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Abstract: Computing the Minkowski sum of two polyhedra exactly hasrbsigown
dif cult. Despite its fundamental role in many geometricmptems in robotics, to
the best of our knowledge, no 3-d Minkowski sum software femeral polyhedra is
available to the public. One of the main reasons is the difycaf implementing the
existing methods. There are two main approaches for comgpiinkowski sums:
divide-and-conquer and convolution. The rst approachateposes the input poly-
hedra into convex pieces, computes the Minkowski sums teataepair of convex
pieces, and unites all the pairwise Minkowski sums. Althoagnceptually simple,
the major problems of this approach include: (1) The sizéefdecomposition and
the pairwise Minkowski sums can be extremely large and (Bustly computing
the union of a large number of components can be very trickyti@ other hand,
convolving two polyhedra can be done more ef ciently. Theuléing convolution
is a superset of the Minkowski sum boundary. For non-conmexitss, Itering or
trimming is needed. This usually involves computing (1) #teangement of the
convolution and its substructures and (2) the winding nusbe the arrangement
subdivisions. Both computations are dif cult to implemenbustly in 3-d. In this
paper we present a new approach that is simple to implemehtam ef ciently
generate accurate Minkowski sum boundary. Our method igotation based but
it avoids computing the 3-d arrangement and the winding rersihe premise of
our method is to reduce the trimming problem to the problefmsomputing 2-d
arrangements and collision detection, which are much tettderstood in the lit-
erature. To maintain the simplicity, we intentionally daer the exactness. While
our method generates exact solutions in most cases, it @b@saduce low dimen-
sional boundaries, e.g., boundaries enclosing zero volWeeclassify our method
as "nearly exact' to distinguish it from the exact and apprnate methods.
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Fig. 1: Can you nd a con guration that keeps the knot (in réaferlocked but without colliding
with the cubic frame (in white) in the gure (a) above? Althduig seems, from an external view
(b), the Minkowski sum boundary of the knot and the frame modedgiple, the inside view (c)
shows that the Minkowski sum contains many holes. By placing tlekreference point in one
of these holes, the knot remains interlocked and collision fige tive frame. There are in total 10
510 facets in this Minkowski sum boundary.

1 Introduction

Given two geometric models and their con gurations in thaag such as the knot
and the frame models shown in Fig. 1(a), there are severalriamt questions that
we can ask about these two models. For example, what is theitest separa-
tion distance? Is it possible to physically separate the knd the frame without
intersections? If not, can we modify the knot, e.g., makekihat thinner, so the
problem above becomes solvable? What are the set of thei@olfiee con gura-
tions that makes the knot and the frame interlocked? Theenssw these questions
play central and fundamental roles in algorithmic robotieeh as motion planning,
penetration depth estimation, and object containment.dvew all these questions
are not easy to answer either visually or computationallytdithe geometrical and
topological complexity of the problem. In fact, these gigest are all closely related
to the concept of set sum (also known as the Minkowski sunmg.Miimkowski sum
of two polyhedraP andQ is de ned as:

POQ=fp+qjp2PRg2 Qg 1)

In Fig. 1(b) and Fig. 1(c), we show the Minkowski sum of the kand the frame.
The inner view reveals a large number of holes in their Minkkiwsum despite
the simplicity of the input models. Indeed, computing thenkéiwski sum of non-
convex polyhedra can have the time complexity as higB@sm?) [12], wherem
andn are the complexity of the input models.

Given two polyhedral modelB andQ represented by their boundarig® and
1Q, theboundaryof their Minkowski sumff(P© Q) 6 TP© 1Q. Therefore, comput-
ing the boundary-based representation of the Minkowskisssmmore than applying
Eqg. 1 toP andQ. Many methods have been proposed during the last three eecad
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Even though several methods [13, 4, 8, 5] are known to comimtévlinkowski
sum ofconvexpolyhedra ef ciently in 3-dimensions, most approachegpsed for
general polyhedra remain in theoretical stage. Only a fagtgral implementations
exist and none of them are available to the public. We willvite a more detailed
review on the related work in Section 2.

Our approach. An important goal of our work is to provide a simple method
that can ef ciently and accurately compute the Minkowskirsboundaries. The
proposed method is based convolution The convolution of two polyhedri& and
Qis a set of facets in 3-d that is generated by “combining' #vefs of° andQ and
forms a superset of the Minkowski sum boundaryPadndQ. Convolution will be
de ned more carefully in Sections 2 and 3.1.

Brie y, our method rst generates the convolution and cortesithe facet-facet
intersections within the convolution. These interseditimen induce an arrange-
ment of line segments embedded on each facet. The cells ftdine §2-d) arrange-
ments are then merged into “simple regions' (de ned in $#c8.4), which are then
Itered so that only the regions on the boundary are kept. \&tbdrately avoid
computing the 3-d arrangement and the winding numbers,hwiéwe been shown
dif cult to compute robustly. Our method is designed to talie inaccuracy in the
convolution and depends only on solving the problems of Br-ahgement and col-
lision detection, which are much better understood in tieediure. We will discuss
the details of our method in Section 3.

Our method does not solve the problem of 3-d Minkowski sunirelgt The
simplicity of our method is gained by sacri cing the exacdeeThat is our method
provides onlynearly exacMinkowski sum whose low dimensional boundaries, e.g.,
boundaries enclosing zero volume, amidenti ed. Fortunately, whe® andQ do
not interlock too tightly, the proposed method keeps allistaries exact (although
may still suffer from numerical errors), thus provides mapeuracy than the ap-
proximate methods [19, 14] do. We should also point out thetroethod shares
some similarity with our previous work on the point-basedhmd [14]. Beside the
difference in their representations (mesh vs. points)ptioposed method provides
signi cant improvements over the point-based method im&of both quality and
ef ciency. We will carefully compare these two approacheSsection 4.

2 Related Work

During the last three decades, many methods have been pbpmsompute the
Minkowski sums of polygons or polyhedra; see more detailegeys in [6, 19, 4]
for the Minkowski sums of the models in boundary-based sgtation. Despite
the large volume of work, most methods can be categorizedim of the two main
frameworks: divide-and-conquer and convolution.
Divide-and-Conquer. In the divide-and-conquer framework, the input models

are decomposed into components. Because computing theoMéhkk sum of con-
vex shapes is easier than non-convex shapes, convex desitimp¢either surface
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or solid) is widely used. The next step in this framework cotep the pairwise
Minkowski sums of the components. Finally, all these paewMinkowski sums
are united to form the nal Minkowski sum of the input shapes.

This approach is rst proposed by Lozané+iez [16] to comput€ -obst for mo-
tion planning. Although the main idea of this approach isgenthe divide step
(i.e., convex decomposition) and the merge step (i.e.,jréan be very dif cult
to implement robustly in practice, in particular when thpuhshapes are complex.
For example, it is known that creating solid convex decoritjpwsrobustly is dif-
cult, e.g., it is necessary to maintain the 2-manifold pedy after the split [2]. In
addition, Agarwal et al. [1] have shown that different depmsition strategies can
greatly affect the ef ciency of this approach. Hachenbeldd] presents a robust
and exact implementation using the Nef polyhedra in CGALwEleer, his results
are still limited to simple models.

The union step is even more troublesome. The decompostgpmsrmally gen-
erates many components. Even though methods exist to petfbion operation,
no existing methods can robustly compute the union of thudsa&ven millions of
pairwise Minkowski sums. In particular, the size and the plaxity of the geometry
generated during the intermediate steps can be overwhglifiato [3] computes
the unions using the cells induced by the arrangement ofribesegments. He uses
a hybrid strategy that combines arrangement with increah@mertion to gain bet-
ter ef ciency. Hachenberger [11] also studies how the omfehe union operation
affects the ef ciency. To avoid this explicit union step,régdhan and Manocha [19]
proposed an approach that generates meshes approximaginginkowski sum
boundary using marching cube technique to extract theusiase from a signed
distance eld. They proposed an adaptive cell to improvertitmistness and ef -
ciency of their method. Because their approach still depemdconvex decomposi-
tion, it still suffers from the excessive number of convexgmnents from decom-
position.

Convolution. The convolution of two shapésandQ, denoted aP£ Q, is a set
of line segments in 2-d or facets in 3-d that is generated tapkining' the segments
or the facets o andQ [9]. One can think of the convolution as the Minkowski
sum that involves only the boundary, i.2.£ Q= TP© 7Q. It is known that the
convolution forms a superset of their Minkowski sum [6],,i5(P© Q) 2P£ Q.
To obtain the Minkowski sum boundary, it is necessary to thimline segments or
the facets of the convolution.

For 2-d polygons, Guibas and Seidel [10] show an output Bemshethod to
compute convolution curves. Later, Ghosh [6] proposed @nageh, which uni es
2-d and 3-d, convex and non-convex, and Minkowski additiod decomposition
operations. The main idea in his method is the negative shageslope diagram.
Slope diagram is closely related @aussian mapwhich has been recently used to
compute to implement robust and ef cient Minkowski sum cartgtion of convex
objects by Fogel and Halperin [4]. Kaul and Rossignac [18ppsed a linear time
method to generate a set of Minkowski sum facets. Outputitsenmethods that
compute the Minkowski sum of polytopesdrdimension have also been proposed
by Gritzmann and Sturmfels [8] and Fukuda [5].
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The main dif culty of the convolution-based methods is tan@ve the portion
of the facets that are inside the Minkowski sum. Recentlyinvi20] shows a ro-
bust and exact method based on convolution for non-convigpos. To obtain
the Minkowski sum boundary from the convolution, his metlodnputes the ar-
rangement induced by the line segments of the convolutidrkaaps the cells with
non-zero winding numbers. No practical implementationriswn for polyhedra
using convolution due to the dif culty of computing the 3-dr@ngement and its
substructures [18].

Point-Based RepresentationAlternatively, points have been used to represent
the Minkowski sum boundary. Representing the boundarygueinly points has
many bene ts. First of all, generating such points is eafian generating meshes
and can be done in parallel and in multi-resolution fashiareover, point-based
representation can be generalized to higher dimension@gmplanning problems
[15].

Peternell et al. [17] proposed a method to compute the Miskosum of two
solids using points densely sampled from the solids, andpctenlocal quadratic
approximations of these points. However, their method adénti es the outer
boundary of the Minkowski sum using a regular grid, i.e., méetboundaries are
identi ed. This can be a serious problem in particular whes study problems in
motion planning and penetration depth computation.

We proposed a completely different method [14] that guaesito produce a
point setcoveringthe boundary. However, our method also has drawbacks. For
example, a large number of points are required if the Minkowsm has small
features (e.g., the models in Fig. 9). In addition, our méttieats each point inde-
pendently. This is good for the purpose of parallelizatiahthe local relationship
between the neighboring points is completely ignored. Ththod proposed in this
paper does not suffer from these problems.

3 Our Method

In this section, we begin to discuss more details about tbpgaed method. The
proposed method is convolution based and comprises ve stajps. Our method
rst computes the convolution using a brute force methodc{®a 3.1). Then, we
identify all the intersecting facets in the convolution¢8en 3.2). Next, each facet is
subdivided into sub-facets from the facet-facet inteisast(Section 3.3). All sub-
facets are stitched intsimple regiondased on the properties that will be discussed
later (in Section 3.4). A simple region is either entirelgiote or entirely on the
boundary of the Minkowski sum. Finally, we use a collisiorted¢or to remove
the regions inside the Minkowski sum (Section 3.5). We catelthis section by
providing a discussion on the bene ts provided by the pregomethod and its
current limitations (Section 3.6).
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3.1 Brute force convolution

We use a brute force method to compute the convolution beca#its simplicity. As
we will see in our experiments, the convolution step acyuiakes very little time
(on average 0.4% of the entire computation), even using thee force method,
comparing to all the other steps.

Our brute force method checks all possible facet/vertexealyd/edge pairs ¢f
andQ and keeps all the facets that satisfy the criteria statecbse@ation 3.1. The
result of the brute force convolution is a set of facets thkatde in the interior and
on the boundary of the Minkowski sum.

Given two polyhedrd® andQ, the
convolution ofP andQ can only come
from two sources [13]: (i) the facets,
called fv-facets, generated from a
facet of P and a vertex ofQ or vice
versa and (ii) the facets, callege
facets, generated from a pair of edges
from P andQ, respectively.

Fig. 2: Gaussian map dfv- (left) andee

Observation 3.1 A facet f and a verté&g\y‘gr’(@&@&% a valid fv-facet if and only if
the normal of f is inside the region enclosed by the normath®ffacets incident
to v in the Gaussian map. Similarly, a pair of edgesaed e form an ee-facet if
the corresponding edges in the Gaussian map cross each Btpe? illustrates the
necessary conditions of both fv- and ee-facets.

Our goal in the next few steps is to remove the portions of tmvalution inside
the Minkowski sum.

3.2 Facet-facet intersections

The goal of this step is to identify all the intersecting factor each facet in the
convolution. To do so, we construct a bounding volume ha@mafrom top-down
using spheres that enclose all the facets. For each faceisevitss bounding sphere
to identify all the intersecting spheres, which containgmbial intersections. Fi-
nally, the intersecting facets are then determined fronth&lse spheres. Because
all the facets generated in the convolution must be conviheifinput models have
only convex facets, exact facet-facet intersection candspmed ef ciently in 3-

d. Without the loss of generality, we assume that the modsssl in this paper are
composed of triangles.
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3.3 Split facets

We use the intersections above to split the convolutiont§agessentially, this step
computes the 2-d arrangements of the facet-facet intéwsecbbtained from the
previous step. For each facet, we project the intersecttise supporting plane of
the facet. The arrangement embedded in the facet is indycttbbe projected line
segments and the boundary of the facet. It should be notéevtien the interior of
a segment partially or entirely overlaps with other segmene handle this degen-
erate case by creating cells with zero areas enclosed byv#reapped segments.
As we will see later, these “area-less' regions also senaefasm of “insulator' to
prevent the facets from being stitched.

For the facet without any intersections, we simply treasiaa arrangement with
a single cell (two cells if we count the unbounded subdivisiaro simplify our
discussion, we call a cell created in this step a “sub-facet.

3.4 Stitch sub-facets

Our goal in this step is to stitch all the sub-facets into
simple regionsA simple region is composed of a set

of contiguous sub-facets that are completely on the
Minkowski sum boundary or are completely inside

the Minkowski sum. Our method constructs the sim-
ple regions by stitching the neighboring sub-facets
iteratively until all sub-facets are stitched. We say

that two sub-facet$; and f, are neighbors if they
share an edge.
Stitching criteria. Let C be an existing compo-

nent and letf; be a facet on the boundary 6f We

further letf, be a neighbor of; that is not inC and Fig. 3: Examples of facets
let e;> be the edge shared by and fo. Thenf; and that cannot be stitched.

fo are stitched if they do not violate the following

constraints.

1. e does not overlap with the intersections of timerior of the convolution
facets.
2. e12is 2-manifold.

Note that the rst constraint can be readily checked fromititersection step
earlier and is in fact a special case of the second constHiig is because a pair
of intersecting facets must generate a non-manifold rediba second constraint is
used to check for non-manifold edges shared by more thanhtevadjacent (non-
intersecting) sub-facets. Fig. 3 shows two examples tludétd these criteria.
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3.5 Determine the boundary regions

In this nal step, we determine which simple regions are fmandary regions and
should be discarded using collision detection calls. Ouhod uses the close rela-
tionship between the Minkowski sum boundary and the conaEfttontact space”
in robotics. Every point in the contact space representigjaaation that places
the robot in contact with (but without colliding with) the stlacles. Given a trans-
lational robotP and obstacle®, the contact space & andQ can be represented
asf((i P©Q), wherej P=fj pjp2 Pg. In other words, if a poink is on the
boundary of the Minkowski sum of two polyhedPaandQ, then the following con-
dition must be true:
(i P4\ Q= 0;

whereQ* is the open set d) and(P+ x) denotes translating to x.

Using this observation, we can determine if a simple regi@mon the boundary
by simply placing; P at a pointx sampled from a facet2 Rand testing ifj P+ X)
is in collision withQ. If (j P+ x) is collision free, then we can conclude tiiis
on the Minkowski sum boundary. Otherwise, we disdard

3.6 Discussion and Implementation Details

The proposed method is simple and ef cient, but it does notlpce low dimen-
sional (isolated) boundaries composed of only edges artit@sr In this section,
we provide more detailed discussion regarding the impléatiem and the advan-
tages and the limitations (and possible improvements)rmessteps of the proposed
method. The readers can also skip these details and go torsédor experimental
results.

Convolution. Our brute-force method does not compute exact 3-d corivokit
but a superset of the convolution. As far as we know, no prakthethod can com-
pute the convolution of polyhedra exactly and robustlynetreugh methods exist
to compute the convolution of polygons, such as the teclasidn [10, 20]. Our
method, unlike [20, 10], does not use the (mesh) connegctfiP andQ to con-
struct the convolution, and, due to numerical errors, mayeggte “isolated' facets
in the nal “convolution' instead of a set of closed 2-manife. Note that all the
isolated facets are inside the Minkowski sum boundary.

These two weaknesses of our brute-force method make theutatigms of the
arrangement and the winding numbers even more dif cult. Easv, because we
intentionally avoid these two steps, our method does néeistrtbm the inaccuracy.

Given two polyhedrd® andQ with sizem andn, the brute-force method takes
O(mn) time. As we mentioned earlier, the convolution step is net tibttleneck
of the entire computation. Even though computing the carti@h from the non-
planar Gaussian maps using a strategy similar to the idga®,20] can de nitely
increase the ef ciency, the improvement to the entire cotation is limited.
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Facet-facet intersection We use bounding sphere hierarchy to detect the inter-
sections. We use spheres because they are invariant undgomoThis step takes
O((N + K)logN) time, whereN = mn s the size of the convolution andis the
intersection size.

Stitch sub-facets The idea of stitching is to maintain a set of the largest 2-
manifolds from the convolution. We claim that each of thimanifold is a simple
region. The criteria proposed to construct the simple regi@n Section 3.4) also
focus this goal. In Lemma 0.1, we show that these two criterindeed suf cient
to generate simple regions.

Lemma 0.1.A simple region is either on the Minkowski sum boundary oria t
interior of the Minkowski sum if the simple region is constad using the criteria
in Section 3.4.

Proof (Sketch)Let C be the convolution of two polyhedra and ¢C) be the ar-
rangement ofC. Essentially, a simple region identi ed in Section 3.4 iset of
contiguous sub-facets that form or entirely reside on thenbdary shared by two
(3-d) cells ofC(A). Since a cell must not cross the Minkowski sum boundary, the
simple region will not cross the boundary. Thus, a simpléaregs either on the
boundary or in the interior of the Minkowski sum.

Given the strong connection between the simple region andrttangement cell,
one might wonder if we can further stitch the simple regiante icells. There are
several reasons that we do not go in this direction. Firsergk cells in the ar-
rangement of the convolution, there can®@g) simple regions, Therefore, further
stitching regions into cells may not improve the ef cienat [east asymptotically).
Second, this additional step greatly increases the difycof the implementation.
Many degenerated cases, in particular with isolated reg&hrould be considered. In
addition, from our preliminary results, little or no penfioance is gained by stitching
further. Due to these reasons, we do not further stitch simggjions into arrange-
ment cells.

Determine the boundary regions We use collision detection calls to determine
the type of a simple region. For detecting collisions, we aigeodi ed version of
RAPID [7]. An issue that we have to deal with when working WRIAPID (and
most collision detectors) is that RAPID cannot distingufdiwo objects are in the
contact con gurations or are in fact in collision. To workoand this problem, we
perturb each point we sampled with an in nitesimally smadttor pointing in the
outward direction of the facet (from the convolution) whéhne point is sampled
from. Note that the normal directions of dl- andeefacets are readily available
from the convolution step.

After the perturbation, the point will most likely becomellion free if it is
indeed on the Minkowski sum boundary. The exceptions to bwe case occur
when the Minkowski sum boundary degenerates to an isolagd»; edge or sliver
(enclosing zero or a very small volume). This is the reasopeur method provides
only “nearly' exact Minkowski sum.



Jyh-Ming Lien

e

Sphere (500) Cone (78) Axes (36) Frame (96) Knot (992)

I~ @Y

Wrench (772) Clutch (2116) Bull (12396)  Inner Ear (32236)

Fig. 4: Models used in this paper. The number following the modehe is the number of facets
of the model.

Another concern of using collision detection to replacedirig number is the ef-
ciency. However, as our experiment shows, collision détet although dominates
the computation in some examples, does not signi cantiwslown our method.

4 Experimental Results

In this section, we show experimental results. All the ekpents are performed on
a PC with two Intel Core 2 CPUs at 2.13 GHz with 4 GB RAM. Our isrpkntation
is coded in C++. For detecting collisions, we use a modi edMB [7]. Fig. 4
shows a set of models used in this section. All the models laad/finkowski sum
boundaries in our experiments are in Wavefront OBJ formdtzam be downloaded
from our project webpage.

4.1 Geometric modeling

Our method can be used to perform operations such as daiffgetrosion, and
sweeping on large geometric models. Fig. 5 shows an exanipleecoffsetting
operation of the clutch model. Offsetting is done by comumits Minkowski sum
with a sphere. The top gure of Fig. 5 shows the Minkowski suoubdary (13
974 facets) of the clutch model and the sphere model. Eadratblpatch (best
viewed from the submitte@df le) on the Minkowski sum boundary indicates a
simple regiorbounded by red line segments. Interestingly, for some nsotted red
line segments that separate simple regions tend to go thriinggareas with high
concavity. Therefore, the simple regions seem to represaumlly meaningful seg-
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Fig. 5: Offsetting of the clutch model.

mentations of the model. The bottom gure of Fig. 5 shows aernmal view of the
Minkowski sum.

In Fig. 6, we show an example of the swept volumes of two largdets: a spoon
and a horse. The swept volume is generated by computing thieoMiski sum of the
spoon and the horse models with a thin tube representingeztivay. An internal
view of the horse model's swept volume is also shown.

4.2 Computation time

A step-by-step analysisFig. 7 shows our rst experiment result using the models
in Fig. 4, which include convex/non-convex models, zero amazero genus mod-
els, and CAD and digitized models. These models are selearedully to test the
proposed method. In Fig. 7, we show the computation time cif &inkowski sum
and the ratio of each step in an entire Minkowski sum comjartatt is clear that

(@) (b) (c)

Fig. 6: (a) A swept volume of the spoon model (89 822 facets). Thadany is composed of 138
801 facets. (b) A swept volume of the horse model (39 694 facets)bdtedary is composed of
73 912 facets. (c) An internal view of (b).
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the facet-facet intersection and collision detection stgminate the computation.
We observe that the ratio of the creation time decreases thiessize of the model
increases. When the size of the model increases, the intiersetep becomes more
dominating. When the models have handles, the ratio of tHisicol detection in-
creases due to the increasing number of holes (e.g., Fratn€raot).

P© Q| Cone Axes Frame Knot || Wrench  Clutch Bull  Inner Ear

3¢

Spherg Sphere

13.6

Cons Cone

Axes| Axes
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Frame Frame

21.3 289.3

15
15
235

347.0 755.1

Knot Knot

[(e} N
N“o’
S N
o] o

255.5
[ creation I intersection

7 split/stitch mmmmmm collision detectior

Fig. 7: Computation time of the proposed method. Each Minkowski sommputation is shown as
a pie chart, representing the cost of each step, and a number thel@hart, representing the total
computation time (in seconds). Models used in this experimentedound in Fig. 4.

Point-based vs. Mesh-based Minkowski sum/\e compare the proposed method
(hereafter named mesh-based method) to the point-basdaWski sum [14] since
it is the only implementation available to the public thgpsarts general polyhedra.
In order to make fair comparisons, we sample points from dceté generated by
the mesh-based method. Like point-based Minkowski sunsetipeints form al-
covering of the Minkowski sum boundary. It is obvious that whetis large point-
based method can outperform mesh-based method. In Fig. 8anyehe value of
d from 10 to 0.05. As we can see that, as the valué décreases, the computation
time of the mesh-based method is slightly elevated whiletiiésion detection call

2 We say that a set of poin®is ad-covering of a surfacM if, for every pointmof M, there exists
a point inSwhose distance tmis less thard.
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Fig. 8: Computation time for generating points covering thaldivski sum boundaries. Notice
that thex andy axes are both in logarithmic scale.

number remain the same. On the other hand, the point-bastédnslows down
signi cantly asd decreases due to rapidly increasing detection calls.

In addition to the bene t of being faster than the point-lthegethod, the mesh-
based method proposed in this paper does not suffer fromampleng density
issues. In particular, when small features are presentiMinkowski sum bound-
ary, high density points (i.e., smal) are needed to reveal these features. In Fig. 9,
we show a “classic' example of two grate-like shapes, frontkvia large number
points will need to be sampled in order to capture the longskithy columns of
the Minkowski sum boundary. Our mesh-based method doesuffer srom this
problem and successfully generates the exact Minkowskitssumdary.

5 Conclusion

In this paper we proposed a simple 3-d Minkowski sum methodskence, our idea
is to avoid computing the exact convolution, 3-d arrangeraad the winding num-
bers. Instead, we lter and trim facets using only 2-d aremegnts and collision de-
tector. Our method starts with an inaccurate convolutiamegated by a brute force
method. For each facet in the convolution, we subdivide #uetfinto sub-facets
induced by the arrangement of the facet-facet intersextigthin the convolution.
Sub-facets are then grouped into simple regions, which keged by a collision
detector. Our method does not solve the problem of 3-d Mirgkdwum entirely.
The simplicity of our method is gained by sacri cing the et@ss. Although pro-
viding only nearly exact Minkowski sum, our method is more accurate than the
approximate methods. In our experiment, we demonstrateg@rbposed method's
ability of handling large geometric models. We also showes éf ciency of the
proposed method comparing to the point-based Minkowski sathod. While we
are currently optimizing the performance of our implem&ota we plan to release
the software developed for this paper to the public.
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T(P©Q) P©Qinternal

Fig. 9: Minkowski sum of two grate-like modelB.has 27 teeth and 540 facets, aDthas 48 teeth
and 942 facets, and© Q has 71043 facets. The total computation time is 318.5 seconds isin
thread. These models imitate the grate models created by Halieli and from Varadhan and
Manocha [19].
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