repulsive energies. Akitaya et al. [13]
proposed a method for generating folding sequences of
origami, however, their system can only handle flat-foldable
origami. More recently, Xi and Lien [14] proposed a ran-
domized search algorithm to find the intermediate folding
steps via nonlinear optimization which guarantees free of
self-intersection, however, the motions it found can lead to
arbitrary deformation.

III. PRELIMINARIES: RIGID ORIGAMI MODEL

A. Crease Pattern

In this paper, we use crease pattern, a straight-edged graph
embedded in the plane, to represent the rigid origami model.
Fig. 2 shows the crease patterns of the origami tessellations
used in our experiments (in Section V). An edge of this graph
correspond to the location of a crease line in an unfolded
sheet. A crease line can be either mountain folded or valley
folded. A mountain fold forms a convex crease at top with
both sides folded down. On the other hand, a valley fold
forms a concave crease.

Real & Virtual Vertices Vertices in crease pattern can be
categorized into two groups: real vertices and virtual vertices.
Vertices on the boundary of a pattern are considered as
virtual vertices and they cannot act as witness vertices for
the purpose of computing folding map [14]. For example,
vertices v1, v2, v3 and v4 are the only real vertices in Fig 4(a)
and all the other vertices are virtual vertices.

(a) 4×4 Miura (b) 4×4 Quad

(c) 4×6 Waterbomb (d) 12×14 Waterbomb

Fig. 2. Crease patterns used in the experiments. The mountain creases are
shown as solid lines in red, valley creases are show as dashed lines in blue.

Crease Lines We use l(i,j) to denote the crease line that
connects vertex vi and vj in which at least one vertex
should be real. Boundary edges in the crease pattern are not
considered as crease lines. Each crease line l(i,j) is associated
with a plane angle α(i,j) which is the angle between −−→vivj
and [1, 0]T (x-axis) and a folding angle ρ(i,j) which equals
to π minus the dihedral angle between two faces sharing the
crease line l(i,j). The value of ρ is bounded in [-π, π] to
avoid adjacent faces penetrating each other.

Faces We use F(i,j,...) to refer to a face in the crease pattern,
where {vi, vj , ...} are its vertices. The crease line l(i,j)
belongs to two faces F(i,j,...) and F(j,i,...).

For a crease pattern with non-triangular faces, we will first
triangulate those faces, newly added diagonals are called
virtual edges whose folding angles should always be zero
otherwise the panel will be bended.

B. Configuration

We use the folding angles of all crease lines to represent
the configuration of an origami model. For an origami with
n crease lines, its configuration is represented as C =
[ρ(i1,j1), ρ(i2,j2), · · · , ρ(in,jn)]

T . Given a configuration C, we
can classify C according to its foldability and feasibility.

Foldability For a real vertex vi in a multi-vertex crease
pattern, let Ai be the 4 × 4 matrix which translates a point
in <3 by vi. Let B(i,j) be the 4× 4 matrix in homogeneous
coordinates which rotates around z-axis for plane angle
α(i,j), and let C(i,j) be the 4 × 4 matrix in homogeneous
coordinates which rotates around x-axis for folding angle



ρ(i,j). Then the 4 × 4 folding matrix of counter-clock-
wisely crossing crease line l(i,j) with witness vertex vi is
χ((i,j),i) = AiB(i,j)C(i,j)B

−1
(i,j)A

−1
i .

Let {l(i,j1), l(i,j2), ... , l(i,jci )} be the crease lines incident
to vi, ordered by their plane angles α(i,j), where ci is the
number of crease lines incident to vi. If we pick F(i,jci ,...)

as
F0 and fix it in the xy-plane, we define the local foldability

matrix for real vertex vi as L(vi) =
ci∏
t=1

χ((i,jt),i). Finally,

the necessary condition of foldability is:

L(vi) = I, ∀vi (1)

This condition for multi-vertex rigid origami was first dis-
covered by Balcastro and Hull in 2002 [15].

Feasibility There are several properties that an origami
rigid folding should have: (1) unstretchable, (2) flat (planar)
for all faces, and (3) free of self intersection. A foldable
configuration only guarantees the first two properties. We
need to fold the origami to its folded state which C represents
[14] and then apply collision detection to check whether C
is free of self-intersection or not.

IV. FOLDING VIA ADAPTIVE RANDOMIZED SEARCH

Searching for a valid folding motion of an origami tessella-
tion is difficult because of its highly constrained nature and
high dimensional configuration space. In particular, there are
n closed-chain constraints for an origami with n real vertices.
These constraints make most (if not all) existing probabilistic
motion planners impractical. In [16] we show that for rigid
origami with closure constraint, the portion of free space is
near to zero even certain amount of deformation is allowed.

In this paper, we extend FROCC [14] which uses an adaptive
randomized search with nonlinear optimization. FROCC
samples a random configuration Crand around current con-
figuration Cτ and pushes Crand to a foldable configuration
C∆ via nonlinear optimization (NLOpt). If C∆ is feasible
and closer to the goal, it then replaces Cτ with C∆ and
keep doing so until goal is reached. FROCC works well in
practice, however, it also has several issues that we are trying
to address in this paper.

Objective Function Intuitively, because each real vertex of a
foldable configuration must satisfy the constraint in Eq. (1),
for a given real vertex vi, we want the local foldability matrix
L(vi) to be as close to an identity matrix I as possible.
However, the objective function F (C) =

∑
i |L(vi)−I| used

by FROCC could be easily trapped at local minima. In this
paper, we updated the objective function to Eq. (2).

F (C) = max
i
|L(vi)− I| (2)

If L(vi) 6= I , deformation will be introduced, in Eq. (2)
we try to minimize the maximum deformation which works
better than the original one.

Deformation Bounded Search (DBS) During randomized
search, NLopt finds an optimal configuration C around Cτ ,
but the value of F (C) in Eq. (2) may be none zero. This is
because local-foldable configuration might not exist around
Cτ or NLOpt is not able to find it within given itera-
tions. Consequently, none-zero F (C) leads to deformation in
folded origami. However, directly bounding F (C) [14] does
not give us a quantitative rigidity measure. In [17] we show
that with the increase of size of the crease pattern, though
their folding paths still look identical (with the naked eye),
the edge deformation (in terms of the stretch and shrinkage
of edges given that F (C) < 0.1) is quite dramatic (increased
from ≈1.5% in 3×3 Miura to ≈10% in 5×5 Miura).

Thus, we propose a deformation bounded search (DBS) that
checks the maximum amount of deformation measured by
the change of edge length including virtual edges which
is defined as (||efolded|| − ||eorg||)/||eorg||. In DBS, we
use the same objective function in Eq. (2) but only accept
configurations that are within the deformation bound given
by the user. The folding path found by DBS is guaranteed to
be deformation bounded and self-intersection free, which has
not been achieved before in the community. Folding paths
for the 3x3 Miura crease pattern with different deformation
bounds found by the proposed method are shown in Fig. 3.
We can see that there are huge differences between assigned
folding angles and measured ones due to deformation. Some
virtual edges have more than 15◦ folding angles which
means some panels have been bended in order to reduce the
deformation which is not tolerable in practice. Theoretically,
they should be the same if the configuration is foldable and
the origami will be deformation free. Within 1% deformation,
they become identical (see Fig. 3(c) and Fig. 3(d)).

Path planning times against various deformation upper
bounds can be found in our technical report [17].

V. FOLDING LARGE ORIGAMI TESSELLATION

A tessellation is a type of crease pattern that can usually
be viewed as an arrangement of smaller repetitive crease
patterns. As a result, the degrees of freedom of a tessellation
is usually very large (758 for a 12×22 Waterbomb and 1680
for a 24×24 Miura fold). Finding valid folding motion for
such as tessellation can be extremely time consuming. In
order to speed up the motion planner, we propose the idea
of crease group and essential vertex by exploiting symmetry
in the tessellation in Section V-A.

Computation reuse is a widely used technique to improve
the performance of a robotic system [18]. In Section V-B,
we propose the idea of reusing folding path found on the
essential crease pattern to fold large origami tessellation.

A. Crease Group and Essential Vertex

Given a large crease pattern (tessellation), crease lines can
be gathered into groups naturally due to symmetry property.
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Fig. 3. Assigned and measured folding angles under different deformation
upper bound for folding a 3x3 Miura crease pattern. Left: Assigned folding
angles computed by NLopt. Right: Measured folding angles. These are
the folding angles measured on the origami after folded with the assigned
angles.

We say that a set of crease lines are in one crease group
if the absolute value of their folding angles trace out the
same folding trajectory. In Fig. 3(d) we can see that the
absolute value of folding angles of 12 crease lines trace
out only 2 trajectories. Given the crease groups, we define
essential vertices as a set of real vertices whose incident
crease lines collectively cover all the crease groups. The
smallest essential vertices can be found by solving the set
covering problem. An example of crease groups is shown in
Fig. 4, in which crease lines belong to the same crease group
are shown in the same color. From Fig. 4 we can see that
the 3×3 Miura crease pattern has only two crease groups:
all vertical crease lines are in one group and all horizontal
crease lines are in another group, even though they have
different type (mountain fold v.s. valley fold). Since any of
the real vertices can cover all the crease groups, the 3×3
Miura crease pattern has only one essential vertex which
could be v1 or v2 or v3 or v4.
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(a) Crease pattern (b) Crease groups

Fig. 4. Crease groups of a 3×3 Miura crease pattern. Crease lines belong
to the same crease group are shown in the same color.

By gathering crease lines from a large crease pattern into
crease groups, the DOF of the origami can be reduced from

the number of crease lines to the number of crease groups.
Moreover, by identifying essential vertices, we only need to
check the local foldability (Eq. (2)) on essential vertices,
a much smaller subset of real vertices than the number
of all the real vertices. Table I reports the size of crease
groups and essential vertices of 6 crease patterns. As we
can also see in Table I, using symmetry and essential vertex
significantly reduces the computation time for finding a valid
folding motion. We also tested the running with and without
collision detection. From Table I we can see when we use
full DOF for planning, the majority of the time is spent
on finding valid configuration, collision detection takes only
about 2% of the running time for folding the 5 × 5 Miura
crease pattern. However, when we use symmetry property
and essential vertex, the running time reduced significantly,
collision detection (with almost the same amount of compu-
tation) then dominates the running time which takes about
83% on average.

B. Reusing Folding Path

Given a crease pattern (tessellation), if this crease pattern is
rigid foldable, it is expected that the folding angles of all
crease lines in the same crease group remains identical even
when planning is done using the full DOF. Further more,
the trajectories are expected remain identical when folding a
smaller but same type tessellation as shown in Fig. 5.
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(b) 5×5 Miura DOF=40

Fig. 5. Folding paths found without using symmetry information.

This give us the idea of reusing the folding path found
on smaller crease pattern to fold the large one which is
much more computational efficient. With the crease group
and essential vertex in mind, here we define the concept of
essential crease pattern which is the smallest crease pattern
that contains all essential vertices as real vertices. We first
find a folding path whose deformation is sufficient low on
the essential crease pattern that could satisfy the deformation
criteria when folding the larger crease pattern with it since
the deformation will be amplified with the increase of size
of the crease pattern. Then the folding path is applied to the
original crease pattern.

An example of reusing folding path for a rigid-foldable
crease pattern Waterbomb is shown in Fig. 6. The config-
uration of the folded tube is from [19] in which the authors
showed that the tube is in fact continuous rigid foldable
and our method confirms that the folding process is indeed



TABLE I

PATH PLANNING TIME USING SYMMETRY.

Model RV/EV SYM EV DOF MI Time (sec) CD (%)

3×3 Miura 4/1
× × 12 25 0.037 27.03
◦ × 2 5 0.016 56.25
◦ ◦ 2 5 0.014 64.29

5×5 Miura 9/1
× × 40 500 1.681 2.02
◦ × 2 5 0.098 81.63
◦ ◦ 2 5 0.082 85.37

24×24 Miura 529/1
× × 1680 N/A∗ N/A∗ N/A∗

◦ × 2 100 35.278 78.32
◦ ◦ 2 100 32.402 99.51

4×6 Waterbomb 15/3
× × 50 5 0.040 77.50
◦ × 4 5 0.037 81.08
◦ ◦ 4 5 0.034 88.24

8×10 Waterbomb 63/3
× × 182 5 0.406 79.80
◦ × 4 5 0.332 90.36
◦ ◦ 4 5 0.310 96.45

12×22 Waterbomb 231/3
× × 758 5000 499.048 11.27
◦ × 4 5 3.893 91.75
◦ ◦ 4 5 3.160 97.59

Note that the running time were obtained under 5% deformation upper bound. RV=Real Vertex, EV=Essential Vertex, SYM=Symmetry, MI=Maximum Iteration, CD=Time

cost for Collision Detection. The symbols ◦ and ×, in the columns of SYM and EV, indicate if symmetry and essential vertex are used or not. *The planner failed to find a

valid path within the time limit due to high DOF.
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Fig. 6. Reusing folding path. (a) Folded shape of 4×6 waterbomb crease
pattern shown in Fig. 2(c). (b) Folded shape of 12×14 waterbomb crease
pattern shown in Fig. 2(d) by reusing folding path (c). (c) Folding path
found on the essential crease pattern Fig. 2(c). (d) Edge deformation when
folding Fig. 2(c). (e) Edge deformation when folding Fig. 2(d) by reusing
the folding path (c).

rigid. As we can see from Fig. 6, though the deformation
by reusing folding path is about 10x larger than the one on
the essential crease pattern, it is still within the user given
deformation upper bound (1%).

Note that, when reusing folding path, the deformation will
be scaled up according to crease pattern size. We observe
that this increasing in deformation is much more dramatic

for non-rigid-foldable crease pattern. In [17] we show that
folding a 24×24 Quad crease pattern can lead to large (>
400%) deformation when reusing the folding path from its
essential crease pattern.

VI. COMPARE WITH EXISTING WORKS

Although there have been several existing works on simulat-
ing or planning motion of rigid origami [4], [6], [2], most
of these works are only applicable to specific type of rigid
origami. Tachi’s Rigid Origami Simulator (ROS) [5] provides
the most general solution so far and is the only publicly
available software the we are aware of. Consequently, we
have tested ROS extensively using the crease patterns shown
in the paper. However, we found that it is difficult to
provide a meaningful comparison to our methods due to
that both approaches focus on different objectives. The main
objective of this paper is to find rigid folding path from one
configuration to another while ROS focused on folding a
crease patten as much as possible (and usually this means as
flat as possible). Moreover, ROS does not guarantee that the
folding motion is rigid and collision free. Visual comparisons
with results obtained from ROS are shown in Fig. 7. Self-
intersection can be found in Fig. 7(b).

VII. CONCLUSIONS

In this paper, we proposed a randomized approach for
planning the motion of rigid origami. We used a nonlinear
optimization method to find a valid (deformation bounded



(a) Miura (b) ROS (c) Our method

(d) Yoshimura (e) ROS (f) Our method

Fig. 7. Comparisons to ROS. Top: (a) Half-folded state of Miura crease
pattern. (b) Maximum folded state from ROS. This configuration found by
ROS is not collision free. (c) Folded by our method. Bottom: (d) Half-
folded state of Yoshimura crease pattern. (e) Maximum unfolded state from
ROS. (f) Unfolded by our method.

and collision free) configuration around a given sample con-
figuration. The experimental results shows that our planner
could efficiently and effectively find valid path for various
types of rigid origami that existing tools fail to fold. Taking
symmetry into consideration and reusing folding path found
on the essential crease pattern enable us to fold large origami
tessellation efficiently.

The proposed randomized rigid origami folding method is
designed to assist the foldability analysis of self-folding
origami. Self-folding origami using active-materials usually
have many kinematic and dynamic constraints, such as
maximum folding angles, and may often requires multiple
folding phases in order to fold itself to the desired state, see
details in [20]. User defined motion criteria can be easily
introduced into the proposed framework. For example, our
method supports multi-phase folding by given a sequence of
valid intermediate configurations {C1, C2, ..., Cn}.

Limitations and Future Work Even through our prelimi-
nary results are encouraging, our method still has much room
for improvement and many open questions to be answered.
For example, given a crease pattern without a goal configu-
ration, how to determine its crease groups. Given a desired
deformation upper bound of a large crease pattern, how can
one determine the deformation upper bound required for its
essential crease pattern.
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